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Abstract: A particle flow code (PFC) was first applied to examining the mechanical response of a horseshoe-shaped 
opening in prismatic rock models under biaxial compression. Next, an improved complex variable method was 
proposed to derive the stress distribution around the opening. Lastly, a case study of tunnel failure caused by rock burst 
in Jinping II Hydropower Station was further analyzed and discussed. The results manifest that a total of four types of 
cracks occur around the opening under low lateral confining stress, namely, the primary-tensile cracks on the roof-floor, 
sidewall cracks on the sidewalls, secondary-tensile cracks on the corners and shear cracks along the diagonals. As the 
confining stress increases, the tensile cracks gradually disappear whilst the spalling failure becomes severe. Overall, the 
failure phenomenon of the modelled tunnel agrees well with that of the practical headrace tunnel, and the crack 
initiation mechanisms can be clearly clarified by the analytical stress distribution. 
Key words: horseshoe-shaped tunnel; fracture behavior; rock burst; stress distribution; complex variable method; 
particle flow code 
                                                                                                             
 
 
1 Introduction 
 

Natural rock mass at depth is subjected to 
geo-stress due to the weight of the overlying strata 
and the tectonic movement of the earth’s crust [1]. 
When a tunnel is excavated in the stressed rock, the 
stresses around the opening are redistributed, 
depending on the geologic structure, tunnel shape 
and in-situ stress [2,3]. Research manifests that, as 
the buried depth of the tunnel grows, the frequency 
of rock disasters, such as rock burst, water 
gushing-out and tunnel collapse, increases 
significantly [4−6]. Essentially, the deformation, 
burst and failure of the host rock are driven by the 
excavation-induced stresses. Thus, figuring out the 
stress distribution near the tunnel is necessary and 
meaningful to understand the failure mechanism. 

Up to now, extensive attempts have been made 
on the measurement of rock stress. For example, 
FIGUEIREDO et al [7] successfully determined the 
surface stress around a tunnel by using large flat 
jack test method, and provided formulas for normal 
and shear stresses. GE and HOU [8] proposed 
borehole wall stress relief method and designed a 
set of instruments to monitor the orientations and 
magnitudes of the maximum, intermediate and 
minimum principal stresses near a tunnel of Jinping 
II Hydropower Station. CAI et al [9] employed an 
improved hydraulic fracturing technique along with 
modified test equipment for measuring the 
geo-stress in a 1000 m coal mine. By stress cell and 
extensometer, KAISER et al [10] explored the 
influence of mining-induced stress change on 
excavation stability. OUYANG et al [11] also 
utilized multiple MC-type bore-hole stress gauges 
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to study the induced stress distribution around a 
stope in an iron mine. Besides, QIU et al [12] 
presented electromagnetic radiation (EMR) stress 
measurement technique and applied it to a roadway 
in Nuodong coal mine. Based on the micro-  
seismic monitoring technique, MAXWELL and 
YOUNG [13] further developed sequential imaging 
method for analyzing the variation of 
excavation-induced stress around a roadway. Note 
that the above methods could only be used to 
measure the stress state of a certain point, and thus 
both the cost and workload will increase 
accordingly if the entire stress field is obtained. 
Additionally, photo-elastic test and physical model 
experiment were conducted to investigate the 
evolution of surrounding stress around an   
opening [14,15]. Moreover, a series of commercial 
software based on finite, discrete and boundary 
element methods have been developed to simulate 
the mechanical response caused by tunnel 
excavation. Since the constitutive model, element 
or particle size, material parameter and boundary 
condition all have remarkable effects on the 
numerical results, it is extremely time consuming 
and troublesome to determine the required 
parameters for numerical modelling [16−19]. 

By contrast, theoretical study on the 
excavation-induced stress has received relatively 
little attention. The reason is that it is quite arduous 
to solve the indispensable Airy stress function using 
elasticity theory, especially for the complex shaped 
openings. As an effective tool, complex variable 
approach is widely used for solving the surrounding 
stresses of non-circular tunnels such as square, 
rectangular, semi-circular, inverted U-shaped, and 
trapezoidal [20−25]. Nevertheless, in regard to the 
horseshoe-shaped tunnels that are widespread in 
civil and hydraulic engineering, limited information 
regarding the surrounding stress distribution    
and fracture response is reported in previous 
literature [2]. As a result, the deformation and 
failure mechanism of this type of tunnel have not 
been thoroughly grasped. Therefore, in this work, 
we were encouraged to perform a numerical study 
on failure behavior of horseshoe-shaped tunnel 
under biaxial loading using a particle flow code 
(PFC) code, and then the stress distribution used to 
explain the fracture mechanism was derived via 
complex variable method together with a proposed 
shrinkage approximation algorithm. 

 
2 Failure behavior of horseshoe-shaped 

tunnel 
 

To deeply understand the failure behavior of 
horseshoe-shaped tunnel in rock engineering, it is 
essential to examine the crack development around 
the opening. Therefore, numerical study on the 
prismatic rock samples containing a horseshoe 
tunnel under biaxial compression with different 
confining stresses was conducted. 
 
2.1 Determination of micro parameters for PFC 

modelling 
Currently, it is universally accepted that 

discrete element software is particularly suitable for 
simulating the nonlinear mechanical behavior of 
discontinuous media [26]. In particular, PFC is 
popularly devoted to investigating the crack 
initiation, propagation and coalescence behavior of 
rock or rock-like materials under static or dynamic 
loads. 

In PFC model, the medium is regarded as an 
aggregation of bonded circular or spherical rigid 
particles (balls) of different sizes, and the 
parallel-bond model is commonly selected for 
rock-like materials. As the macro-scale response of 
the model depends on the geometric and 
mechanical properties of the particles and the  
bonds, we need to calibrate the micro-contact 
parameters using trial-and-error method based on 
uniaxial compression test results. A block of 
sandstone with good homogeneity, taken from Linyi 
city in Shandong province of China, was applied to 
making rock specimens. The processed specimens 
used for tests contained three prismatic specimens 
with dimensions of 100 mm (length), 25 mm (width) 
and 150 mm (height), and three cylindrical 
specimens with sizes of 50 mm (diameter) ×    
100 mm (height). Correspondingly, the width and 
length of the PFC2D model were set as 100 and 
150 mm, respectively. The tested mechanical 
parameters of the rock are: uniaxial compressive 
strength (102.61 MPa), elastic modulus (20.78 GPa) 
and Poisson's ratio (0.258). In contrast, the numerical 
results are 102.86 MPa, 22.02 GPa and 0.262, 
respectively. The stress−strain curves of the intact 
specimen and model under uniaxial compression 
are presented in Fig. 1. Since the sample models 
compressed by two discs are strictly two-dimensional, 
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Fig. 1 Experimental and numerical stress−strain curves 
and failure modes of intact specimens under uniaxial 
compression 
 
no initial pores and cracks compaction stage appear 
during the modelling. Hence, the peak strain of the 
model is slightly smaller than that of the rock 
specimen. The calibrated micro-parameters of the 
model are shown in Table 1. 

