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Fig. 1 Categories of cellular solids according to structure features''® (Foam can be divided into open-cell foam and

closed-cell foam. Lattice materials can be divided into one-dimensional lattice materials, two-dimensional lattice materials,

and three-dimensional lattice materials)
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Fig. 3 Schematic diagrams of Kagome lattice(a), triangular lattice(b) and hexagonal lattice(c)[64]
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Fig. 4 Variants of Kagome lattice!™: (a) Kagome with concentric triangles (KT); (b) Kagome with concentric hexagons

(KH); (c) Double Kagome (DK)
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L TSR T 4 g 19 2839, 41,43, 45.47-48.50) . i
A G kg1 7% (Tetrakaidecahedron). =% Kagome
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5 =4k SRR Ry BT
Fig. 5
Wireframe!® " (Tetrahedron, Octahedron, Cube, Vector

Lattice unit cell: (a) Based on Geometric

(top row, from left to right)); Icosahedron, Dodecahedron,
Tetrakaidecahedron, Triacontahedron (bottom row, from left
to right); (b) Unit cell template skeleton based on Topology
Optimization”; (c) Lattice structure manufactured object
based on Topology Optimization”; (d) Fischer-Koch S
based on Mathematical Algorithm!”'"; (¢) Schoen FRD based

on Mathematical Algorithm'™!
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(a) Applied ’load

Axial
stress
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Fig. 6

dominated unit cells and lattices*": (a) Mechanical response

Architecture of stretch-dominated and bend-

to compressive loading of stretch-dominated octet-truss unit
cell; (b) Octet-truss unit cells packed into cubic microlattice;
(c) Mechanical response to compressive loading of bend-
dominated tetrakaidecahedron unit cell; (d) Tetrakaidecahedron
unit cell packed into cubic bend dominated lattice (Kelvin

foam)
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Fig.7 3D Kagome lattice with 15 substructures(a) and one substructure(b) and (c) one unit cell™*’
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Collagen Tropocollagen 50 nm X fibril
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Fig. 8 Hierarchical structure of bone and bamboo!””: (a) Bone; (b) Bamboo
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5% (Expanded metal sheet, KNS IEIE).
& @ 229w 20E) Metallic wire braiding). )& 214
72 41 % 1) Metallic wire assembly). = #17E!
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(Snap fit). ¥R IE ! (Superplastic forming). #%
JE £k 47 %) 3% ®Y(Extrusion and electrodischarge
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JE AT 2H Rl 1) 5368 55 A 42 (LM25) J\ A1 T M7 4 R B A4
Ko HLZBEN: 1 el & mi BT A 45 K i el
REVIRGHL,  an i & 2 et i BEps kL, s
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(b)
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Hierarchical unit cell Hierarchical filament

500 um 200 i

Q H\—- O \‘_ Scanning

Bt J R E AR B Gl R T R ) 7 20), BN
S&REWERT, WE 12 for. FEEE
5, LR, KRR ONRIE, A,
DI RS B e am a7, HHS MRS
BAMEE TR, JFEN b, IS8E JriERT
T4 Rk (1~5 my BB EJLE A T)KE
IR TR 1 s FEA R 7R 3E F T =i s)
WG4, HOAEMREED. B &
il 85 i SRR G I VA T & S i AL, Y
[fifA % 3D Kagome {15 FE4E M oML & AR
ANBJEAR S K TR T 438 38 S HE DA AT S b 4H

optics
Spatial light
modulator (SLM) /£ Customized
t Q"_focusing lens
UV LED at
: 405 nm
Projecting image
Z axis pattern from SLM
elevator High resolution and large

/

3D printed object

/_Bath of liquid

monomer

500 um

Nanoscale
hollow tube

: - First-order
First-order lattice struts

B9 REEL R MIRARIRIDC R RS R T A B g K R

Fig. 9 Nickel alloy hierarchical metamaterial and critical features across seven orders of magnitude in length scale

[19].

