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Abstract: Two alternative formulations of single crystal plasticity model were introduced respectively and two schemes were 
implemented in the explicit FE code with software ABAQUS/Explicit by writing the user subroutine VUMAT. Meshes containing 
material data were created with solid elements. Each element represented an individual grain, and the grain orientations were 
explicitly stored and updated at each increment. Tangential modulus method was employed to calculate the plastic shear strain 
increment of deformation systems in combination with a hardening law to describe the hardening responses. Both two developed 
subroutines were applied to simulate the texture evolution during the uniaxial tension of copper (FCC), cold rolling of IF steel (BCC) 
and uniaxial compression of AZ31 magnesium alloy (HCP). The predicted texture distributions are in qualitative agreement with the 
experimental results. 
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1 Introduction 
 

Crystal plasticity has attracted a lot of interests due 
to its ability to set up relationships between material 
behavior and microstructure. Recently, with the 
significant increase in computational power, crystal 
plasticity based finite element method (CPFEM) has 
been widely applied to simulate forming process and 
predict texture evolution during deformation. The 
various applications of CPFEM can be classified into 
three major types: 1) each element represents an 
individual grain [1], 2) each element represents a set of 
grains [2], and 3) several elements describe an individual 
grain [3]. Compared with the last two methods, the first 
approach provides the most straightforward means to 
represent the polycrystalline aggregate. Since crystal 
plasticity model is not available as standard in the 
commercial FE software, this approach requires 
implementing single crystal model in FE software. 

The single crystal plasticity models can be 
categorized into two major types: the rate independent 
model and the rate dependent model. Regardless of the 

type of crystal model, there are typically two different 
methods to formulate the single crystal model, additive 
decomposition of the velocity gradient L and 
multiplicative decomposition of the deformation  
gradient F. However, there has been few contrasting 
work between the two formulations, most previous 
research has concentrated on either formulation. 
Furthermore, systematic study on different crystal 
structures (FCC, BCC and HCP) with two formulations 
is seldom found. 

In this study, two formulations of single crystal 
plasticity model were introduced, respectively. The rate 
dependent model is implemented in the commercial 
finite element software ABAQUS/Explicit by writing the 
user subroutine VUMAT. The integration schemes were 
applied to FCC, BCC and HCP crystals for model 
validation and comparison. 
 
2 Two formulations of single crystal model 
 
2.1 Additive decomposition of velocity gradient 

The velocity gradient L is expressed as follows: 
                       

Foundation item: Projects (50821003, 50405014) supported by the National Natural Science Foundation of China; Projects (10QH1401400, 10520705000, 
10JC1407300) supported by Shanghai Committee of Science and Technology, China; Project (NCET-07-0545) supported by Program for 
New Century Excellent Talents in University, China; Project supported by Ford University Research Program 

Corresponding author: LI Da-yong; Tel/Fax: +86-21-34206313; E-mail: dyli@sjtu.edu.cn 
DOI: 10.1016/S1003-6326(11)60936-9 



HUANG Shi-yao, et al/Trans. Nonferrous Met. Soc. China 21(2011) 1817−1825 1818 
 

WDFFL +=⋅= −1&                           (1) 
 
where F is the deformation gradient; D is the symmetric 
part of the deformation rate; and W is the skew 
symmetric spin tensor. D and W can be decomposed into 
elastic and plastic parts as: 
 

⎪⎩

⎪
⎨
⎧

+=
+=

pe

pe

WWW
DDD                               (2) 

 
In increment n, p

nD and p
nW are related to the grain 

level plastic strain rate αγ&  as: 
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nP  and α
nR  can be defined as: 
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where the slip direction in the current configuration is 
designated by the unit vector mn and the slip plane 
normal in the current configuration by the unit vector nn, 
and the superscript α is the number of deformation 
systems. A rate dependent constitutive rule [4] is 
employed to relate the plastic shear strain rate αγ&  and 
the shear stress ατ as: 
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where gα denotes the critical resolved shear stress (CRSS) 
to describe the current strain hardening state of the 
crystal; αa&  is the reference shear rate and m is the 
material rate sensitivity. The solution of αγ&  is making 
use of tangential modulus method [5−6]. Then the elastic 
constitutive equation can be specified as: 
 

ee WττWττ ⋅+⋅−= &e                         (6) 
 
where eτ is the Jaumann rate of the Kirchhoff stress 
tensor τ based on the lattice rotations. 

In each increment, the rigid body rotation matrix 
can be expressed as [7]: 
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where Q defines the orientation of the crystal coordinate 
system with respect to the global coordinate system. 