Besides, there are some other parameters, such 
as σ0 (requested value of isotropic stress), nfN 
(remaining floaters ratio), β (wall normal stiffness 
multiplier) and λ  (parallel-bond radius multiplier), 
which are set to defaults in modelling. 

 
2.2 Strength and deformation properties 

Considering that the long tunnel belongs to the 
plane strain problem, biaxial compression tests with 
five levels of confining stresses (0, 5, 10, 20 and 
40 MPa) were carried out on rock model with a 
horseshoe-shaped opening. As a comparison, a 
model containing a circular opening with same 
cross-sectional area and the intact model were also 
studied. The deviator stress−strain curves of the 
three models are plotted in Fig. 2. Besides, the basic 

mechanical parameters of the models under 
different confining stresses, including the biaxial 
compressive strength σb, elastic modulus E and 
peak strain εp, are listed in Table 2. 

As can be seen in Fig. 2, the deformation 
process of the models under biaxial compressive 
loads can be divided into several stages according 
to the variation of the curves, that is, elastic stage, 
crack development stage and post-peak stage. With 
the increase of the axial strain, the deviator stress of 
the intact model under biaxial compression 
increases first before the peak stress and then 
decreases at the post-peak stage. Besides, both the 
peak stress and peak strain grow continuously with 
the increasing confining stress. The reason is that 
the confining stress suppresses the lateral 
deformation of the model. In contrast, as the 
confining stress rises, the peak deviator stress of the 
pre-holed models increases first, and then goes 
down. It is found that the curves fluctuate 
remarkably before the peak, which is induced by 
the unstable crack development around the 
openings. Thus, the crack development stage of the 
pre-holed models can be separated into two 
substages: stable crack development stage and 
unstable crack development stage. Also, all the 
curves become more and more gentle with the 
increase of the lateral stress in the post-peak stage, 
indicating that the brittleness of the models drops 
sharply. 

Table 2 also gives detailed strength and 
deformation values. The biaxial compressive 
strength and elastic modulus basically mount with 
the confining stress. Compared with the intact 
model, the strength of the pre-holed models 
declines drastically by 25.16% to 33.77%. For the 
elastic modulus, the reduction rate is between 5.89% 
and 10.31%. It is also observed that the strength of 

 
Table 1 Main micro-scale parameters of parallel-bond model for rock model 

Parameter of particle Value Parameter of parallel-bond Value

Ratio of largest-to-smallest ball radii, Rmax/Rmin 1.6 Elastic modulus of each parallel bond, cE /GPa 19.46 

The smallest particle radius in sample, Rmin/mm 0.40 Ratio of parallel-bond normal to shear stiffness, n sk k 2.17

Particle density, ρ/(kg·m−3) 2925 Mean value of normal strength, σc/MPa 84 
Elastic modulus at each  

particle−particle contact, Ec/GPa 19.46 Mean value of shear strength, τc/MPa 84 

Ratio of particle normal to shear stiffness, kn/ks 2.17 Standard deviation of normal strength, cσ /MPa 0.50 

Particle friction coefficient, μ 0.10 Standard deviation of shear strength, cτ /MPa 0.50 
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Fig. 2 Curves of deviator stress and number of micro- 
crack versus axial strain subjected to different confining 
stresses: (a) Intact model; (b) Model containing circular 
opening; (c) Model containing horseshoe-shaped opening 
 
the model with a circular opening is slightly larger 
than that of the model containing a horseshoe- 
shaped opening. From the above, we conclude that 
the excavated openings in rock weaken the 
mechanical properties appreciably, which is closely 
associated with the hole shape. 

Table 2 Mechanical parameters of models under 
different confining stresses 

Confining
stress/
MPa 

Mechanical 
property 

Intact 
model 

Model 
with 

circular 
opening 

Model with 
horseshoe- 

shaped 
opening 

0 

σb/MPa 102.86 76.98 74.97 

E/GPa 22.02 19.75 19.78 

εp/‰ 4.44 3.65 3.43 

5 

σb/MPa 117.11 84.38 89.71 

E/GPa 22.44 20.94 20.91 

εp/‰ 4.75 3.67 3.92 

10 

σb/MPa 124.11 88.24 80.10 

E/GPa 22.77 21.34 21.36 

εp/‰ 4.83 4.05 3.15 

20 

σb/MPa 139.50 98.62 92.48 

E/GPa 23.27 21.89 21.90 

εp/‰ 5.10 4.66 3.44 

40 

σb/MPa 162.36 104.29 102.00 

E/GPa 23.99 22.87 22.78 

εp/‰ 5.33 4.52 3.94 

 
2.3 Crack initiation, propagation and 

coalescence 
By the PFC software, the mechanical 

responses of the above models under biaxial 
compression can be reproduced, and then the 
fracture behaviors were discussed. Taking uniaxial 
compression test as an example, the fracture 
morphologies of the pre-holed models at different 
time steps are presented in Fig. 3. In the figure, the 
numbers 1, 2, 3 and 4 represent the primary-tensile 
crack, sidewall crack, secondary-tensile crack and 
shear crack, respectively, while the lowercase in the 
upper-right corner of the number means the order in 
which the cracks occur. 

For the model with a circular opening (see 
Fig. 3(a)), it is observed that two vertical primary- 
tensile cracks (1a and 1b) basically appear at the 
same time on the floor and roof of the circular 
opening, respectively. As the applied load increases, 
sidewall cracks 2a and 2b are observed to appear on 
both sides of the opening in sequence. During this 
period, three secondary-tensile cracks (3a to 3c) 
occur simultaneously on the three corners of the 
opening. The cracks are in parallel with the load  
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Fig. 3 Crack evolution around openings under uniaxial compression: (a) Model with circular opening; (b) Model with 
horseshoe-shaped opening; (c) Real rock specimen containing circular hole [27] 
 
orientation. Afterwards, two shear cracks 4a and 4b 
initiate from the lower-right and upper-left corners 
of the model, and propagate towards the opening 
sides until failure occurs. Clearly, the shear failure 
mode of the model is attributed to the coalescence 
of the shear cracks and sidewall cracks, while the 
tensile cracks do not play a critical role in the 
failure. On the whole, the fracture in the model 
under uniaxial compression evolves from primary- 
tensile cracks, sidewall cracks via secondary-tensile 
cracks and shear cracks, which is consistent with 
our previous experimental findings through DIC 
technique (see Fig. 3(c)) [27]. 

