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Fig. 1 Microstructure of ultra-microalloyed oxygen-free copper with non-GBEed treatment: (a) Grain distribution map;

(b) Grain boundary distribution map; (c) grain boundary misorientation distribution; (d) £3" CSL grain boundary fraction;

(e) Grain size distribution (including twins); (f) Grain size distribution (excluding twins); (g) Normal grain boundary network

map
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Fig. 2 Microstructures of ultra-microalloyed oxygen-free copper after 1-GBEed treatment: (a) Grain distribution map;

(b) Grain boundary distribution map; (c) Grain boundary misorientation distribution; (d) £3" CSL grain boundary fraction;

(e) Grain size distribution (including twins); (f) Grain size distribution (excluding twins); (g) Normal grain boundary network

map
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Fig. 3 Microstructures of ultra-microalloyed oxygen-free copper with 4-GBEed treatment: (a) Grain distribution map;
(b) Grain boundary distribution map; (c) Grain boundary misorientation distribution; (d) £3" CSL grain boundary fraction;

(e) Grain size distribution (including twins); (f) Grain size distribution (excluding twins); (g) Normal grain boundary network

map
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Fig. 4 Microstructures of ultra-microalloyed oxygen-free copper with non-GBEed, 1-GBEed and 4-GBEed treatments after

annealing at 900 ‘C for 60 min: (a)—(c) Grain distribution map; (d)—(f) Grain boundary distribution map; (g)—(i) Normal

grain boundary network map
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Fig. 5 [Illustration of strain-induced boundary migration mechanism: (a) Initiation; (b), (c) Motivation and migration;
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Table 1 Microstructural features and thermal stability testing results of ultra-microalloyed oxygen-free copper with non-GBEed,

1-GBEed and 4-GBEed treatments

GBE Microstructural information Thermal stability testing
treatment GS/pm GS,/um fs3/% fs0/% f527/% C GS/pm GS,,/um
0 12.1 22.6 42.5 1.4 0.66 46.8 192.6
1 12.1 23.6 57.5 4.1 0.39 313 92.2
4 235 60.4 57.2 4.4 0.09 29.2 71.9

GS; and GS,, are the average grain sizes including and excluding twins, respectively; fys, fyg and fyy; are the fractions of X3, X9 and

227 CSL grain boundaries in all grain boundaries, respectively; C is the connectivity parameter of normal grain boundary network
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Effect of grain boundary engineering treatment on microstructure
and thermal stability of ultra-microalloyed oxygen-free copper

MA Mu-zhi', LI Zhou', XIAO Zhu', HU Tong-sheng’, NIU Li-ye’, MI Xu-jun*>

(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
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Abstract: In this work, the effect of grain boundary engineering (GBE) treatment on microstructure and thermal

stability of an ultra-microalloyed oxygen-free copper was studied. The oxygen-free copper was prepared by

melting and casting, and then was subjected to GBE treatment. The thermal stabilities of the oxygen-free copper

before and after GBE treatment were tested, and their microstructures were also characterized. The results show

that the GBE treatment (each pass of it consists of cold rolling with a reduction of 20% followed by annealing at

300 ‘C for 60 min) significantly improves the thermal stability of the oxygen-free copper. After annealing at

900 C for 60 min, the grain growth of the oxygen-free copper after 4 passes GBE treatment is a little. The

average grain size (including twins) increases from 23.5 um to 29.2 pum, and the average grain size (excluding

twins) increases from 60.4 pm to 71.9 um. The GBE treatment also has an influence on the microstructure of the

oxygen-free copper, especially increasing the 3" coincidence site lattice boundary fraction and decreasing the

normal grain boundary network connectivity.
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