(a) Polymer metamaterial template; (b) Large-area, high-resolution additive manufacturing of hierarchical metamaterials;
(c)—(e) Optical microscope images of bulk hierarchical lattice material: (c) Sample; (d) Lattice network; (e) Unit cell, scale
bar: 80 um; (f)—(j) Scanning electron micrographs: (f) Hierarchical unit cell; (g) Hierarchical filament; (h) First-order lattice,
scale bar: 10 um; (i) First-order struts, scale bar: 3 um; (j) Nanoscale hollow tube
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Design of lattice
structures
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Uniform lattice
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Functionally graded
lattice structure

Compression test

¥
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Lattice structures
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O Compressive stress—strain curves
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Fig. 10 Experimental compression test on uniform lattice structures and graded lattice structures!”

Wire assembly method

Proposed by Queheillalt et al."""’
for a nickel alloy truss lattice
material

Sheet slitting method

Proposed by Kooistra et al../"!
for an AA3003 aluminum
alloy lattice material

1 BRG] 26 7 IR IR A 22

Investment casting method

Proposed by Deshpande ct al.,"™
for a cast aluminum alloy
(LM25) octagonal truss lattice
material

Wire braiding method

Proposed by Lim et al.,®
describing in detail the idea and
process of using this method to
prepare 8 kinds of lattice
materials with different

structures

trusion and electro-
discharge machining method

Developed by Queheillalt et al. 6"
for a 6061 aluminum alloy
sandwich lattice material

Fig. 11 Time-line of traditional fabrication methods for lattice materials
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15(a)), 15 I3 4% 98 1 A8 T T2 B2 Jie 26 (0 P&
15(b)). SRJE & — N8 2 IS LR MHESE . 76 [ 2
MEZE |, RN E = AFE TN T AR,
i —~ Kagome “FTH(ILE 15(c)). B 14(d)Em T1E
& 72 HEZE - 2H 351 Kagome “F1ii. HR#E Kagome /5

MERPRITZ %, K Kagome “F T B ZE R, FF9L
S8 SRR DU AR 2 B AT 15— (RO N B E . IR 2
EZ A . I AR, RN AT
S AT A 22 (LI 15(e)). B 15(e) B 1 24H 3
%2 WBK. )5

Runner

Microstruss
sandwich

panel Gates

ABS
burnout vent
Bl 12 Kt vkl 4% B p R
Fig. 12 Investment casting fabricating lattice materials™®”!
(A wax or acrylonitrile butadiene styrene (ABS) polymer
pattern with gates, runners and vents attached. Pattern is
coated with ceramic casting slurry and filled with metallic

alloy)

Elongated diamond
perforated sheet

Perforation punch

Roll steel

13 rifLIRA e H TR v 5 4 B R B A S 2 i )

Fig. 13 Schematic illustration for manufacture of ideal pyramidal lattice cores”” (Principal operations include perforating

solid sheet followed by folding)
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(a)

Perforating
{ scissors

Flattening

Bl 14 ¥ RERRIERE S IR A RS R R R )

Fig. 14 Schematic diagrams of manufacturing process for expanded pyramidal lattice truss cores””: Primary steps involve

(a) Slitting; (b) Flattening; (c) Folding metal sheet

(a)

(d) | 110 mm

J

Fixing frame

110 mm

Perpendicular

""‘“\ [ X X X X )
j’ o : __

()

79.37 mm

Bl 15 &)@ 405 % Kagome sS4 RH T 201 f2 5

Fig. 15 Process for fabricating Kagome lattice material by wire-woven'™: (a) Twisted three metal wires; (b) Helical wires;

(c) In-plane assembly process for a Kagome plane; (d) Assembled Kagome plane; (¢) Assembly process along out-of-plane

directions and assembled multi-layered WBK core; (f) Accomplished WBK core: front view
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FRE L. ZTIEAMUE T8 Kagome 2514,
AT DU e i 46 A 5 Mg ) A E A R, LM 00
FEIR T 7 Fh s BRG] 4 70 PR REAR A
BARN: B\ MIEHT L5 14 (Straight bulk octet), %
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Fig. 16 Structure fabricated with wires'®): (a) Straight bulk octet; (b) Bulk woven Kagome; (c) Circular spring Kagome;