As illustrated in Fig. 3(b), the fracture 
response of the horseshoe-shaped opening subjected 
to uniaxial loads is also displayed clearly. At the 
beginning of the loading, no macro cracks are found 
since only elastic deformation occurs in the model. 
When the model enters plastic deformation stage, 
firstly, a primary-tensile crack 1a along the loading 
direction is formed on the top of the opening. 
Subsequently, the other primary-tensile crack 1b 
emerges on the floor. Meanwhile, plenty of sidewall 
cracks concentrate on the two sidewalls. After that, 
the secondary-tensile cracks and shear cracks 
appear in turn, which is similar to those of the 
circular opening. Finally, the shear-typed failure 

occurs due to the connection between the shear 
cracks and the sidewall cracks. In brief, there are 
also four types of cracks formed around the 
horseshoe-shaped opening. The main difference in 
crack evolution from the circular opening is that the 
two primary-tensile cracks do not occur 
simultaneously. 

Figure 2 also presents the variation of number 
of micro-cracks during the loading process. It is 
found that few micro-cracks can be seen at the first 
deformation stage. When the plastic deformation 
stage is reached, the number of the micro-cracks 
increases due to the formation of macro-cracks. 
After the peak stress, a significant increase in the 
number of micro-cracks is found, which is caused 
by the coalescence of cracks. Moreover, the 
ultimate failure patterns of the models under 
different confining stresses are shown in Fig. 4. 
When the confining stress is applied, the lateral 
deformation is limited. Thus, the tensile cracks 
gradually disappear as the confining stress increases. 
Instead, more and more sidewall cracks and shear 
cracks appear, and the failure mode of the models is 
still shear failure. At this time, it is very likely to 
induce a violent rock burst. Also, it is found that  
the number of micro shear cracks is more and more 
with the increase of the confining stress. 
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Fig. 4 Failure modes of models under different confining stresses (The blue and red lines represent the tensile and shear 
micro-cracks, respectively) 
 
 
3 Improved complex variable method of 

solving analytical stress solution 
 
3.1 Complex variable theory 

According to the plane strain hypothesis, a 
deep-buried tunnel in natural rock mass can be 
regarded as an infinite plate with a single hole. In 
the first place, the rock mass needs to be assumed 
as a homogeneous, continuous, and anisotropic 
elastic medium. Also, the stress gradient is ignored 
in this work. Thereby, the stress solution of the 
plane problem is ultimately equivalent to finding a 
biharmonic equation on the basis of a certain stress 
boundary, which can be expressed as  

4 4 4

4 2 2 4+2 0U U U
x x y y

∂ ∂ ∂+ =
∂ ∂ ∂ ∂

                  (1) 

 
where U(x, y) means the Airy stress function of x 
and y, which is a biharmonic function. 

In accordance with the theory of elasticity, the 
general solution of Eq. (1) can be formulated as 
 

2 2 2

2 2= = , =x yx yy x
U U Uf x f y

x yy x
σ σ τ∂ ∂ ∂

∂ ∂∂ ∂
- ， - -    (2) 

 
where σx, σy and τxy are the normal stresses along x 
and y axes as well as their shear stress, while fx and 
fy represent the physical components along the x- 
and y-axis, respectively. 

In general, semi-inverse method or inverse 

method is widely employed to solve these stress 
components. Nevertheless, under conditions of 
complex external forces or boundary, it is almost 
impossible to determine the form of the expression 
of the Airy stress function U(x, y) or stress 
components (σx, σy and τxy). Complex variable 
methodology exhibits strong ability to deal with this 
issue. This is because the complex shaped 
boundaries can be transformed into simple shaped 
boundaries through conformal transformation. 
Afterwards, a set of procedural solutions that do not 
require trial and error can be used to solve the stress 
function. In 1898, Goursat first found the complex 
representation of the Airy stress function U(z)  
(z=x + iy, and z is complex number) [28], namely, 
 

1 1Re[ ( ) ( )]U z z zθ ϕ= +                     (3) 
 
where θ1(z) and φ1(z) denote two analytical 
functions of the complex number z; z and z  are 
conjugate to each other; Re stands for the real part 
of a complex number. 

As stated by MUSKHELISHVILI [29], 
introducing another analytical function ψ1(z) and 
letting ψ1(z) =θ′1(z), and then the complex forms of 
the three stress components can be written as 
follows: 
 

[ ]1

1 1

( )
( ) ( )

+ 4Re
2i 2[ ]

x y

y x xy

z

z z z

ϕ
ϕ

σ σ
σ ψσ τ

′

′′ ′+

 =
 − + =

          (4) 

In Eq. (4), the number of apostrophes in the 
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analytical function indicates the order of derivative.  
Moreover, the complex representation of the stress 
boundary condition is given as follows:  

( )1 1 1( )+ ( ) ( ) i i dB

A
z z z z X Y sϕ ϕ ψ′ + = +         (5) 

 
where A is the starting point of the integration taken 
on the boundary s, B is an arbitrary point on the 
boundary, and X and Y are the surface force 
components along the x- and y-axis directions on 
the boundary, respectively. Providing that no 
support is applied to the tunnel boundary, the values 
of X and Y are both zero. 

In regard to the simply connected domain 
problem in an infinite domain, the expressions of 
φ1(z) and ψ1(z) are defined as 
 

( ) ( )

( ) ( )

( )

0
1 1

1

0
1

1( )= i ln ( ) ( )
2 1+

( ) i ln
2 1+

           ' i

=

' ( ) ( )

z X Y z Bw z z

z X Y z

B C w z z

ϕ ϕ
κ

κψ
κ

ψ

− + +





+
π

− +
π

+ +





 

 (6) 
where κ means a real number coefficient which can 
be calculated by (3−μ)/(1+μ) in this work; μ is the 
Poisson’s ratio of the rock; B, Bʹ and Cʹ are three 
real constants, which are expressed by 
 

( ) ( )= 4 2,x y y x xyB B Cσ σ σ σ τ∞ ∞ ∞ ∞ ∞′+ = − =，  

 (7) 
 
where σx

∞, σy
∞ and τxy denote the components of the 

applied stress filed to the boundary of the infinite 
plate (see Fig. 5). 

In Eq. (6), φ1
0(z) and ψ1

0(z) represent two single 
valued holomorphic functions within the 
neighborhood of infinity, and their formulae can be 
expanded into Laurent series yields: 
 

0 0
1 1

1 1
( )= ( )=n n

n n
n n

z a z z b zϕ ψ
∞ ∞

− −

= =
 ,             (8) 

 
where an and bn are real constants provided that 
there is no external force acting on the tunnel 
boundary. Otherwise, they are complex constants. 
 
