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Fig. 1 Schematic diagrams of punch-forming riveting process of semiround head rivet: (a) Free upsetting; (b) Restricted

upsetting and forming; (c) Springback
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Fig. 2 Schematic diagrams showing structural size of rivet and dies: (a) Upper die; (b) Lower die; (c) Rivet
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Fig. 3 Schematic diagrams of cross lap joint structure
(Unit: mm): (a) Top view; (b) Front sectional view

Fig. 4 Schematic diagram of punch-forming riveting experiment: (a) Fixture and die; (b) Actuator; (c) Riveting press
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Fig. 5 Punch-forming riveting simulation finite element model: (a) Overall axonometric view; (b) Local sectional view
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Fig. 6 Compression test of rivet material: (a) Servo press;

(b) Compressive stress—strain curves
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Fig. 7 Tensile test of riveted sheet material: (a) Tensile
testing machine; (b) 6061 aluminum alloy stress—strain

curve; (¢) ZK61M magnesium alloy stress—strain curve
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Fig. 8 Deformation of the joint after punch-forming riveting simulation: (a) Overall deformation of joint; (b) Section view of

deformed rivet; (c) Strain cloud diagram and deformation zone of rivet head
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Fig. 9 Simulation and experimental comparison of appearance of punch-forming riveting joint: (a) Joint obtained by
punch-forming riveting experiment; (b) Cross-sectional view of joint obtained by simulation and experiment
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Table 1 Design variables and levels
Design variable Description Level 1 Level2  Level3 Level4 Level5

X Groove diameter of upper die/mm 8.1 8.4 8.7 9.0 9.3
X5 Groove height of upper die/mm 2.4 2.7 2.9 3.1 34
X3 Rivet shaft length outside sheet/mm 6.0 6.5 7.0 7.5 8.0
X4 Riveting displacement scale factor 0.76 0.80 0.84 0.88 0.92
X5 Rivet material 6061-T6  AZ91D 5056 2A10 2A12
Xg Riveting hole diameter/mm 6.10 6.15 6.20 6.25 6.30
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Table 2 Rivet material Johnson-Cook model parameters

Material A/MPa B/MPa n C
6061-T6!""  270.0 138.2 0.179  0.1300
AZ91D"  164.0 343.0 0.283 0.0210

5056 293.0 164.0 0274  0.0660

2A101 243.0 618.8 0.200 0.0100

2A12M 370.4 1798.7 0.733 0.0128

(MRTTRER . T2, LK% H AR bR Bk

B HR:

find X=(x;, Xy, X3, X, , X5, X)
max{5A(X),52(X),—V(X)},
8,(x)—3.0, 65(x)—>3.0
s.tX, S X< Xy

)

=3 WO SR B

Table 3 Taguchi experiment design and simulation results

A x BT R x Al xy 2 AT AR E R
N PRAEAN - PRAE
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H 58 e h 25 Rk 3 fos.
234 ZHb RGBT

CORAERL” SRR 4 Fn. RARBUEX %
YRR REATIR Y, 1350 614 62n O5. IARI VI
BEAE /518 0.376+ 0.183. 0.049. 0.228 1 0.164.
THEAR 2RISR A KBRS, Wk 4 foR. &
BT AR B 1 7KP 5 K DG BE 1Y) 32 34 R [, nfd 12
i, TG SRS A5 A 6 DG TG B AU e K ) v 32
HMHAE N PN BRI 8.1 mm, SEH 3.4
mm. 5] AMEEE 6.0 mm. JEYD T EA AR T
0 0.84. HIET A B AZ91D. HilifL B4R 6.10

mmo.

