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Table 1 Composition of Mg-xGd-1Er-0.5Zralloys (mass
fraction, %)

Alloy Gd Er Zr Mg
Mg-8.0Gd-1Er-0.5Zr 7.7 1.09 055 Bal
Mg-10.0Gd-1Er-0.5Zr 97 099 035 Bal
Mg-12.0Gd-1Er-0.5Zr 122 086 039 Bal

i1 Mg-Zn &4, Mg-Zn-Y-Zr 5427, Mg-Al &
48 Mg-Ca 64, Mg-Zn-Al &4:5%, Mg-Gd-Y-
Zn-Zr £ &PV IR AR S A B R v S S
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0 C(crack susceptibility coefficient) %5 2 3R 1A =
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tR t0.9 - t0.4

A t0.99~ 0.9~ to4ﬁ%”?ﬂ*ﬁ$%iﬁ 0.99. 0.9.
0.4 FF Bt I 1) 8 [ P 1]
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Table 2 Precipitation temperature and solidification TV [ L P — WA 45 7 g — I i) S 2 it 4 T i f

temperature range of Mg-xGd-1Er-0.5Zr alloys

Precipitation temperature/K

Alloy AT/K
o-Mg Mgs(Gd,Er)
Mg-8.0Gd-1Er-0.5Zr 895.5 813.1 82.4
Mg-10.0Gd-1Er-0.5Zr  891.1 813.1 78
Mg-12.0Gd-1Er-0.5Zr  886.3 813.2 73.1
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Table 3 Hot cracking parameters of Mg-xGd-1Er-0.5Zr alloys
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Alloy Hot tearing temperature/K Stress/N AT/K Solid fraction during hot tearing/%
Mg-8.0Gd-1Er-0.5Zr 853 392 82.4 94.35
Mg-10.0Gd-1Er-0.5Zr 849 396 77 92.18
Mg-12.0Gd-1Er-0.5Zr 842 398 73.2 88.41
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Fig. 11 Hot crack morphologies of Mg-xGd-1Er-0.5Zr alloy: (a), (b) x=8.0; (¢), (d) x=10.0; (e), (f) x=12.0
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Investigations on hot cracking susceptibility of
Mg-xGd-1Er-0.5Zr alloys

WU Di-can', WANG Yun-feng’, DU Wen-bo', DING Ning', LI Shu-bo', ZHU Xun-ming’, WANG Zhao-hui'

(1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
2. Weihai Wanfeng Auto Holding Group Co., Ltd., Weihai 264209, China)

Abstract: Hot tearing is a potential problem that deteriorates the ductility of Mg castings. The effects of Gd
content on the hot cracking susceptibility (H) of Mg-xGd-1Er-0.5Zr (x=8.0, 10.0, 12.0, mass fraction, %) were
predicted based on the Clyne-Davies model, and verified by using the “constraint rod” permanent mold test. The
results show that the variation of H value of the Mg-xGd-1Er-0.5Zr alloys can be effectively predicted by the
Clyne-Davies model and the theory values are in consistent with the experimental ones. The microstructure and the
precipitates in the as-cast Mg alloys were analyzed by scanning electron microscopy (SEM) and X-ray
diffractometery (XRD). It is demonstrated that the H value decreases with the increase of Gd content. The higher
Gd contents lead to the increase of the volume fraction of Mgs(Gd, Er) eutectic phase, which is facilitated to feed
the micro-cracks between the dendrite arms during the terminal solidification stage, so as to decrease the H value.
In addition, the eutectic phase also inhibits the nucleation and growth of a-Mg dendrites and thus reduces the
solidification temperature range of the alloy. Combined with the fracture surface observation, it is suggested that
the liquid film and bridge between the grains during solidification improve the grain-binding force, which is also
considered as another important reason responsible for reducing the H value.

Keywords: Mg-Gd-Er-Zr alloy; solidification; microstructure; hot tearing model; hot cracking sensitivity
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