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Fig. 1 Optical microscope images (OM)((a), (b)), scanning electron microscope images (SEM)((c), (d)) and energy dispersive
spectrometer (EDS) analysis ((e), (f)) of sample: (a), (c) Slow cooling; (b), (d) Fast cooling; (¢), (f) Slow cooling
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Fig. 3 Microstructures of alloy after homogenization heat treatment and number density and EDS analysis results and
equivalent diameter: (a) Slow cooling sample, OM; (b) Fast cooling sample, OM; (c) Slow cooling sample, SEM; (d) Fast
cooling sample, SEM; (e) Slow cooling sample, TEM; (f) Fast cooling sample, TEM; (g) Slow cooling sample, EDS; (h)
Number density and equivalent diameter of a-Al(Fe, Mn)Si dispersoids
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Fig. 4 Statistics of area fraction and equivalent width of
sand mold sample (a) and water-cooled copper mold (b) and
low density precipitation zone (c) of Al-Mg-Si-Mn alloy

after homogenization heat treatment
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Fig. 6 Photos of sample after uniaxial hot compression:

(a) Slow cooling; (b) Fast cooling
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Effect of casting cooling rate on microstructure and
hot workability of AI-Mg-Si-Mn heat-resistant aluminum alloy

QIAN Xiao-ming"? ZHANG Yu', WANG Zhao-dong', LI Yong"*, XU Guang-ming’, WANG Hai-yao'

(1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,
Yanshan University, Qinghuangdao 066004, China;

3. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education,
Northeastern University, Shenyang 110819, China;

4. Guangxi Advanced Aluminum Processing Innovation Center Co., Ltd., Nanning 530007, China)

Abstract: Al-Mg-Si-Mn aluminum alloys were cast with different cooling rates of 1.4 °C/s and 5.7 Cl/s,
respectively. Ultra-low temperature homogenization at 430 ‘C for 6 h was applied, followed by uniaxial hot
compression tests to verify the hot workability. The results show that the water-cooled copper mold sample
possesses a lower eutectics structure with a smaller size than the sand mold sample. After homogenization, a large
amount of a-Al(Fe, Mn)Si dispersoids precipitate, and the number density of dispersoids in the water-cooled
copper mold sample is greater than that in the sand mold sample. The water-cooled copper mold sample exhibits
higher engineering stress levels during hot compression due to the enhanced dispersoids strengthening effect than
that in sand mold sample. The edge cracks in water-cooled copper mold is less severe owing to the much finer
initial eutectics generating depressed the risk of crack growth than that in the sand mold sample.

Key words: aluminum alloy; casting cooling rate; a-Al(Fe, Mn)Si dispersoid; hot workability
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