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Abstract: A particle flow code (PFC) was first applied to examining the mechanical response of a horseshoe-shaped
opening in prismatic rock models under biaxial compression. Next, an improved complex variable method was
proposed to derive the stress distribution around the opening. Lastly, a case study of tunnel failure caused by rock burst
in Jinping I Hydropower Station was further analyzed and discussed. The results manifest that a total of four types of
cracks occur around the opening under low lateral confining stress, namely, the primary-tensile cracks on the roof-floor,
sidewall cracks on the sidewalls, secondary-tensile cracks on the corners and shear cracks along the diagonals. As the
confining stress increases, the tensile cracks gradually disappear whilst the spalling failure becomes severe. Overall, the
failure phenomenon of the modelled tunnel agrees well with that of the practical headrace tunnel, and the crack
initiation mechanisms can be clearly clarified by the analytical stress distribution.
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1 Introduction

Natural rock mass at depth is subjected to
geo-stress due to the weight of the overlying strata
and the tectonic movement of the earth’s crust [1].
When a tunnel is excavated in the stressed rock, the
stresses around the opening are redistributed,
depending on the geologic structure, tunnel shape
and in-situ stress [2,3]. Research manifests that, as
the buried depth of the tunnel grows, the frequency
of rock disasters, such as rock burst, water
gushing-out and tunnel collapse, increases
significantly [4—6]. Essentially, the deformation,
burst and failure of the host rock are driven by the
excavation-induced stresses. Thus, figuring out the
stress distribution near the tunnel is necessary and
meaningful to understand the failure mechanism.

Up to now, extensive attempts have been made
on the measurement of rock stress. For example,
FIGUEIREDO et al [7] successfully determined the
surface stress around a tunnel by using large flat
jack test method, and provided formulas for normal
and shear stresses. GE and HOU [8] proposed
borehole wall stress relief method and designed a
set of instruments to monitor the orientations and
magnitudes of the maximum, intermediate and
minimum principal stresses near a tunnel of Jinping
I Hydropower Station. CAI et al [9] employed an
improved hydraulic fracturing technique along with
modified test equipment for measuring the
geo-stress in a 1000 m coal mine. By stress cell and
extensometer, KAISER et al [10] explored the
influence of mining-induced stress change on
excavation stability. OUYANG et al [11] also
utilized multiple MC-type bore-hole stress gauges
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to study the induced stress distribution around a
stope in an iron mine. Besides, QIU et al [12]
presented electromagnetic radiation (EMR) stress
measurement technique and applied it to a roadway
in Nuodong coal mine. Based on the micro-
seismic monitoring technique, MAXWELL and
YOUNG [13] further developed sequential imaging
method for analyzing the variation of
excavation-induced stress around a roadway. Note
that the above methods could only be used to
measure the stress state of a certain point, and thus
both the cost and workload will increase
accordingly if the entire stress field is obtained.
Additionally, photo-elastic test and physical model
experiment were conducted to investigate the
evolution of surrounding stress around an
opening [14,15]. Moreover, a series of commercial
software based on finite, discrete and boundary
element methods have been developed to simulate
the mechanical response caused by tunnel
excavation. Since the constitutive model, element
or particle size, material parameter and boundary
condition all have remarkable effects on the
numerical results, it is extremely time consuming
and troublesome to determine the required
parameters for numerical modelling [16—19].

By contrast, study on the
excavation-induced stress has received relatively
little attention. The reason is that it is quite arduous
to solve the indispensable Airy stress function using
elasticity theory, especially for the complex shaped
openings. As an effective tool, complex variable
approach is widely used for solving the surrounding
stresses of non-circular tunnels such as square,
rectangular, semi-circular, inverted U-shaped, and
trapezoidal [20—25]. Nevertheless, in regard to the
horseshoe-shaped tunnels that are widespread in
civil and hydraulic engineering, limited information
regarding the surrounding
and fracture response is reported in previous
literature [2]. As a result, the deformation and
failure mechanism of this type of tunnel have not
been thoroughly grasped. Therefore, in this work,
we were encouraged to perform a numerical study
on failure behavior of horseshoe-shaped tunnel
under biaxial loading using a particle flow code
(PFC) code, and then the stress distribution used to
explain the fracture mechanism was derived via
complex variable method together with a proposed
shrinkage approximation algorithm.