The CRSS gα is evolved according to the hardening 

law, 
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with 
 

αβααβ qhh =                                  (9) 
 
where hαβ is the hardening modulus and qαβ is introduced 
to describe the self and latent hardening. The following 
equation is employed to describe hα [8], 
 

ααααα )/1( s00 gghh −=                          (10) 
 
where α

0h is the initial hardening rate; α
0g is the initial 

CRSS; α
sg is the saturation value of deformation 

resistance and a is the hardening exponent. 
The flow chart of this calculation is shown in    

Fig. 1. 
 

 
Fig. 1 Flow chart for additive decomposition of velocity 
gradient 
 
2.2 Multiplicative decomposition of deformation 

gradient 
The kinematics based on multiplicative 

decomposition of the deformation gradient is expressed 
as: 
 

pe FFF ⋅=                                 (11) 
 
where Fp is the deformation solely due to plastic 
shearing along crystallographic slip systems, while the 
elastic deformation and any rigid body rotation are 
embodied in Fe. In addition, the elastic component Fe is 
decomposed into the symmetric left elastic stretch tensor 

∇

∇  
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Ve and the rotation tensor Re (det Re =1). 
 

eee RVF ⋅=                                (12) 
 

In increment n, the green strain En can be calculated 
as: 
 

)(2/1 eeT
Innn −= FFE                        (13) 

 
Since e

nF  is unknown at the beginning of the increment, 
e

1−nF  should be used from last increment as a trial input 
to calculate the trial green strain *

nE . Then the trial 
second Piola-Kirchhoff stress *

nT  is calculated as 
 

** : nn ECT =                                (14) 
 
where C is the elasticity matrix. The trial resolved shear 
stress on each deformation system can be calculated as: 
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where the slip direction in the initial configuration is 
designated by the unit vector α

0m  and the slip plane 
normal in the initial configuration is designated by the 
unit vector α

0n . Then the plastic deformation gradient is 
updated by the following equation: 
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where p

n
′F is normalized by 
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With the normalized p

nF , the elastic component e
nF  

is calculated according to Eq. (11). Then the second 
Piola-Kirchhoff stress Tn is recalculated with the 
updated e

nF , the procedures are repeated until that the 
trial second Piola-Kirchhoff stress *

nT  coincides with 
the recalculated nT . nT  can be converted to Cauchy 
stress nσ by 
 

[ ] Te1ee )(det nnnn FTFFσ −=                     (18) 
 

At the end of each increment, the rotation tensor Re 
can be calculated by Eq. (12). Then grain orientation is 
updated based on the following equation: 
 

0
eQQ Rn =                                  (19) 

 
where Qn is the rotation tensor in the deformed 
configuration and Q0 is the rotation tensor in the initial 
configuration. 

The evolution of CRSS is also calculated according 
to Eqs. (8)−(10). The calculation scheme for 
multiplicative decomposition of the deformation gradient 
is shown in Fig. 2. 

 

 

Fig. 2 Flow chart for multiplicative decomposition of 
deformation gradient 
 
3 Modelling texture evolution during 

deformation 
 

Crystal plasticity constitutive theory is not available 
as standard in the commercially FE software ABAQUS. 
However, ABAQUS provides an interface where 
ABAQUS/Explicit users can define the constitutive 
behavior of a material with the user subroutine VUMAT. 
ABAQUS/Explicit solution process involves large 
number of increments. Stress and state variables 
(orientation and hardening parameters of each individual 
grain) at each material point are passed in at the 
beginning of each increment and then updated at the end 
of increment. In this section, texture evolution during the 
deformation of FCC, BCC and HCP crystals were 
simulated with two developed subroutines. All the 
simulations were accelerated by adopting proper 
mass-scaling factor. To preclude the influence of material 
parameters, the same values of critical resolved shear 
stress (CRSS) and hardening parameters for two models 
were adopted. 
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3.1 FCC crystal 
As the first example, two subroutines were applied 

to simulate the texture evolution during uniaxial tension 
of copper. The simulation results were compared with the 
experiment results [9]. The tension test was carried out at 
a strain rate of 0.001 s−1 to a strain level of 0.37. The 
initial texture is randomly distributed and the deformed 
texture is shown in Fig. 3. 