(d) Hexagonal spring Kagome; () Dual wired octet; (f) Dual wired Kagome-1; (g) Dual wired Kagome-2
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B 17 Ak b a6 AR 4 2R 07 15 (K P A\ S T AT 2 Ti-6AL-4V R AR il 1)
Fig. 17 Schematic illustration of ‘““snap-fit” truss fabrication and assembly method for making Ti-6Al-4V octet-truss
lattice!™!: (a) Lattice truss fabrication; (b) Truss assembly; (c) Open face sheet fabrication; (d) Octet-truss lattice assembly

(a) Pressure

Extrusion

I Long extrusion
press housing

stick

(b) (c)

Patterns to be g
removed )

Triangular plates cut
perpendicular to extrusion

18 Bk Dy#ikon s Y
Fig. 18 Schematic illustration of extrusion and electrodischarge machining (EDM) method™®': (a) Extrusion process used to
produce 6061 aluminum corrugated sandwich structures; (b)—(c) Regions in corrugated core removed by electrodischarge

machining to create pyramidal lattice core sandwich panel structure
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Fig. 19 Design, processing and cellular architecture of ultralight microlattices™: (a) Polymer microlattice templates

fabricated from three-dimensional array of self-propagating photopolymer waveguides; (b) Open-cellular templates are

electroless plated with conformal Ni-P thin film followed by etch removal of template; (c) Image of lightest Ni-P microlattice

fabricated with this approach: 0.9 mg/cm’; (d)—(e) Images of two as-fabricated microlattices along with breakdown of relevant

architectural elements
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Fig. 20 Schematics of two fabrication methods!'®®: (a) Integrated FDM method, whole lattice structure printed integrally
layer by layer; (b) Snap-fitted FDM method, snap-fit trusses printed firstly, and then assembled and bonded together to make
BCC lattice structure
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Fig. 21 Flowchart for proposed additive manufacturing e E AR B AN B I 122 R, N, EEYEan
assisted investment casting technique!'®”’ PR 391 e g 090 G s R AR 2 (A b
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Fig. 22 Ashby chart plotting compressive stiffness versus
density for ultralight, ultrastiff mechanical metamaterials
and other previously reported materials!*'! (Dotted lines
indicate contours of constant stiffness-density ratio
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Fig. 23 Material property charts of E versus(a) p and o versus p(b) for engineering materials® (PMMA: Polymethyl
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Fig. 24 Uniaxial compression of 4%-relative density tensegrity, octet, and Kelvin specimens'* (Stress—strain responses and

delocalization efficiency curves derived from deformation maps, showing failure from system-level instability directly

correlated to localized deformation)
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Lattice materials and its fabrication by 3D printing: A review

TAO Si-jia', WANG Xiao-feng', ZENG Jing®, YI Bing’, PENG Chao-qun', WANG Ri-chu'

(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. School of Metallurgy and Environment, Central South University, Changsha 410083, China;
3. School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract: The lattice materials are a new type of materials with special physical properties, which are constructed
by one or more structural units optimized and combined in a specific way (such as period, topology, fractal, etc.),
which has huge application potential in optics, electricity, mechanics, heat, acoustics, magnetism, biology,
chemistry and other fields. 3D printing technology has greatly promoted the development of lattice materials,
improved the design ability of lattice materials, and made it possible to fabricate lattice materials with complex
internal structures and smaller geometric dimensions. The research progress of lattice material was reviewed in this
paper. The types and characteristics of its structural units were introduced, and the fabrication methods of lattice
materials were concluded. The properties and applications of lattice materials were summarized. Finally, the
research tendency of lattice materials was discussed.

Key words: lattice material; 3D printing; porous structure; fabrication method of lattice structure; integration of
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