theoretical

stress  distribution

2 Failure behavior of horseshoe-shaped
tunnel

To deeply understand the failure behavior of
horseshoe-shaped tunnel in rock engineering, it is
essential to examine the crack development around
the opening. Therefore, numerical study on the
prismatic rock samples containing a horseshoe
tunnel under biaxial compression with different
confining stresses was conducted.

2.1 Determination of micro parameters for PFC
modelling

Currently, it is wuniversally accepted that
discrete element software is particularly suitable for
simulating the nonlinear mechanical behavior of
discontinuous media [26]. In particular, PFC is
popularly devoted to investigating the crack
initiation, propagation and coalescence behavior of
rock or rock-like materials under static or dynamic
loads.

In PFC model, the medium is regarded as an
aggregation of bonded circular or spherical rigid
particles (balls) of different sizes, and the
parallel-bond model is commonly selected for
rock-like materials. As the macro-scale response of
the model depends on the geometric and
mechanical properties of the particles and the
bonds, we need to calibrate the micro-contact
parameters using trial-and-error method based on
uniaxial compression test results. A block of
sandstone with good homogeneity, taken from Linyi
city in Shandong province of China, was applied to
making rock specimens. The processed specimens
used for tests contained three prismatic specimens
with dimensions of 100 mm (length), 25 mm (width)
and 150 mm (height), and three cylindrical
specimens with sizes of 50 mm (diameter) X
100 mm (height). Correspondingly, the width and
length of the PFC2D model were set as 100 and
150 mm, respectively. The tested mechanical
parameters of the rock are: uniaxial compressive
strength (102.61 MPa), elastic modulus (20.78 GPa)
and Poisson's ratio (0.258). In contrast, the numerical
results are 102.86 MPa, 22.02 GPa and 0.262,
respectively. The stress—strain curves of the intact
specimen and model under uniaxial compression
are presented in Fig. 1. Since the sample models
compressed by two discs are strictly two-dimensional,
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Fig. 1 Experimental and numerical stress—strain curves

and failure modes of intact specimens under uniaxial
compression

no initial pores and cracks compaction stage appear
during the modelling. Hence, the peak strain of the
model is slightly smaller than that of the rock
specimen. The calibrated micro-parameters of the
model are shown in Table 1.

Besides, there are some other parameters, such
as oy (requested value of isotropic stress), nm
(remaining floaters ratio), f (wall normal stiffness
multiplier) and A (parallel-bond radius multiplier),
which are set to defaults in modelling.

2.2 Strength and deformation properties
Considering that the long tunnel belongs to the
plane strain problem, biaxial compression tests with
five levels of confining stresses (0, 5, 10, 20 and
40 MPa) were carried out on rock model with a
horseshoe-shaped opening. As a comparison, a
model containing a circular opening with same
cross-sectional area and the intact model were also
studied. The deviator stress—strain curves of the
three models are plotted in Fig. 2. Besides, the basic

mechanical parameters of the models under
different confining stresses, including the biaxial
compressive strength o, elastic modulus £ and
peak strain ¢, are listed in Table 2.

As can be seen in Fig. 2, the deformation
process of the models under biaxial compressive
loads can be divided into several stages according
to the variation of the curves, that is, elastic stage,
crack development stage and post-peak stage. With
the increase of the axial strain, the deviator stress of
the intact model under biaxial compression
increases first before the peak stress and then
decreases at the post-peak stage. Besides, both the
peak stress and peak strain grow continuously with
the increasing confining stress. The reason is that
the confining suppresses  the
deformation of the model. In contrast, as the
confining stress rises, the peak deviator stress of the
pre-holed models increases first, and then goes
down. It
remarkably before the peak, which is induced by
the wunstable crack development around the
openings. Thus, the crack development stage of the
pre-holed models can be separated into two
substages: stable crack development stage and
unstable crack development stage. Also, all the
curves become more and more gentle with the
increase of the lateral stress in the post-peak stage,
indicating that the brittleness of the models drops
sharply.