3.2 Conformal transformation 

Riemann mapping theorem shows that there 
must be a mapping function that can transform the 
complex boundary of a simply connected domain in 

the physical plane z to a unit circle in the image 
plane ζ. In this way, the analytical stress solution of 
the complex shaped hole can be easily solved 
although the form of its stress boundary after 
mapping becomes complicated. Apparently, any 
point or line in the z-plane has a mapped point or 
mapped line in the ζ-plane corresponding to it. 
Likewise, this also works for plane figure. It is 
noticeable that the shape of the figure may rotate 
and stretch after the mapping, but the angle between 
any two intersecting curves remains the same. 
Hence, this mapping is also called conformal 
transformation (Fig. 5). 

In this work, the outer region of the horseshoe- 
shaped tunnel in the z-plane was mapped to the 
outer region of the unit circle in the z-plane via 
conformal transformation. Figure 5 also illustrates 
the in-situ stress field applied around the infinite 
plate, that is, σx

∞ =p, σy
∞=λp (λ denotes lateral stress 

coefficient) and τ∞xy=0. The sign convention for 
stress is specified as follows: positive values and 
negative values mean tensile stresses and 
compressive stresses, respectively. Assuming the 
expression of the mapping function is z=w(ζ) (ζ=ξ+ 
iη), then by substituting it into Eqs. (4), (7) and (8), 
we have  

2

2

( )

( )
( ) ( ) ( ) (

+ 4Re[ ]

22i

  ) [ ]
w

w w

ρ θ

θ ρ ρθ

Φ ζ

ρ ζ
ζ Φ ζ ζ Ψ

σ σ

ζ

ζ

σ σ τ

=

 − + =

′

′ ′

⋅

+




              (9) 

 
where σρ, σθ and τρθ denote three stress components 
of a point z=(r, a) in polar form; ρ and θ represent 
the polar radius and polar angle of its mapping 
point, respectively; w′(ζ) and Φ′(ζ) are the first 
derivatives of the original functions w(ζ) and Φ(ζ), 
respectively. ( )w ζ  and w(ζ) are conjugated to 
each other. 

The formulae of the complex potential 
functions Ψ(ζ) and Φ(ζ) in Eq. (9) can be obtained 
by 
 

 
Fig. 5 Schematic of conformal transformation 
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1 1
( ) ( )( )= ( )= ( )= ( )=
( ) ( )

z z
w w
ϕ ζ ψ ζΦ ζ ϕ Ψ ζ ψ

ζ ζ
′ ′′ ′
′ ′

，    (10) 
 

Furthermore, by replacing z with ζ, the 
equation of stress boundary condition is simplified 
as  

0 0 0
( )( )+ ( ) ( )
( )

w
w

σϕ σ ϕ σ ψ σ
σ

′ + =
′

 

( )( ) 2 ( ) i ( )f Bw B C wσ σ σ′ ′− − −        (11) 
 
where σ denotes the point located on the boundary 
of the unit circle, namely, ζ=σ. It is emphasized that 
the influence of tunnel support on the surrounding 
stress distribution is ignored in this work, i.e., no 
external force acts on the tunnel boundary so that 
both the values of X and Y are zero. Thus, f(σ)=  

 

 
( i )d

B
n nA

X Y s+  is also equal to zero. 

From the description above, it is concluded 
that we need to solve the mapping function z=w(ζ) 
first, and then substitute it into Eq. (11) combined 
with Eqs. (6), (7), (8) and (10). As a result, the 
values of all the unknown numbers an and bn in 
Eq. (8) can be found using power series method. 
Afterwards, the expressions of the complex 
potential functions Ψ(ζ) and Φ(ζ) can be derived. 
Moreover, by substituting them further into Eq. (9) 
and solving the system of equations, it is easy to 
acquire the formulae of the three stress components 
(σρ, σθ and τρθ) by MATLAB code. 
 
3.3 Solution of mapping function 

Since only the analytical function possesses 
the property of conformal transformation, the 
mapping function must be an analytical function. 
Generally, the expression of the mapping function 
can be expanded into a form of Laurent series, 
namely,  

( )
0

(  1( )) m
m

mz CKζ ζω ζ ζ
∞

=

−= += ≥       (12) 
 
where K is a real-valued number associated with the 
cross-sectional shape of tunnel; Cm (m is a positive 
integer from zero to infinity) is a real-valued 
constant if the tunnel cross section has more than 
one axis of symmetry, otherwise it is a 
complex-valued constant. 

As shown in Eq. (12), the number of terms of 
the expression is infinite. Obviously, it is 
impossible to find the strict solution of the mapping 
function. However, literature [30] demonstrates that 

the mapping effect is good enough when a few 
terms of Cm for mapping function are taken. 

Supposing the coordinates of a point Aj on the 
tunnel boundary in the z-plane were (rj, aj) and 
those of its mapping point Bj in the ζ-plane were  
(1, θj), then the two points can be written in polar 
coordinate forms as  

i ie ej j
jz r α θζ= =，                       (13) 

 
Introducing Eq. (13) into Eq. (12), and then 

expanding the expressions on the two sides of the 
equation in light of Euler’s formula, we get  

(cos isin ) cos isinj j j j jKr α α θ θ+ = + +


 

0
[cos( ) isin( )]m j j

m
C m mθ θ

∞

=

− 


           (14) 
 

Decomposing the expressions on both sides of 
Eq. (14) into two parts of real and imaginary, leads 
to  

0

0

sin( ) sin( ) 0

[cos( ) cos( )]

j j m j j
m

j j j m j j
k

α C α m

r K α C α m

θ θ

θ θ

∞

=
∞

=

 − + + =

 = − + +





   (15) 

 
By substituting the coordinates (rj, aj) (j=1, 2, 

3, …) of a large number of sampling points on the 
tunnel boundary into Eq. (15), the values of 
variables Cm, K and θj can be obtained by solving a 
system of equations. In this work, the dimensions of 
the selected tunnel are about 1.5 times those of the 
headrace tunnel 4# of the Jinping II Hydropower 
Station (see Section 5), but their shapes are exactly 
the same. As the tunnel shape has an axis of 
symmetry, we take the left half of the tunnel 
boundary as the research object, and divide it 
evenly into 30 parts. Consequently, a total of 31 
sampling points is formed, which are named 
counterclockwise from A1 to A31, respectively. 
Accordingly, their mapping points on the unit circle 
are named from B1 to B31, respectively. Besides, the 
coordinate systems in z-plane and ζ-plane are both 
rotated by 90°, as illustrated in Fig. 6. For the first 
and last points (A1 and A31) on the tunnel boundary, 
the locations of their mapping points (B1 and    
B31) on the unit circle are consistent, i.e., B1=(1, 0) 
and B31=(1, π). Thus, assuming n terms of Cm are 
considered, the relation between Cm and K can be 
obtained by substituting the coordinates of A1 and 
B1 into Eq. (15), namely, 
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Fig. 6 Schematic diagram of sampling points and 
mapping points 
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Apparently, the first identity in Eq. (15) is not 
valid if finite terms of Cm are taken into account. 
Therefore, the solution of the mapping function in 
such a case is equivalent to optimizing a 
constrained object function as follows:  
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(17) 
In this research, a shrinkage approximation 

algorithm was proposed to optimize the above 
function. The principle of the method is: by 
repeatedly calculating and comparing the function 
value of each vertex of the polyhedron, finding the 
vertex with the largest function value and replacing 
it with a new vertex. When the vertex that meets the 
requirements appears, stop the iteration. Detailed 
calculation procedures are described as follows. 

