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Table 1 Mineral chemical composition analysis results

(mass fraction, %)

A1203 SIOZ MgO HZO

0.84 61.61 30.82 6.65
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Fig. 1 XRD analysis pattern of talc
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Effect of dodecylamine on formation of three-phase contact line
between bubbles and hydrophobic talc surface

JIANG Hao, LUO Hui-feng, XIE Jia-hui, HAN Wen-ping

(School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract: Forming a three-phase contact line (TPC) by contacting and colliding between bubbles and mineral
particles is a very important step in the flotation process. The bubble collision test, contact angle measurement and
atomic force microscopy (AFM) test were used to study the effect of dodecylamine (DDA) on the formation of
TPC on bubbles and hydrophobic talc and its mechanism. The results show that talc can form TPC in both
deionized water and DDA solution, and the TPC formation time (zrpc) increases with the increase of DDA
concentration. The formation time of three-phase contact line (¢rpc) between bubbles and hydrophobic talc surface
is the sum of the required time for the collision and rebound of the bubbles and talc (¢z) and the liquid film drainage
time (#p) between the bubble and talc. The rupture of the liquid film between bubbles and minerals is the necessary
condition for the formation of TPC, so the stability of the liquid film is very important to the formation of TPC.
The more stable the liquid film, the longer #, and longer ¢1pc. The stability of the liquid film between bubbles and
talc is determined by the hydrophobic force on the talc surface and the interaction force between the bubbles and
the nano-/micro-bubbles on the talc surface. The hydrophobic force is gravitational force. As the concentration of
DDA increases, the hydrophobicity of talc increases, which tends to weaken the stability of the liquid film. There is
a repulsive force between bubbles and nano-/micro-bubbles. As the concentration of DDA increases, the stability of
the liquid film increases.
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