Table 2 also gives detailed strength and
deformation values. The biaxial compressive
strength and elastic modulus basically mount with
the confining stress. Compared with the intact
model, the strength of the pre-holed models
declines drastically by 25.16% to 33.77%. For the
elastic modulus, the reduction rate is between 5.89%
and 10.31%. It is also observed that the strength of

stress lateral

is found that the curves fluctuate

Table 1 Main micro-scale parameters of parallel-bond model for rock model

Parameter of particle Value Parameter of parallel-bond Value
Ratio of largest-to-smallest ball radii, Rpox/Rmin =~ 1.6 Elastic modulus of each parallel bond, E./GPa 19.46
The smallest particle radius in sample, Ry/mm 0.40 | Ratio of parallel-bond normal to shear stiffness, ./k, 2.17
Particle density, p/(kg-m ) 2925 Mean value of normal strength, o./MPa 84
pa rtiflljjgaclr?col:uclsi tjltcte,alC«??/GPa 19.46 Mean value of shear strength, 7,/MPa 84
Ratio of particle normal to shear stiffness, k/k; 2.17 Standard deviation of normal strength, &,/MPa 0.50
Particle friction coefficient, u 0.10 Standard deviation of shear strength, 7./MPa 0.50
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Fig. 2 Curves of deviator stress and number of micro-
crack versus axial strain subjected to different confining
stresses: (a) Intact model; (b) Model containing circular
opening; (c) Model containing horseshoe-shaped opening

the model with a circular opening is slightly larger
than that of the model containing a horseshoe-
shaped opening. From the above, we conclude that
the excavated openings in rock weaken the
mechanical properties appreciably, which is closely
associated with the hole shape.

Table 2 Mechanical parameters of models under
different confining stresses

Confinin Model Model with
stress/ € Mechanical Intact with  horseshoe-
MPa property  model circular  shaped

opening  opening
o,/MPa 102.86  76.98 74.97
0 E/GPa 22.02 19.75 19.78
£/ %0 4.44 3.65 3.43
o,/MPa 117.11  84.38 89.71
5 E/GPa 22.44 20.94 20.91
£5/%o0 475 367 3.92
o,/MPa 124.11  88.24 80.10
10 E/GPa 22.77 21.34 21.36
£5/%o0 483 405 3.15
o,/MPa 139.50  98.62 92.48
20 E/GPa 23.27 21.89 21.90
£p/%o0 5.10 4.66 3.44
o,/MPa 162.36  104.29 102.00
40 E/GPa 23.99 22.87 22.78
&p/%0 5.33 4.52 3.94
2.3 Crack initiation, propagation and
coalescence
By the PFC software, the mechanical

responses of the above models under biaxial
compression can be reproduced, and then the
fracture behaviors were discussed. Taking uniaxial
compression test as an example, the fracture
morphologies of the pre-holed models at different
time steps are presented in Fig. 3. In the figure, the
numbers 1, 2, 3 and 4 represent the primary-tensile
crack, sidewall crack, secondary-tensile crack and
shear crack, respectively, while the lowercase in the
upper-right corner of the number means the order in
which the cracks occur.