Step 1: Assume that the selected number of Cm 
was n, a primary polyhedron with kd (kd=n+1 in this 
study) vertices in n-dimensional space needs to be 
constructed firstly. Each vertex represents a group 
of possible solution. The vector of the first vertex is 
defined as (0, 0, 0, …, 0), while the element values 
of the other (kd −1) vertices are randomly assigned 
using the following equation:  

( )j j
i i i i ix a + b aη= −  

( 1, 2,  ,  ; 2, 3,  ,  di n j k= =  )        (18) 

where xi
j denotes the value of element; ai and bi 

represent the maximum and minimum values of Cm, 
respectively; ηi

j means a random coefficient with a 
value range of [0, 1]. 

Afterwards, check whether the element values 
of all vertices of the primary polyhedron meet the 
constraint II. If not, re-assign the element values of 
the vertices according to Eq. (18); otherwise, 
proceed to the next step. 

Step 2: Calculate the function values f (X j) of 
all vertices, and find the “good” vertex X jmin whose 
function value f (X jmin) is the smallest, the “bad” 
vertex X jmax with the largest function value 
(f (X jmax)), and the “secondary-bad” vertex X jmax2 
whose function value f (X jmax2) is the second largest. 

Step 3: Determine if the convergence 
conditions are met, according to  

0.521

min
1

1 ( ) ( )
1

dk
j j

jd
f X f X

k
δ

−

=

   − ≤  −  
      (19) 

 
where δ denotes the admissible error, and the value 
is set to 10−6 in this research. 

Substitute the function values of all the 
vertices into Eq. (19) to see whether it holds. If it is 
satisfied, stop the iteration, and the vertex X jmin  
with the smallest function value f (X jmin) is the 
optimal solution. Otherwise, move on to the 
following step. 

Step 4: Find the centroid XC of all the vertices 
except the “bad” vertex max

jX , and check if it 
satisfies the constraint II. If yes, go to the next step. 
If not, return to step 1 to generate a new primary 
polyhedron (whose centroid is thus written as XC1) 
by replacing ai and bi with X jmin and X C, 
respectively, until all the vertices of the new 
primary polyhedron satisfy the constraint II. 

Step 5: Find the reflection point 1
max
RX  of the 

“bad” vertex max
jX along the line connecting the 

centroid X C and the ʹbadʹ vertex 1
max
RX  by   

( )1
max max
R C C jX X X Xχ= + −               (20) 

 
where χ is the reflection coefficient, whose initial 
value is determined as 1.3. 

Next, verify whether the reflection point 1
max
RX  

meets the constraint II and the function values of 
the reflection point 1

max
RX  is less than that of the 

“bad” vertex Xj
max. If yes, jump to the next step; 

otherwise, halve the reflection coefficient χ in 
Eq. (20) to regenerate a new reflection point. If the 
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reflection coefficient χ is continuously reduced to 
1×10−8 and no satisfactory reflection point is found, 
we need to neglect the “bad” vertex max

jX  and 
keep finding the reflection point 2

max
RX  of the 

“secondary-bad” vertex Xj
max2 based on steps 4 and  

5. Repeat this step until a satisfactory reflection 
point max

RkX  is generated, as presented in Fig. 7. 
Step 6: Replace the “bad” vertex max

jX  with 
the reflection point max

RkX , and go back to Step 2. 
The above procedures are implemented 

through a written MATLAB code. For different 
numbers of Cm, the optimization results of Cm, K 
and the corresponding function values are listed in 
Table 3. 

To conclude, the objective function value 
decreases as the number of Cm increases. It can be 
seen that the value of the objective function is 
already very close to zero when the number of Cm is 
8. Thus, substituting the values of Cm in such a case 
into Eq. (12), and then the mapping function of the 
horseshoe-shaped tunnel can be obtained as  

( ) 2 3
0.02 0.10 0.136.61 0.16+z w ζ ζ

ζ ζ ζ
= = − + − +  

4 5 6 7
0.08 0.03 0.01 0.03
ζ ζ ζ ζ

− − +              (21) 
 

Figure 8 illustrates the mapped tunnel shapes 
under the condition of different terms of mapping 
function. It is found that the mapped tunnel shape 
and the actual shape basically coincide under the 
condition that the number of Cm terms is 8. This 
fully proves that the proposed shrinkage 
approximation method for solving the mapping 
function is efficient and reliable. 

 
3.4 Stress distribution around tunnel 

In light of Eq. (20), the following 
transformation of the mapping function can be 
found: 

 

 
Fig. 7 Schematic diagram for determining reflection 
point 

 
1 2 3( ) 6.61 0.16+0.02 0.10 0.13w σ σ σ σ σ− − −= − + − +  

4 5 6 70.08 0.03 0.01 +0.03σ σ σ σ− − − −− −    (22)  
1 2 3( ) 6.61 0.16+0.02 0.10 0.13w σ σ σ σ σ−= − + − +  

4 5 6 70.08 0.03 0.01 +0.03σ σ σ σ− −      (23)  
2 3 4( ) 6.61 0.02 0.19 0.40w σ σ σ σ′ = − − +  

5 6 7 70.32 0.14 0.07 0.20σ σ σ σ− + + −     (24)  
where σ stands for the point on the unit circle 
boundary, i.e., ζ =σ. 