Eng;‘flent D oxm ox oxoxs xe /% 5:1% 54/% /% VI%
1 1 1 ) 1 1 1 4.20 1.64 0.62 215 69.83
2 ! 2 2 2 2 2 4.55 2.34 0.94 261 56.88
3 1 3 3 3 3 3 435 281 1.03 273 49.70
4 ! 4 4 4 4 4 16.83 378 1.47 7.36 91.89
5 1 5 5 5 5 5 18.35 733 3.68 9.79 63.69
6 2 I 2 3 4 5 8.29 171 0.60 3.53 95.92
7 2 2 3 4 5 I 22,16 7.02 3.48 10.89 74.46
8 23 4 5 | 2 12.85 3.97 1.50 6.10 79.85
9 2 4 5 ! 2 3 345 2.84 1.03 2.44 42.07
10 2 s ! 2 3 4 1.28 0.35 0.19 0.61 78.89
1 3 ! 3 5 2 4 442 2.50 1.06 2.66 51.82
12 3 2 4 ! 3 5 337 1.30 0.48 171 70.87
13 33 5 2 4 ! 20.89 4.52 2.07 9.16 9120
14 3 4 ! 3 5 2 10.37 3.93 1.89 5.40 66.99
15 3 5 2 4 ! 3 2.74 129 0.48 151 62.06
16 4 I 4 2 5 3 16.68 5.42 235 8.15 75.55
17 4 2 5 3 | 4 8.90 3.30 118 446 72.98
18 4 3 I 4 2 5 1.37 0.44 0.19 0.67 75.69
19 4 4 2 5 3 I 338 1.80 1.02 2.07 4751
20 4 s 3 ! 4 2 5.17 1.07 0.55 227 91.16
21 5 | 5 4 3 2 2332 5.01 1.95 10.09 93.48
2 5 2 ! 5 4 3 5.58 116 0.45 2.40 94.63
23 53 2 ! 5 4 4.99 1.79 0.86 2.55 69.36
2 5 4 3 2 ! 5 1.81 0.48 0.19 0.83 85.48
25 5 5 4 3 2 ! 3.70 2.49 134 251 3834
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Table 4 Grey relational analysis results
Grey relational generation Grey relational coefficient Grey
Reference relational
experiment & 0 J3 O V d 0, 03 Oa grade
No. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000
1 0.941 0.184 1.846 0.150 0.453 0.917 0.380 0.556 0.370 0.478 0.605
2 0.924 0.285 1.732 0.195 0.678 0.889 0.412 0.665 0.383 0.608 0.629
3 0.933 0352 1700 0207  0.803 0.905 0435 0703 0387 0.717  0.660
4 0319 0490 1.544  0.657  0.070 0434 0495 0979 0593 0350 0495
5 0.245 1.000 0.757 0.893 0.560 0.408 1.000 0.335 0.824 0.532 0.628
6 0.740 0.195 1.853 0.285 0.000 0.674 0.383 0.551 0.411 0.333 0.499
7 0.057 0.955 0.831 1.000 0.373 0.355 0.917 0.357 1.000 0.444 0.620
8 0.515 0.518 1.535 0.535 0.279 0.521 0.509 1.000 0.518 0.410 0.523
9 0.978 0.356 1.700 0.178 0.935 0.982 0.437 0.703 0.378 0.885 0.715
10 1.085 0.000 1.999 0.000 0.296 0.877 0.333 0.457 0.333 0.415 0.557
11 0.930 0307 1.692  0.199  0.766 0.900 0419 0.713  0.384  0.681  0.649
12 0.982  0.136  1.898  0.108  0.435 0.990 0367 0518 0359 0470  0.624
13 0.120 0.598 1.333 0.832 0.082 0.371 0.554 0.661 0.748 0.353 0.502
14 0.637 0.513 1.396 0.466 0.502 0.594 0.507 0.741 0.484 0.501 0.545
15 1.013 0.134 1.896 0.087 0.588 1.000 0.366 0.520 0.354 0.548 0.639
16 0.327 0.726 1.230 0.734 0.354 0.437 0.646 0.563 0.653 0.436 0.530
17 0.710 0.422 1.646 0.375 0.398 0.649 0.464 0.778 0.444 0.454 0.543
18 1.080 0.013 2.000 0.006 0.351 0.883 0.336 0.456 0.335 0.435 0.564
19 0981 0208 1.706  0.142  0.841 0.989  0.387 0.696 0368  0.758  0.685
20 0.893  0.103 1.871  0.161  0.083 0.845  0.358  0.537 0373 0353  0.553
21 0.000 0.667 1.373 0.923 0.042 0.342 0.600 0.710 0.866 0.343 0.527
22 0.873 0.116 1.907 0.174 0.022 0.818 0.361 0.512 0.377 0.338 0.540
23 0.902 0.206 1.760 0.189 0.461 0.857 0.386 0.634 0.381 0.481 0.590
24 1.059 0.018 2.000 0.021 0.181 0.918 0.337 0.456 0.338 0.379 0.569
25 0.965 0.307 1.589 0.185 1.000 0.959 0.419 0.878 0.380 1.000 0.731
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Fig. 12 Effect of design variable levels on grey relational
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Multi-objective optimization design of riveting quality considering
material-structure-process parameters

XU Wen-chao, WANG Deng-feng

(State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

Abstract: This paper proposed a multi-objective optimization design method for the riveting quality of
magnesium-aluminum alloy punch-forming rivet joint considering material-structure-process parameters. Firstly,
the constitutive model parameters of rivet and riveted sheet materials were obtained through the metal tensile and
compression tests; secondly, a finite element simulation model of punch-forming rivet joint was established, and
the riveting interference level and uniformity of the rivet joint were analyzed and evaluated, the simulation and test
results were compared to verify the accuracy of the simulation; finally, the material, structure and process
parameters of the rivet joint were selected as the design variables, the relative interference values of key measuring
positions, the average and the standard deviation coefficient of the measured relative interference values were
determined as the optimization objectives, an integrated multi-objective optimization of the rivet joint was
conducted based on Taguchi experiment and grey relational analysis method, combined with the weight values of
the target responses obtained by the entropy weighting method, the optimal combination of the design variable
levels was obtained. The results show that after multi-objective optimization, the overall average relative
interference value of the rivet joint increases from 1.67% to 2.36%, increases by 41.3%, and the optimized overall
average relative interference value is within the range recommended by the aerospace industry standard. The
standard deviation coefficient of the relative interference values decreases from 67.49% to 41.0%, decreases by
39.3%. The optimization results show that the overall relative interference level and interference uniformity of the
rivet joint are effectively improved.

Key words: punch-forming rivet joint; relative interference value; grey relational analysis; entropy weighting

method; multi-objective optimization
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