For the model with a circular opening (see
Fig. 3(a)), it is observed that two vertical primary-
tensile cracks (1* and 1°) basically appear at the
same time on the floor and roof of the circular
opening, respectively. As the applied load increases,
sidewall cracks 2*and 2° are observed to appear on
both sides of the opening in sequence. During this
period, three secondary-tensile cracks (3* to 3°)
occur simultaneously on the three corners of the
opening. The cracks are in parallel with the load
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Fig. 3 Crack evolution around openings under uniaxial compression: (a) Model with circular opening; (b) Model with

horseshoe-shaped opening; (c) Real rock specimen containing circular hole [27]

orientation. Afterwards, two shear cracks 4* and 4°
initiate from the lower-right and upper-left corners
of the model, and propagate towards the opening
sides until failure occurs. Clearly, the shear failure
mode of the model is attributed to the coalescence
of the shear cracks and sidewall cracks, while the
tensile cracks do not play a critical role in the
failure. On the whole, the fracture in the model
under uniaxial compression evolves from primary-
tensile cracks, sidewall cracks via secondary-tensile
cracks and shear cracks, which is consistent with
our previous experimental findings through DIC
technique (see Fig. 3(c)) [27].

As illustrated in Fig. 3(b), the fracture
response of the horseshoe-shaped opening subjected
to uniaxial loads is also displayed clearly. At the
beginning of the loading, no macro cracks are found
since only elastic deformation occurs in the model.
When the model enters plastic deformation stage,
firstly, a primary-tensile crack 1* along the loading
direction is formed on the top of the opening.
Subsequently, the other primary-tensile crack 1°
emerges on the floor. Meanwhile, plenty of sidewall
cracks concentrate on the two sidewalls. After that,
the secondary-tensile cracks and shear cracks
appear in turn, which is similar to those of the
circular opening. Finally, the shear-typed failure

occurs due to the connection between the shear
cracks and the sidewall cracks. In brief, there are
also four types of cracks formed around the
horseshoe-shaped opening. The main difference in
crack evolution from the circular opening is that the
two primary-tensile cracks do not occur
simultaneously.

Figure 2 also presents the variation of number
of micro-cracks during the loading process. It is
found that few micro-cracks can be seen at the first
deformation stage. When the plastic deformation
stage is reached, the number of the micro-cracks
increases due to the formation of macro-cracks.
After the peak stress, a significant increase in the
number of micro-cracks is found, which is caused
by the coalescence of cracks. Moreover, the
ultimate failure patterns of the models under
different confining stresses are shown in Fig. 4.
When the confining stress is applied, the lateral
deformation is limited. Thus, the tensile cracks
gradually disappear as the confining stress increases.
Instead, more and more sidewall cracks and shear
cracks appear, and the failure mode of the models is
still shear failure. At this time, it is very likely to
induce a violent rock burst. Also, it is found that
the number of micro shear cracks is more and more
with the increase of the confining stress.
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Fig. 4 Failure modes of models under different confining stresses (The blue and red lines represent the tensile and shear

micro-cracks, respectively)

3 Improved complex variable method of
solving analytical stress solution

3.1 Complex variable theory
According to the plane strain hypothesis, a

deep-buried tunnel in natural rock mass can be
regarded as an infinite plate with a single hole. In
the first place, the rock mass needs to be assumed
as a homogeneous, continuous, and anisotropic
elastic medium. Also, the stress gradient is ignored
in this work. Thereby, the stress solution of the
plane problem is ultimately equivalent to finding a
biharmonic equation on the basis of a certain stress
boundary, which can be expressed as

4 4 4
0 (4/ 9 82U o'U ~0 0
ox ox*oy* oy’

where U(x, y) means the Airy stress function of x
and y, which is a biharmonic function.

In accordance with the theory of elasticity, the
general solution of Eq. (1) can be formulated as

o’U o’U *U
O-x: ayz _f;cx’ O-y_ f.y: Txy = axay

(2)

where o,, 0, and 7, are the normal stresses along x
and y axes as well as their shear stress, while f; and
f, represent the physical components along the x-
and y-axis, respectively.

In general, semi-inverse method or inverse

method is widely employed to solve these stress
components. Nevertheless,
complex external forces or boundary, it is almost
impossible to determine the form of the expression
of the Airy stress function U(x, y) or stress
components (o, 0, and 7). Complex variable
methodology exhibits strong ability to deal with this
issue. This is because the complex shaped
boundaries can be transformed into simple shaped
boundaries through conformal transformation.
Afterwards, a set of procedural solutions that do not
require trial and error can be used to solve the stress
function. In 1898, Goursat first found the complex
representation of the Airy stress function U(z)
(z=x + iy, and z is complex number) [28], namely,

U =Re[6,(2) + 20, (2)] 3)

under conditions of

where 6(z) and ¢@i(z) denote two analytical
functions of the complex number z; z and z are
conjugate to each other; Re stands for the real part
of a complex number.