Combining Eq. (8), substituting Eqs. (22)−(24) 
into Eq. (11), and then the values of an and bn can 
be solved by power series method. However, we 
found that the term number of an is seven, but that 
of bn is infinite. As the value of n increases, it is 
seen that the value of bn gradually approaches to 
zero. For example, b98=(1.06×10−15−1.86×10−14λ)p, 
b99=(−9.77×10−15+1.40×10−14λ)p and b100=(9.69× 
10−15−5.12×10−15λ)p. In this work, the term number 
of bn is determined as 100. This simplified 
treatment has little effect on the stress results. 
Therefore, the expressions of φ1(ζ) and ψ1(ζ) can be 
derived according to Eqs. (6)−(8), which are shown 
as follows: 

 
Table 3 Optimization results of Cm, K, and function values using shrinkage approximation method
Number of Cm Function value K C0 C1 C2 C3 C4 C5 C6 C7 

3 0.4854 6.6003 −0.0269 −0.0014 0.0131 − − − − − 

4 0.1781 6.6198 −0.0219 0.0043 0.0178 −0.0183 − − − − 

5 0.0403 6.6124 −0.0257 0.0023 0.0144 −0.0204 0.0124 − − − 

6 0.0260 6.6138 −0.0249 0.0031 0.0148 −0.0195 0.0132 −0.0039 − − 

7 0.0252 6.6144 −0.0247 0.0034 0.0150 −0.0191 0.0130 −0.0036 −0.0013 − 

8 0.0188 6.6131 −0.0249 0.0025 0.0146 −0.0200 0.0122 −0.0042 −0.0017 0.0044
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Fig. 8 Comparison of actual tunnel shape and mapped 
ones 
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Substituting Eq. (25) into Eqs. (10) and (9), 

and then the three stress components (σρ, σθ and τρθ) 
at any point in the surrounding rock of the tunnel 
can be obtained by solving the equation system. On 
the boundary of the horseshoe-shaped tunnel, the 
tangential stress distributions at different lateral 
stress coefficients are shown in Fig. 9. Since there 
is no load or support on the perimeter of the tunnel, 
the radial stress and shear stress are both zero 
regardless of the lateral stress coefficient. 

As can be seen in Fig. 9, the hoop stress 
distribution on the boundary of the tunnel varies 
with the lateral stress coefficient significantly. 
When λ is 0, the maximum tensile stresses formed 
on the roof and floor of the tunnel are −1.0p and 
−0.95p. In contrast, the two sidewalls of the tunnel 

 

 
Fig. 9 Tangential stress distribution on tunnel boundary 
under different lateral stress coefficients 
 
are concentrated by compressive stress, with a 
maximum value of 3.04p. As the lateral stress 
coefficient increases, both the tensile and 
compressive stresses decrease. When λ increases to 
about 0.327, the tensile stress on the top disappears, 
while the maximum tensile stress on the bottom 
reduces to −0.12p. At this time, the maximum 
compressive stress appearing on the sidewalls is 
2.69p. With the continuous rise of the lateral stress 
coefficient, it is found that, when λ reaches 0.375, 
the tensile stress on the floor begins to turn to 
compressive stress. At this moment, the maximum 
stresses on the two sides of the tunnel are 2.64p, 
while that on the roof is 0.15p. After that, the 
stresses on the top and bottom of the tunnel grow 
with the increasing lateral stress coefficient, while 
the compressive stress concentrated on the two 
sides declines gradually. With the increase of lateral 
stress coefficient to 2, it is found that the stress 
concentration factors on the roof, floor and 
sidewalls are 5.18, 4.11 and 0.92, respectively. 
Moreover, we further calculated that, when λ=3, the 
stress concentration factors at the centers of the  
roof, floor and sidewall are 8.28, 6.64 and −0.13, 
respectively, whereas those are 11.38, 9.17 and 
−1.19, respectively, under λ=4. To sum up, as the 
lateral stress coefficient rises, the stresses on the top 
and bottom of the tunnel change from tensile stress 
to increasing compressive stress, while the opposite 
situation occurs on the side walls. The hoop stress 
distribution on the perimeter of the tunnel is 
remarkably related to the in-situ stress, particularly 
the lateral stress coefficient. 

Additionally, the radial and hoop stresses of 
any point away from the tunnel boundary can also 
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be calculated. Figure 10 shows the stress 
distributions at distances of one, three and five 
times the polar radius from the tunnel boundary. 
Since the tunnel shape has an axis of symmetry (see 
Fig. 6), the surrounding stress distribution must be 
symmetrical about it. 

As shown in Fig. 10, for hoop stress 
distribution, the stress concentration factor 
decreases with the increase of the distance from the 
tunnel boundary. When λ is 0, the maximum hoop 
stress on the top location of the tunnel drops from 
0.03p at a distance of one time the polar radius to 
0.01p at a distance of three times the polar radius, 

while the change on the bottom location is the same. 
By contrast, the maximum stress concentration 
factor on the sides decreases from 1.23 to 1.02. As 
the lateral stress coefficient rises to 1, the 
compressive stress on the top turns from 1.26p at 
r=2r1 to 1.03p at r=6r1, whereas that on the bottom 
changes from 1.27p at r=2r31 to 1.03p at r=6r31. By 
comparison, the compressive stress concentration 
factor at the centers of sides reduces from 1.26 to 
1.03. When the lateral stress coefficient approaches 
to 2, the stress evolution law with the increasing 
distance from the tunnel boundary is the same. That 
is to say, as the distance from the tunnel boundary 

 

 
Fig. 10 Tangential and radial stress distribution at different distances from tunnel boundary: (a, b) One times polar 
radius; (c, d) Three times polar radius; (e, f) Five times polar radius 
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grows, the maximum tangential stress on the roof 
and floor gradually decreases towards the 
horizontally applied stress, while that on the two 
sides progressively falls to the vertically acted 
stress. 

Similarly, the radial stress distribution at the 
periphery of the tunnel can also be obtained 
utilizing this method. As the distance from the 
tunnel boundary increases, it is found that the radial 
stress on centers of the roof and bottom changes 
approximately to the applied vertical stress (σx

∞), 
whereas that on the two sides changes gradually to 
the exerted horizontal stress (σy

∞). For instance, 
when λ is zero, the maximum radial stress on the 
roof increases from 0.47p at r=2r1 to 0.93p at r=6r1, 
while that on the tunnel side decreases from 0.27p 
at r=2r16 to 0.04p at r=6r16, Under the condition that 
λ = 2, the maximum radial stress on the top and 
floor decreases from 1.04p and 0.95p at r=2r1 to 
1.01p at r=6r1, while that on the side rises from 
1.18p at r=2r16 to 1.90p at r=6r16. In summary, the 
influence scope of the excavated tunnel on the 
stress distribution is about five times the tunnel 
dimension. 

 
3.5 Reliability verification of proposed method 

To verify the reliability of the complex 
variable method for solving the excavation-induced 
stress around the tunnel, a numerical investigation 
was further carried out using a finite element 
method. As the presented problem belongs to plane 
strain problem, the length, width and height of the 
model were set to 150, 0.5, and 150 m, respectively, 
which are more than ten times the maximum 
dimension of the tunnel (see Fig. 11(a)). Thus, the 
boundary effect can be neglected. Note that the 
dimensions of the tunnel to be excavated in the 

model were the same as that in Fig. 6. With regard 
to the mesh size of the model, it was divided in a 
non-uniform manner; that is, the mesh size of the 
zone near the tunnel was 0.05 m, while that away 
from the tunnel was 5 m. In this work, the body 
force was ignored and only the elastic stress state 
was considered. Thus, the elastic constitutive model 
was used to characterize the relation between stress 
and strain. According to the elastic mechanics 
theory, the inherent properties of material have no 
effect on the elastic stress distribution if the body 
force is constant. Consequently, the elastic modulus 
was defined to be large enough to shun the plastic 
deformation of the model. Besides, the six surfaces 
of the model were fixed along their normal 
direction. 