A rectangular model was built to simulate the 
tension test. The geometry was meshed with 1000 

elements, type C3D8R. Each element in the FE model 
was initialized with a random grain orientation. The 
random texture distribution of the polycrystalline 
aggregate is plotted in Fig. 4. The potential slip systems 
for FCC crystal were the 12 {111}〈110〉 systems. The 
components of the elasticity tensor were: C11=170 GPa, 
C12=124 GPa and C44=75 GPa [9]. The plasticity 
parameters were chosen according to BRONKHORST et 
al [9]. The self hardening ratio was set to 1.0, while the 
latent hardening ratio was set to 1.4. Figures 5 and 6 

 

 
Fig. 3 Experimental texture distribution of copper after uniaxial tension [8] 
 

 
Fig. 4 Representation of random texture distribution of copper 
 

 
Fig. 5 Simulated texture of copper by additive decomposition of velocity gradient 
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Fig. 6 Simulated texture of copper by multiplicative decomposition of deformation gradient 
 
show the texture distribution predicted by two 
formulations respectively. It can be seen that the two 
textures are virtually identical. In addition, the simulation 
results are close to the experiment result shown in Fig. 3. 
 
3.2 BCC crystal 

For BCC crystal, texture evolution of IF steel during 
cold rolling was simulated. The predicted texture was 
compared with the published simulation result [10]. The 
simulation procedure studied by LI et al [10] is described 
as follows: cold rolling process is simulated by plain 
strain compression to a strain level of 1.39 with a 
nominal strain rate of −0.001 s−1. The initial texture 
distribution of IF steel is almost random, and the 
predicted (100) pole figure is shown in Fig. 7. 
 

 
Fig. 7 (100) pole figure of IF steel predicted by LI et al [10] 
 

Since cold rolling can be simulated by plane strain 
compression, a finite element model contains 1000 
elements built to simulate the plane strain compression. 
The input texture was the same as the one shown in Fig. 
4. The reference slip system families were 12{110}〈111〉 
and 12 {112}〈111〉 systems. The values of the parameters 

in elastic tensor were: C11=230 GPa, C12=135 GPa and 
C44=117 GPa [10]. The values of the plasticity 
parameters were derived from another research on the 
ferritic low carbon steel [8]. The predicted (100) pole 
figures are displayed in Fig. 8. Two formulations present 
 

 
Fig. 8 Simulated (100) pole figure of IF steel after cold rolling: 
(a) Additive decomposition of L; (b) Multiplicative 
decomposition of F 
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a similar texture pattern, which is also in qualitative 
agreement with the prediction by LI et al [10]. 
 
3.3 HCP crystal 

As the last example, two subroutines were applied 
to simulating the texture evolution during uniaxial 
compression of AZ31 magnesium alloy. To evaluate the 
accuracy of two formulations, uniaxial compression was 
carried out at room temperature to a strain level of −0.15 
at a nominal strain rate of −0.01 s−1. The round specimen 
(with dimensions of d 10 mm×15 mm) was machined 
from extruded AZ31 rod. The compression direction was 
parallel to the extrusion direction (ED), and the texture 
distribution was measured by electron backscattered 
diffraction (EBSD). Figure 9 shows the texture 
distribution of original and deformed samples with the 
observed plane perpendicular to ED, suggesting that 
strong basal texture was formed during the compression 
test. 

Twinning can be activated to compensate due to the 

lack of crystal symmetry in HCP crystal. The activity of 
twinning highly depends on temperature, alloying 
content, stacking fault energy and the specific crystal 
lattice structure [11]. In the case of AZ31 magnesium 
alloy, tensile twinning plays an important part in 
accommodating strain during the deformation, especially 
at low temperature [12]. The contribution of twinning to 
the grain reorientation is calculated by Predominant twin 
reorientation (PTR) scheme [13]. In this scheme, a 
threshold value for twinning reorientation (FT) can be 
defined by 
 

R

E
T V

VbaF +=                               (20) 

 
where VE is the effective twinned fraction; VR is the total 
volume fraction of accumulated twins, and a and b are 
constants. At every increment, if the accumulated 
twinned fraction of the most active twinning system 
exceeds the threshold value, the whole grain is reoriented 
following the predominant twinning system. Then this 

 

 
Fig. 9 Texture distributions of initial and deformed AZ31 magnesium alloy: (a) Initial (0001); (b) Initial )0110( ; (c) Deformed 
(0001); (d) Deformed )0110(  
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reoriented grain is added to the effective twinned  
fraction, VE. As more grains are reoriented by twinning, 
FT increases with the increment of VE. Further 
reorientation by twinning is inhibited until VR catches  
up. 