As stated by MUSKHELISHVILI [29],
introducing another analytical function y,(z) and
letting y(z) =01(z), and then the complex forms of
the three stress components can be written as
follows:

{Uﬁﬁy =4Re[¢{(2)]

. g , “4)
o,-0, +2ir,, =2[z¢(z) +y,(2)]

In Eq. (4), the number of apostrophes in the
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analytical function indicates the order of derivative.
Moreover, the complex representation of the stress
boundary condition is given as follows:

0(2)+z 0D+ (2) =i (X +iY s (5)

where A is the starting point of the integration taken
on the boundary s, B is an arbitrary point on the
boundary, and X and Y are the surface force
components along the x- and y-axis directions on
the boundary, respectively. Providing that no
support is applied to the tunnel boundary, the values
of X and Y are both zero.

In regard to the simply connected domain
problem in an infinite domain, the expressions of
¢1(2) and y,(z) are defined as

o (z2)=— (X+iY)1nz+Bw(z)+golo(Z)

1
2n(1+x)

- x_
v, (z)= 2n(1+K) (X -iY)lnz+

(B'+iC")w(z)+¥) (z)

(6)
where x means a real number coefficient which can
be calculated by (3—u)/(1+w) in this work; u is the
Poisson’s ratio of the rock; B, B’ and C’ are three
real constants, which are expressed by

B=(0';°+0';°)/4, B':(O';"—O';")/L C=1]
(7

where o,’, 0,” and 7,, denote the components of the
applied stress filed to the boundary of the infinite
plate (see Fig. 5).

In Eq. (6), ¢(z) and (z) represent two single
valued  holomorphic  functions  within the
neighborhood of infinity, and their formulae can be
expanded into Laurent series yields:

o (2)=2a,z", ¥ (2)=2.b,”" (8)
n=1 n=1

where a, and b, are real constants provided that
there is no external force acting on the tunnel
boundary. Otherwise, they are complex constants.

3.2 Conformal transformation

Riemann mapping theorem shows that there
must be a mapping function that can transform the
complex boundary of a simply connected domain in

the physical plane z to a unit circle in the image
plane (. In this way, the analytical stress solution of
the complex shaped hole can be easily solved
although the form of its stress boundary after
mapping becomes complicated. Apparently, any
point or line in the z-plane has a mapped point or
mapped line in the (-plane corresponding to it.
Likewise, this also works for plane figure. It is
noticeable that the shape of the figure may rotate
and stretch after the mapping, but the angle between
any two intersecting curves remains the same.
Hence, this mapping is also called conformal
transformation (Fig. 5).

In this work, the outer region of the horseshoe-
shaped tunnel in the z-plane was mapped to the
outer region of the unit circle in the z-plane via
conformal transformation. Figure 5 also illustrates
the in-situ stress field applied around the infinite
plate, that is, o, =p, ay°° =1p (A denotes lateral stress
coefficient) and rd;y=0. The sign convention for
stress is specified as follows: positive values and
negative values mean tensile stresses and
compressive stresses, respectively. Assuming the
expression of the mapping function is z=w({) ({=&+
in), then by substituting it into Egs. (4), (7) and (8),
we have

0,40, =4Re[@({)]

: 247
0'9—0'p+217p9:%- (9)
[w(P'($)+w (¥ (9]

where o, opand 7,denote three stress components
of a point z=(7, a) in polar form; p and 8 represent
the polar radius and polar angle of its mapping
point, respectively; w'({) and @'({) are the first
derivatives of the original functions w({) and @({),
respectively. @ and w({) are conjugated to
each other.