During the modelling, to record the 
excavation-induced stress at different locations 
around the tunnel, three stress monitoring lines (A, 
B, C) were arranged on the top, bottom and left side 
of the tunnel, respectively. As shown in Fig. 11(b), 
each line contains 10 monitoring points with a 
spacing of 1.3 m. To facilitate calculation and 
comparative analysis, only a uniform stress of 
20 MPa was applied to the upper and lower surfaces, 
i.e., σx

∞=20 MPa and λ=0. In such a case, the 
monitored stresses of these monitoring points after 
the excavation of the tunnel were compared with 
the analytical results obtained by the proposed 
method, as shown in Fig. 12. The results indicate 
that the two methods show good agreement, and the 
average relative error of stress is only 0.29 MPa. 
The slight error of the numerical method results 
from the large size of the element. Actually, the 
monitored stress is owned by the barycenter of the 
element in which the monitor point is situated.  
Thus, the smaller the element dimension, the closer 

 

 

Fig. 11 Numerical modelling: (a) Schematic of model size; (b) Location of stress monitoring point 
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the centroid of the element is to the monitoring 
point. However, this will lead to a great many 
elements and nodes, bringing difficulties for the 
computer to run. Overall, the proposed method for 
solving the analytical stress solution of the 
horseshoe-shaped tunnel is effective and reliable. 
 

 
Fig. 12 Comparison of analytical and numerical results 
of stress monitoring points: (a) Hoop stress; (b) Radial 
stress 
 
4 Discussion on fracture mechanism 
 

Actually, the fracture mechanism can be 
revealed according to the stress state in the model 
under loads. For the intact model, the stress states 
of the upper and lower ends under uniaxial 
compression are three-dimensional because of the 
end friction effect. As a result, a shear plane is 
formed along the major diagonal, and the final 
shear failure mode appears. As the confining stress 
increases, the splitting tensile cracks are inhibited. 
Thus, the failure is shear-dominated. With regard to 
the circular opening, the stress components at an 
arbitrary point around the opening can be solved 
using Kirsch equation, and the hoop stress 

distributions under different lateral stress 
coefficients on the hole boundary are illustrated in 
Fig. 13. Clearly, the tensile stresses occurring on the 
top and bottom of the opening lead to the formation 
of primary-tensile cracks (see Fig. 13). As the two 
stress values are equal, they initiate at the same 
time. Likewise, as the distance from the hole 
boundary rises, the tensile stress in the roof directly 
above the tunnel drops to zero, and then becomes 
compressive stress until it is equal to the exerted 
horizontal stress. Consequently, the primary-tensile 
cracks cease propagation when approaching a 
certain length. Next, the critical stress zone is 
transferred from the primary-tensile crack tip to the 
regions on its both sides. This gives rise to the 
occurrence of the secondary-tensile cracks. 
Meanwhile, due to the high level of concentrated 
compressive stress, the sidewall cracks gradually 
appear on the sidewalls. Generally, the secondary- 
tensile cracks develop towards the spalling zones 
until coalescence appears. When the exerted   
axial stress reaches a certain level, the shear cracks 
are induced by strong end friction effects and 
progressively propagate from the model corner to 
the spalling zones along the diagonal. Thus, the 
shear failure is formed eventually. With the growing 
of the confining stress, the formed tensile stress on 
the roof and floor disappears gradually. Instead, 
only compressive stress occurs around the opening. 
As the biaxial compressive strength is more than 
2.5 times that of the confining stresses set in this 
study, the lateral stress coefficients are less than 0.5. 
Therefore, the maximum compressive stress is 
formed on the sidewalls rather than the top or the 
bottom. This is why spalling failure is getting worse 
on the sidewalls as the confining stress increases. 
 

 
Fig. 13 Hoop stress distribution on boundary of circular 
opening 
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In respect of the horseshoe-shaped opening, 
the fracture mechanism is similar to that of the 
circular opening. The reason why the primary- 
tensile crack on the roof under uniaxial 
compression initiates earlier than that on the floor is 
that the tensile stress concentration factor on the top 
location (−1.01) is larger than that on the bottom 
location (−0.95). Besides, we found that the stress 
concentration factors on the boundary of the 
circular opening are lower than those of the 
horseshoe-shaped opening at the same lateral stress 
coefficient. That is to say, the primary-tensile crack 
initiation stress of the circular opening is relatively 
large, and the spalling failure or rock burst is less 
serious. Therefore, the stability of the circular 
tunnel is higher than that of the horseshoe-shaped 
tunnel. 
 
5 Case study of headrace tunnel of 

Jinping II Hydropower Station 
 
5.1 Project overview 

Jinping II Hydropower Station, the 9th largest 
hydropower station in the world, possesses a total 
installed capacity of 4.8 million kW and an average 
annual power generation of about 25  billion kW·h. 
It is situated on the Ya-lung River in Liangshan Yi 
autonomous Prefecture, Sichuan province, China. 
The Ya-lung River flows around Jinping Mountain, 
leading to a maximum water level difference of 308 
m between the east and west sides. In the 
hydropower station, four parallel headrace tunnels 
(1#, 2#, 3# and 4#) through the mountain have been 
excavated for diverting water. Additionally, three 
other tunnels have also been constructed, including 
two auxiliary tunnels    (A# and B#) for 
geological exploration and transportation and one 
drainage tunnel (C#) for discharging excess water, 
and the details can be found in Ref. [31]. From east 
to west, the axial distances of the two adjacent 

tunnels are 60, 60, 60, 45, 35 and 35 m, respectively. 
The average length, slope and orientation of these 
tunnels are 16.67 km, 0.365% and N58°W, 
respectively. The tunnels 1#, 3# and C#, with 
diameters of 12.4, 12.4 m and 7.2 m, respectively, 
are excavated by tunnel boring machine (TBM) 
method. By contrast, the tunnels 2# and 4# with the 
same horseshoe-shaped cross- section are excavated 
by drill & blast method, and the shape and 
dimensions are shown in Fig. 14(a). This method 
has also been used for the excavation of the two 
auxiliary tunnels A# and B#, whose sizes are 
designed as 5.5 m (width) × 5.7 m (height) and 6.0 
m (width) × 6.25 m (height), respectively. 

