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Fig. 1 Optical microstructures of as-rolled Mg-xZn-0.5Er alloys: (a) Mg-0.5Zn-0.5Er; (b) Mg-2.0Zn-0.5Er; (c) Mg-3.0Zn-0.5Er;

(d) Mg-4.0Zn-0.5Er
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Fig. 2 Optical microstructures of as-annealed Mg-xZn-0.5Er alloys: (a) Mg-0.5Zn-0.5Er; (b) Mg-2.0Zn-0.5Er;
(c) Mg-3.0Zn-0.5Er; (d) Mg-4.0Zn-0.5Er
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&3 iB-KA Mg-xZn-0.5Er & &A1 1) IPF
Fig. 3 Inverse pole figures (IPFs) of as-annealed Mg-xZn-0.5Er alloys: (a) Mg-0.5Zn-0.5Er; (b) Mg-2.0Zn-0.5Er;
(c) Mg-3.0Zn-0.5Er; (d) Mg-4.0Zn-0.5Er
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Fig. 4 Pole figures (IFs) of as-rolled and as-annealed Mg-xZn-0.5Er alloys: (al) As-rolled Mg-0.5Zn-0.5Er; (b1) As-rolled
Mg-2.0Zn-0.5Er; (cl) As-rolled Mg-3.0Zn-0.5Er; (d1) As-rolled Mg-4.0Zn-0.5Er; (a2) As-annealed Mg-0.5Zn-0.5Er;
(b2) As-annealed Mg-2.0Zn-0.5Er; (c2) As-annealed Mg-3.0Zn-0.5Er; (d2) As-annealed Mg-4.0Zn-0.5Er
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Table 1 EDS analysis of as-annealed Mg-3.0Zn-0.5Er
alloy sheets shown in Fig. 5(c)

Area x(Mg)/% x(Zn)/% x(Er)/%

® 76.77 15.83 7.40

@ 87.86 7.06 5.07

® 85.75 9.02 5.23

i

Fig. 5 EBSD and EDS analysis for second phases of as-annealed Mg-3.0Zn-0.5Er alloy sheet: (a) and (b) IPFs of
as-annealed Mg-3.0Zn-0.5Er; (c) SEM image of as-annealed Mg-3.0Zn-0.5Er; (d) EDS morphology of as-annealed
Mg-3.0Zn-0.5Er
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Bl 6 Mg-3.0Zn-0.5Er & &M 3 — 41 TEM 1%
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Fig. 6 TEM images of Mg-3.0Zn-0.5Er alloy: (a) Position of trident grain boundary in as-rolled Mg-3.0Zn-0.5Er; (b)
Position of grain boundary in as-rolled Mg-3.0Zn-0.5Er; (c) Position of trident grain boundary in as-annealed Mg-3.0Zn-0.5Er;

(d) Position of grain boundary in as-annealed Mg-3.0Zn-0.5Er
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Table 2 Tensile properties of Mg-xZn-0.5Er alloy sheets at room temperature
Alloy State Yield strength/MPa Ultimate tensile strength/MPa Elongation/%
Rolled 202 215 3.6
Mg-0.5Zn-0.5Er
Annealed 178 228 92
Rolled 236 253 8.9
Mg-2.0Zn-0.5Er
Annealed 159 225 26.1
Rolled 255 265 2.1
Mg-3.0Zn-0.5Er
Annealed 181 273 13.6
Rolled 290 313 4.8
Mg-4.0Zn-0.5Er
Annealed 195 269 8.7

£ 3 HLHIEARKE Mg-xZn-0.5Er A &= R RAE
(IE)
Table 3 Index Erichsen (IE) values of as-rolled and

as-annealed Mg-xZn-0.5Er alloy at room temperature

Alloy State 1IE

Rolled 5.67

Mg-0.5Zn-0.5Er
Annealed 4.61
Rolled 4.73

Mg-2.0Zn-0.5Er
Annealed 2.97
Rolled 2.92

Mg-3.0Zn-0.5Er
Annealed 3.05
Rolled 2.20

Mg-4.0Zn-0.5Er
Annealed 2.11

EHF A RERE AR g9 T, A AT
Aok, FIAR KRS G e IE R B AEA R
Zn RGN FEAR. B ar W, AT
Mg-xZ-0.5Er G415, FRIFAR PRI
P

3 Zig

DFE#E Zn S E N, Mg-xZ-0.5Er &4
TREMREE ZAHEZ Ny wARA T AR), effEit
SRX KA, W REMLAL, 50IEH L. R,
BASECREYKRESE Mg, HEBEY 0
THAE, FHESTE MW ETEFE.

2) B KA Mg-xZ-0.5Er & & K E T BE AL
WG, BUERERAC, HRFEN TR EG. 58%=
Tk TE B AN 25 [ 20 () 9k 58 1T 2503, 1T /2 B Zn &5

B DI K. 58 AR RE Mg-Zn-Er
BRI R E R K .
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Microstructure and formability at room temperature of
as-annealing Mg-xZn-0.5Er alloy sheets

LOU Feng', LIU Ke', LUI Jin-xue’, DU Wen-bo', YU Zi-jian', WANG Zhao-hui', LI Shu-bo', DU Xian'

(1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China;
2. Zhengzhou Light Alloy Institute Co., Ltd., Zhengzhou 450041, China)

Abstract: The magnesium alloy sheet has a great industrial application value, but the further application has been
restricted because of its inferior formability. Aim to this problem, the Mg-xZn-0.5Er alloy sheets were produced
and investigated in the present investigation. The effects of texture/second phase transformation after annealing
treatment on microstructure and properties were studied. The results show that the coarse second phase promotes
the occurrence of dynamic recrystallization (DRX), resulting in refinement of deformed microstructure. Also, this
coarse phase also activates the static recrystallization (SRX), and both the microstructure and the texture are further
modified, but the strengths of these sheets are reduced. Moreover, the Index Erichsen (IE) values of these
as-annealing sheets generally decrease at room temperature. These IE values are negatively correlated with the
content of second phase, and the presence of nano-scale second phase further make IE values get worse at room
temperature. It is indicated that the second phase plays an important role in subduction of formability improvement
by texture modifying. These second phase is the critical factor to determine the formability of these sheets at room
temperature.
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