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Fig. 1 Microstructures and XRD patterns of as-cast and forged TiAl alloys with high Nb content: (a) SEM image, as-cast
TiAl alloy with high Nb content; (b) SEM image, forged TiAl alloy with high Nb content; (c) XRD patterns; (d) TEM image,

equiaxed y grain region of forged alloy
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Fig. 2 Creep curves of forged and as-cast TiAl alloy with
high Nb content under conditions of 800 ‘C and 220 MPa
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Fig. 3  Creep curves of forged alloy under various

conditions: (a) Applied different stresses at 800 C; (b)
Applied stress of 200 MPa at different temperatures
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Fig. 4 Dependence of strain rates of forged alloy in

middle period of creep on temperatures and stresses:

(a) Strain rates—temperatures; (b) Strain rates—stresses
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Fig. 5 Microstructures in different regions of sample after creeping iracture: (a) Schematic diagram of marking observed

regions; (b), SEM image, region 4; (c) SEM image, region B; (d) SEM image, region C
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Fig. 6 Microstructures of forged alloy: (a) Lamellar structure; (b) Equiaxed y grain structure
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Fig. 7 Microstructures of forged alloy after crept up to fracture at 800 C and 200 MPa: (a) Lamellar structure;

(b) Dislocation tangles; (c) Dislocation network and dislocation column

Fig. 8 Dislocation configuration of forged alloy after crept up to fracture at 800 ‘C and 200 MPa under different diffraction

vectors: (a) g=131; (b) g=111; (c) g= 113 ; (d) g= 131
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Fig. 9 Initiation and propagation of micro-crack in forged alloy after crept up to fracture at 800 ‘C and 200 MPa:

(a) Formation of cavity; (b) Growth of cavity; (c) Formation of crack
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Creep and damage behavior of forged TiAl alloy with
high Nb content at high temperature

ZHANG Shun-ke"?, TIAN Su-gui"?, TIAN Ning’, LU Xiao-xia', JJAO Ze-hui’, JIN Fang-wei’, LI De-yuan'

(1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China;
3. Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation,
Laboratory of Science and Technology on Advanced High Temperature Structural Materials,

AVIC Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: The deformation and damage behavior of the forged TiAl alloy with high Nb content during creep were
investigated by means of microstructure observation and creep properties measurement. The results show that the
average grain size of the lamellar colony of as-cast TiAl alloy with high Nb content may diminish from 507 um to
56.7 um by isothermal forging technology. The deformation of forged alloy during creep mainly occurs in y
lamellar and equiaxed y grain. The dislocations slipping to phases interfaces and grain boundaries are hindered for
piling up, and the formation of dislocation tangle or dislocation sequence can increase the resistance of dislocation
motion. Wherein, the dislocation tangles in the equiaxed y grain can generate bundle aggregation to promote
dynamic recrystallization and form fine sub-grain structure. The dislocations with burgers vectors of [101 and [011]
slip on the {111} planes to form the networks. When the creep dislocations in the lamellar y phases move to the
networks, they will interact with the dislocation networks, and change the original moving direction to promote the
climbing of dislocations. In the latter stage of creep, the holes or cracks are firstly initiated in the equiaxed y grain
and propagated in this region until creeping fracture, which is the damage and fracture mechanism of alloy during
creep at high temperature.

Key words: forged TiAl alloy with high Nb content; microstructure; creep; deformation mechanism; damage

features
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