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Abstract:  A  new  linear  integration  solution  was  constructed  for  determining  the  total  pressure  developed  during  forging  of  a 
rectangular  bar  with  flat  tools.  The  effective  strain  rate  for  rectangular  bar  forging  with  bulging  was  expressed  in  terms  of 
four­dimensional strain rate vector. The inner­product of  the vector was termwise integrated and summed. The integral mean value 
theorem was applied to determining the ratio of the strain rate components and the values of direction cosine of the vector and then 
an analytical solution of stress effective factor was obtained. The compression experiments of pure  lead bar were performed to test 
the  accuracy  of  the  solution.  The  optimized  results  of  total  pressure  by  golden  section  search were  compared  with  those  of  the 
indicator  readings  of  the  testing  machine.  It  indicates  that  the  optimized  total  pressures  are  2.60%−10.14%  higher  than  those 
measured. The solution is available and still an upper­bound solution. 
Key words: rectangular bar forging; bulging; strain rate vector; inner­product; golden section search 

1 Introduction 

Forging  a  bar with  flat  tools  is  one  of  the  simplest 
and most widely used processes in industry. However, its 
analysis  is  far  from  being  simple.  Hence  a  few 
approximate solutions have come forth, such as the upper 
bound  [1−2],  the  lower  bound  [3−4]  and  slip  line  [5]. 
With the development of computers, numerical methods 
have  been  used  to  simulate  the  forging  process  [6−7]. 
ZHANG  and  XIE  [8]  and  KANG  et  al  [9]  simulated 
forging process by FEM. GRASS et al [10] and GAO et 
al  [11]  used  3D­FEM  simulation.  And UBET has  been 
successfully applied to solving the forging process by the 
authors  [12−13].  These  methods  can  all  be  applied  to 
solving  the  forging,  but  just  the  numeric  results  are 
obtained. 

In this work, the method so called inner­product of 
strain rate vector [14−15] is constructed and first applied 
to solving the bar forging and the analytic result of stress 

effective factor is obtained. 

2 Velocity field 

The origin  of Cartesian  coordinates  is  taken  as  the 
geometric centre of the body. The axes X, Y and Z divide 
the deforming zone into eight  identical regions. So only 
the  eighth  is  considered  (Fig.  1).  For  any  point  with 
coordinates x, y and z, the velocity field is given by [1] 

x y z v v v + + v = i j k  (1) 
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where  vx,  vy,  vz  are  components  of  particle  velocity  in 
Cartesian coordinate system; v0  is velocity of the top die; 
A  is  a  constant  to  be  determined  by  optimization  on 
energy dissipation. 
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Fig. 1 Rectangular bar subjected to compression 

The velocity field satisfies the boundary conditions: 
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where  ij ε&  is the component of strain rate tensor. 
From the mean value theorem of integral and Eq.(4), 

mean values of the strain rate can be obtained as follows: 
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It can be seen that Eq. (5) still satisfies 
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With the help of Eq. (2), the ratio of mean velocity 
can also be calculated as 
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3 Total power 

3.1 Internal deformation power 
The integrand of plastic power is expressed by 
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where  1 2 3 4 2 x y z xy ε ε ε ε = + + + & & & & & ε  e e e e  is  strain  rate 

vector;  0 
1 1 2 2 3 3 4 4 l l l l = + + + & ε  e e e e  is  unit  vector; 

1, 2,3, 4) i l i = （  is  direction  cosines  of  unit  vector;  and 
( 1, 2,3, 4) i I i =  is  termwise  integration of  the strain rate 

vector. 
From Eq. (7), the direction cosines are 
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The  first  termwise  integration  of  strain  rate  vector 
inner product I1 is 
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Substituting Eqs.  (4) and  (5)  into  above  integral,  it 
follows that 
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With  the  same  procedure,  the  other  termwise 
integration results are 
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Substituting the results of I1, I2, I3 and I4  into Eq. (7) and 
rearranging yields 
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3.2 Friction power 
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where  τf  is  the  shear  along  surface  of  velocity 
discontinuity; k is von Mises’ constant of yield criterion; 
σs  is  effective  flow  stress;  f v ∆  is  the  velocity 
discontinuity. 

Substituting  y x v v  of Eq.  (6)  for  y x v v  in above 
integrand, and integrating leads to 
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3.3 Shear power 
From Eq. (2), the velocity discontinuity at interface 

between  deformation  and  external  zones  can  be written 
as 
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3.4 Stress effective factor and minimization 
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where nσ is stress effective factor. 
It  is obviously that the stress effective  factor nσ is a 

function of A, m, b0/h and l/h, also is a analytical solution. 
The  optimum  values  of  A  and  nσ  by  the  golden  section 
search are shown in Fig. 2.
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Fig. 2 Flow chart of golden section search 

4 Experiment 

In  order  to  validate  the  solution  in  this  work,  the 
compression  test  was  performed  on  200  kN  universal 
material  testing  machine.  The  dimensions  of  the  three 
groups of pure lead specimens and the indicator readings 
of the machine during compressing are listed in Table 1. 
The ram speed was 30 mm/min. 