The formulae of the complex potential
functions () and @({) in Eq. (9) can be obtained

oy =p
[ EEE NN
- Z Y - - e
7 ~-Mapping = e
S . . .
&~ Xl =w(l) — g
© 7] Horseshoe- |- © —t S
= shaped tunnel ™ g ! -
Prrrrtt

Fig. 5 Schematic of conformal transformation
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(9] U A(Y

= V(O=vi(2)==; (10)

s RS
Furthermore, by replacing z with (, the

equation of stress boundary condition is simplified

as

D($)=¢(2)=

0001+ 2D &) + iy (0) =
w(o)

f(0)=2Bw(c)— (B —iC")w(o) (11)

where ¢ denotes the point located on the boundary
of the unit circle, namely, {(=o. It is emphasized that
the influence of tunnel support on the surrounding
stress distribution is ignored in this work, i.e., no
external force acts on the tunnel boundary so that
both the values of X and Y are zero. Thus, f(o)=

I:(X ,+HY )ds is also equal to zero.

From the description above, it is concluded
that we need to solve the mapping function z=w({)
first, and then substitute it into Eq. (11) combined
with Egs. (6), (7), (8) and (10). As a result, the
values of all the unknown numbers a, and b, in
Eq. (8) can be found using power series method.
Afterwards, the expressions of the complex
potential functions ¥(¢{) and @&({) can be derived.
Moreover, by substituting them further into Eq. (9)
and solving the system of equations, it is easy to
acquire the formulae of the three stress components
(0,, opand 7,9) by MATLAB code.

3.3 Solution of mapping function

Since only the analytical function possesses
the property of conformal transformation, the
mapping function must be an analytical function.
Generally, the expression of the mapping function
can be expanded into a form of Laurent series,
namely,

2= =KC+ X C,¢M (=) a2

where KX is a real-valued number associated with the
cross-sectional shape of tunnel; C,, (m is a positive
integer from zero to infinity) is a real-valued
constant if the tunnel cross section has more than
one axis of symmetry,
complex-valued constant.
As shown in Eq. (12), the number of terms of
the expression is infinite. Obviously, it is
impossible to find the strict solution of the mapping
function. However, literature [30] demonstrates that

otherwise it 1S a

the mapping effect is good enough when a few
terms of C,, for mapping function are taken.

Supposing the coordinates of a point 4; on the
tunnel boundary in the z-plane were (7, a;) and
those of its mapping point B; in the {-plane were
(1, 6), then the two points can be written in polar
coordinate forms as

Z:rjem’, {=ei6f (13)

Introducing Eq. (13) into Eq. (12), and then
expanding the expressions on the two sides of the
equation in light of Euler’s formula, we get

ri(cosa; +isina;) =K(cost9j +ising; +

> C,[cos(mb,) —isin(mb, )]J (14)
m=0

Decomposing the expressions on both sides of
Eq. (14) into two parts of real and imaginary, leads
to

sin(a, —6,)+ Y, C,, sin(a, +m8,) =0
e (15)
r; = K[cos(a, —Hj)+I§)Cm cos(a; +m8,)]

By substituting the coordinates (r;, a;) (=1, 2,
3, *+*) of a large number of sampling points on the
tunnel boundary into Eq.(15), the wvalues of
variables C,,, K and 6; can be obtained by solving a
system of equations. In this work, the dimensions of
the selected tunnel are about 1.5 times those of the
headrace tunnel 4# of the Jinping II Hydropower
Station (see Section 5), but their shapes are exactly
the same. As the tunnel shape has an axis of
symmetry, we take the left half of the tunnel
boundary as the research object, and divide it
evenly into 30 parts. Consequently, a total of 31
sampling points is formed, which are named
counterclockwise from A; to Aj, respectively.
Accordingly, their mapping points on the unit circle
are named from B, to Bsj, respectively. Besides, the
coordinate systems in z-plane and {-plane are both
rotated by 90°, as illustrated in Fig. 6. For the first
and last points (4, and 43;) on the tunnel boundary,
the locations of their mapping points (B; and
B3)) on the unit circle are consistent, i.e., B,=(1, 0)
and B3;=(1, m). Thus, assuming # terms of C,, are
considered, the relation between C,, and K can be
obtained by substituting the coordinates of 4, and
By into Eq. (15), namely,
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BB]