 
5.2 Geological conditions 

Jinping II Hydropower Station is located on 
the slope of the Qinghai−Tibet Plateau to the 
Sichuan Basin. The altitude of Jinping Mountain 
varies from 4100 to 4500 m. Along the axis of the 
tunnel, over 75.8% of the headrace tunnel has a 
buried depth of more than 1700 m, and the 
maximum value reaches 2525 m [31,32]. As  
shown in Fig. 14(b), tunnels pass through various 
strata from the entrance to the exit, namely, 
Zagunao group marble, Chlorite schist, Zagunao 
group marble, sandstone and slate in upper  
Triassic, Baishan group marble and Yantang group 
marble [33]. More than 80% of the tunnel is 
surrounded by hard brittle marble and sandstone, 
whose average uniaxial compressive strength and 
tensile strength are 95−105 MPa and 3−6 MPa, 
respectively [34]. Literature [35] indicates that a 
total of 15 faults were exposed during the tunnel 
excavation, and their orientations are mainly NNE, 
NNW, NE-NEE and NW-NWW. Note that faults 
whose orientations along the NNE direction are 
consistent with the main tectonic line and extension 
of the Jinping Mountain. Besides, few karst caves 
are found in the project area, and the maximum  

 

 
Fig. 14 Jinping II Hydropower Station: (a) Dimensions and cross-sectional shape of headrace tunnels 2# and 4#;      
(b) Schematic diagram of geologic cross section (modified from Ref. [32]) 
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water pressure is up to 10 MPa [33,36]. Influenced 
by the mountainous topography, various lithology 
and complex geological conditions, the in-situ 
stress fields of the headrace tunnels are very 
complicated. Based on the field measurement using 
multiple methods, it is found that the lateral stress 
coefficient is 0.8−1.1. Near the eastern and western 
ends of the tunnel, the principal stress is dominated 
by horizonal tectonic stress (>30 MPa). On the 
contrary, the vertical stress caused by gravity is the 
maximum principal stress in the middle of the tunnel, 
and the maximum value exceeds 70 MPa [37]. 
 
5.3 Intense rock burst and explanation 

Due to the high in-situ stress, the complicated 
geological structure and large-scale sizes of tunnel, 
rock disasters, especially the rock burst, occur 
frequently and intensely. According to the  
statistics [38], 4−8 rock bursts occur every day 
during the tunnel excavation. A total of more than 
170 rock bursts appeared on either side of the 
tunnel, followed by 138 rock bursts on the roof. By 
contrast, only few rock bursts took place at the  
floor. It is further found that most rock bursts occur 
within 40 m away from the working face in 8 days 
after the tunnel is excavated. 

In this work, the “7·14” rock bursts occurring 
at Stake K9+728 m to Stake K9+766 m in the 
headrace tunnel 4# (see Fig. 14(b)) during its 
excavation was analyzed as an example. As shown 
in Fig. 15, after the rock burst, many rock 
fragments from the anchored host rock on the left 
sidewall of the tunnel were ejected to the right 
sidewall. This results in a failure zone with a depth 
of 6 m. It is surveyed that this part of the tunnel was 
in an intact marble with a thickness of 2300 m, and 
no obvious faults were revealed [39]. Clearly, the 
vertical stress is the major principal stress, and 
thekind of this rock burst can be categorized as 
strain type [40]. As can be seen in Fig. 9, when λ is 
between 0.8 and 1.0, a high level of compressive 
stress (123.41−136.50 MPa) concentrates on the 
two sidewalls of the tunnel, and the maximum 
stress concentration factors are larger than that on 
the tunnel roof. This causes a large amount of 
energy accumulation. When it reaches a certain 
level or is disturbed by blasting, a rock burst is 
induced immediately. By contrast, the compressive 
stress on the tunnel floor is the smallest. Provided 
that λ>1, the compressive stress on the top of the  

 

 
Fig. 15 Photos of headrace tunnel 4# after rock burst [40]: 
(a) Rock burst failure zone; (b) Ejected anchor rod and 
rock fragment 
 
tunnel is larger than that on the sidewalls, and rock 
burst may appear on the roof of the tunnel. To 
conclude, rock burst is a result of sudden release of 
energy accumulated inside brittle rocks under high 
stress, and it is most likely to occur where the 
excavation-induced stress is the greatest. The 
failure behavior and location of the tunnel under 
high stress coincide exactly with the numerical 
study (see Fig. 4). 
 
6 Conclusions 
 

(1) Numerical results show that the fracture 
around the horseshoe-shaped tunnel under uniaxial 
compression starts from primary-tensile crack, 
sidewall crack via secondary-tensile crack to shear 
crack. Under biaxial compression, the tensile cracks 
are restrained by lateral pressure, and only spalling 
and shear cracks appear in the models. 

(2) The proposed shrinkage approximation 
algorithm for solving the mapping function of the 
horseshoe-shaped tunnel is effective, and the 
mapping accuracy of the tunnel shape is satisfactory 
when the term number of Cm is 8. 

(3) As the lateral stress coefficient increases, 
tensile stresses occurring on the roof and floor of 
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the tunnel decrease to 0 gradually, and then turn to 
compressive stresses when λ is larger than 0.33  
and 0.38, respectively. Conversely, the stress 
concentrated on the two sidewalls changes from 
compressive stress to tensile stress with the growing 
of the lateral stress coefficient. Additionally, as the 
distance from the tunnel boundary rises, the 
maximum tangential stress on the roof and floor 
gradually drops towards σx

∞, while that on the two 
sides progressively falls to σy

∞. For radial stress, the 
law of change is reversed. 

4) The surrounding stress distributions around 
the tunnel can well account for the fracture 
mechanism. Also, the location of rock burst in the 
headrace tunnel 4# of the Jinping II Hydropower 
Station is well explained using the analytical stress 
solution. 
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高应力作用下硬岩马蹄形巷(隧)道破坏行为：现象和机理 
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摘  要：首先采用颗粒流程序(PFC)研究含马蹄形孔洞板状岩石模型在双轴压缩下的力学响应；其次，采用改进

的复变函数法推导孔洞周边应力分布；最后，对锦屏二级水电站因岩爆引起的隧道破坏实例进行分析和讨论。结

果表明，在低侧限应力作用下，孔洞周围共出现 4 种类型裂纹，即孔洞顶底板的初始拉伸裂纹、侧壁上的剥落裂

缝、拐角处的次生拉伸裂纹和对角线上的剪切裂纹。随着侧限应力的增加，拉伸裂纹逐渐消失，而剥落破坏愈发

严重。隧道模型的破坏现象与实际引水隧道的非常吻合，且解析获得的应力分布可以阐明裂纹的萌生机理。 
关键词：马蹄形隧道；破裂行为；岩爆；应力分布；复变方法；颗粒流程序 
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