Table 1 Specimen dimension and measured force 
No.  2b0/mm  2h0/mm  2l/mm  2b1/mm  2h/mm  Fm/kN 

1  20.33  20.33  30.0  21.70  18.50  14.10 

2  39.86  19.70  30.0  42.16  17.49  30.00 

3  39.97  10.12  15.0  40.75  9.08  14.50 

Taking  No.1  specimen  as  an  example,  the 
calculating procedure is given in detail as follows. 

From Table 1,  l/h=1.62,  b0/h=1.10, and m=0.2  (for 
quenched  steel  and  lapped  face).  Then  inputting  the 
values of l/h, b0/h, and m into Eq. (12) and optimizing by 
flow chart in Fig. 2, the optimum result becomes: A=0.78, 
nσ=1.22. 

From  Table  1,  the  strain  and  the  strain  rate  for 
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According to the values of ε and ε& , the yield stress 
for  pure  lead  is  σs=20.05  MPa  [16].  Then  the  total 
compression force for No.1 sample is 
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Comparing it with the measured value Fm  in Table 1, 
the relative error can (E) be expressed as 

15.48 14.10 
100% 9.79% 

14.10 
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With  the  same  procedure,  the  optimized  results  of 
No. 2 and 3 specimens can also be obtained and listed in 
Table 2. 

Table 2 Optimized results for three groups of specimens 
No.  l/h  b0/h  A  nσ  F0/kN  E/% 
1  1.62  1.10  0.78  1.22  15.48  9.79 
2  1.72  2.28  0.61  1.25  30.78  2.60 
3  1.65  4.40  0.34  1.32  15.97  10.14 

From  the  results  we  can  know  that  the  relative 
errors  between  the  optimized  results  and  the  measured 
ones  are  from  2.60%  to  10.14%,  all  admitted  in 
engineering. 

5 Discussion 

In order to examine the characteristics of the present 
solution, the optimum values of A and nσ were optimized 
for  the  values  of  l/h  varying  from  0.5  to  5.5  and  b0/h 
equal to 1.10, 2.28 and 4.40 and m from 0.2 to 1.0. The 
value  of  parameter  A  signifies  the  extent  of  bulging. 
From  Fig.  3  it  can  be  seen  that  bulging  parameter  A 
increases  with  increasing  l/h  or  decreasing  b0/h  for  a 
given m. Figure 4 shows that nσ increases as m increases 
for  given  values  of  b0/h  and  l/h,  but  always  exists  a 
minimum value of nσ in each curve. 

Fig.  5  shows  that  the  value  of  nσ  increases  with 
increasing b0/h and m for a given l/h. 

Fig. 3 Influence of l/h and b0/h on optimum values of A



WANG Lei, et al/Trans. Nonferrous Met. Soc. China 21(2011) 1367−1372  1371 

Fig.  4  Influence  of  l/h,  b0 /h  and m  on nσ for  optimum  values 
of A 

Fig. 5 Influence of b0/h on nσ for given l/h 

6 Conclusions 

1) With the help of strain rate vector inner­product, 
the  analytical  solution  of  stress  effective  factor  nσ  for 
rectangular bar  forging  is obtained. And nσ is a  function 
of A, m, b0/h and l/h. 

2)  Through  pure  lead  compression  test,  the 
optimized  results  by  above  solution  are  2.60%−10.14% 
higher than those measured. 

3) The relationship among A, l/h, b0/h and m can be 
described. Bulging parameter A increases with increasing 
l/h or decreasing b0/h for a given m. 
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应变矢量内积法求解带鼓形的矩形坯锻压 

王 磊 1 , 金文忠 2 , 赵德文 3 , 刘相华 3 
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摘 要：提出一种新的线性化积分方法用于求解平锤头压缩带外端的矩形件。在锻压过程中，锤头没有覆盖整个 

工件，并且工件的侧面通过变形产生鼓形。应用该方法得到了平均锻压力，同时在求解的过程中进行了下列假设： 

工件与工具间的摩擦力为常数，工件是刚−塑性材料，锻压是在低速度下进行的。然后，通过纯铅的锻压实验， 

将由黄金分割法得到的优化结果与试验机的实测值进行比较，结果表明优化值比实测值高  2.60%−10.14%，这在 

工程上都是允许的。 

关键词：矩形坯锻压；鼓形；应变速率矢量；内积；黄金分割法 
(Edited by LI Xiang­qun)