In addition to tensile twinning, three kinds of slip 
systems were assumed to be activated during 
deformation: basal 〈a〉, prismatic 〈a〉 and pyramidal 〈c+a〉 
slip systems [14−16]. In the current study, the values of 
CRSS and hardening parameters (Table 1) were derived 
from a previous research [16], where the same  
hardening law was employed. The values of the 
parameters in elastic moduli were: C11=58 GPa, C12=25 
GPa, C13=20.8 GPa, C33=61.2 GPa and C55=16.6 GPa 
[14]. The latent hardening ratio for slip systems was set 
to 1.4, while it was set to 4.0 for twinning system to 
represent that the dislocation movement is inhibited by 
twinning boundary. 

 
Table 1 Plasticity parameters for AZ31 alloy [16] 

Mechanism h0/MPa g0/MPa gs/MPa a/MPa

Basal 〈a〉 150 30 100 1.1 

Prismatic 〈a〉 500 70 130 1.1 

Pyramidal 〈c+a〉 500 70 130 1.1 

Tensile twinning 50 25 60 1.1 

 
A cylindrical model with 1707 elements was built to 

simulate compression test. The input texture was the 
ideal (0001) fiber texture, as shown in Fig. 10. Figure 11 
presents the predicted (0001) pole figures. With the same 
input texture and parameter values, both two integration 

schemes predicted the formation of basal texture during 
compression. But compared with experimental result in 
Fig. 9, two integration schemes predicted more scattered 
basal texture. In addition, the deviation between Figs.  
11 (a) and (b) can not be neglected. 

The values of CRSS and the hardening parameters 
of different slip and twinning systems in AZ31 alloy 
have been widely reported [14−17] in the recent years, 
the differences between these values are distinct. The 
values of CRSS and hardening parameters are generally 
obtained by an inverse parameter calculation, namely 
fitting the experimental stress—strain curves. Thus, they 
are appropriate for interpreting the phenomenological 
results rather than representing material constants. Note 
that CRSS and hardening parameters are derived from a 
previous research [16], which may not be precise for the 
current integration schemes. A stronger basal texture can 
be predicted by either integration scheme if the values of 
CRSS and hardening parameters are properly adjusted. 

It shows that both two formulations are appropriate 
for FCC, BCC and HCP structured crystals. Nevertheless, 
the multiplicative decomposition of F involves iteration 
until a convergence criterion is satisfied for each 
increment, while the additive decomposition of L is 
solved directly to determine the solution at the end of the 
increment without iteration. Thus, the additive 
decomposition of L has the advantage of computational 
efficiency although the two algorithms present a similar 
simulation result. In the last example of uniaxial 
compression of AZ31 Mg alloy, it takes about 1.5 h for 
the formulation of multiplicative decomposition of F, 
while the simulation can be finished in 35 min with the 
formulation of additive decomposition of L. 

 
 

 
Fig. 10 Initial texture distribution simulation of AZ31 magnesium alloy 
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Fig. 11 Simulated (0001) pole figure after uniaxial compression of AZ31 Mg alloy: (a) Additive decomposition of L;            
(b) Multiplicative decomposition of F 

 
 

4 Conclusions 
 

1) The prediction shows qualitative agreement with 
the experimental results. The additive decomposition of 
L has the advantage of computational efficiency although 
two algorithms present a similar simulation result. 

2) Two formulations predict similar result for FCC 
and BCC crystals. The deviation of prediction in AZ31 
alloy suggests that the precise material parameters are 
important for texture prediction in HCP crystal with low 
symmetry. 
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基于耦合有限元的晶体塑性力学模型的 
FCC，BCC 和 HCP 晶体织构演化的模拟 

 
黄诗尧, 张少睿, 李大永, 彭颖红 

 
上海交通大学 机械与动力工程学院，机械系统与振动国家重点实验室，上海 200240 

 

摘  要：介绍单晶体模型的 2 种实现方法，并通过对有限元软件 ABAQUS/Explicit 的用户材料接口 VUMAT 做二

次开发，实现 2 种单晶体模型构架和显式有限元方法的耦合。采取实体单元来存储材料信息，每个单元代表一个

晶粒，在每个增量步中读取并更新晶粒取向。采用切线系数法来计算每个增量步中不同变形系统的塑性应变增量，

通过硬化模型来描述硬化响应。利用编制的 2 种用户子程序模拟铜(FCC)单向拉伸过程、IF 铁(BCC)冷轧过程和

AZ31 镁合金(HCP)单向压缩过程中的织构演化，模拟结果和试验结果吻合较好。 

关键词：单晶体模型；织构；加法分解；乘法分解 
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