Tunnel boundary Unit circle boundary

Fig. 6 Schematic diagram of sampling points and
mapping points

K=q/(1+§CmJ (16)
m=0

Apparently, the first identity in Eq. (15) is not
valid if finite terms of C,, are taken into account.
Therefore, the solution of the mapping function in
such a case is equivalent to optimizing a
constrained object function as follows:

31
minf(Cm,Qj,rl)=Z{rj —rl[cos(aj -0,)+
=l

_ n— 2
Zi C, cos(a, +m6j)}/(l + Zi C, )}

m=0 m=0

n-1
s.t. sin(a; —6,)+ Y C, sin(a; +m6,)=0 (I)
m=0
n—1

> m

m=0

C

m

<1 (I
(17)

In this research, a shrinkage approximation
algorithm was proposed to optimize the above
function. The principle of the method is: by
repeatedly calculating and comparing the function
value of each vertex of the polyhedron, finding the
vertex with the largest function value and replacing
it with a new vertex. When the vertex that meets the
requirements appears, stop the iteration. Detailed
calculation procedures are described as follows.

Step 1: Assume that the selected number of C,
was 7, a primary polyhedron with k; (k/=n+1 in this
study) vertices in n-dimensional space needs to be
constructed firstly. Each vertex represents a group
of possible solution. The vector of the first vertex is
defined as (0, 0, 0, ---, 0), while the element values
of the other (k; —1) vertices are randomly assigned
using the following equation:

x =a,+n/(b,~a;)
(i:1,27 ) n’]:273, Y kd) (18)

where xf denotes the value of element; a; and b;
represent the maximum and minimum values of C,,
respectively; ;7‘; means a random coefficient with a
value range of [0, 1].

Afterwards, check whether the element values
of all vertices of the primary polyhedron meet the
constraint II. If not, re-assign the element values of
the wvertices according to Eq.(18); otherwise,
proceed to the next step.

Step 2: Calculate the function values f(X’) of
all vertices, and find the “good” vertex X, whose
function value f(X ‘inin) is the smallest, the “bad”
vertex X jmax with the largest function value
(f(X’.)), and the “secondary-bad” vertex X SN
whose function value f (X ]maXZ) is the second largest.

Step 3: Determine if the convergence
conditions are met, according to

0.5
1 ky—1 2

oL sea] ss a9

J=1

where J denotes the admissible error, and the value
is set to 107° in this research.

Substitute the function values of all the
vertices into Eq. (19) to see whether it holds. If it is
satisfied, stop the iteration, and the vertex X Jmin
with the smallest function value f(X jmin) is the
optimal solution. Otherwise, move on to the
following step.

Step 4: Find the centroid X of all the vertices
except the “bad” vertex X/ , and check if it
satisfies the constraint II. If yes, go to the next step.
If not, return to step 1 to generate a new primary
polyhedron (whose centroid is thus written as XN
by replacing «@; and b; with X ]min and X€
respectively, until all the vertices of the new
primary polyhedron satisfy the constraint II.

Step 5: Find the reflection point X X! = of the
“bad” vertex X/ _ along the line connecting the

centroid X © and the 'bad’ vertex X*! by

max

X5 =X+ (X -xL,) (20)

where y is the reflection coefficient, whose initial
value is determined as 1.3.

Next, verify whether the reflection point XX
meets the constraint II and the function values of
the reflection point X%! is less than that of the
“bad” vertex X If yes, jump to the next step;
otherwise, halve the reflection coefficient y in

Eq. (20) to regenerate a new reflection point. If the
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reflection coefficient y is continuously reduced to
1x107* and no satisfactory reflection point is found,
we need to neglect the “bad” vertex X/ and
keep finding the reflection point XX2 of the
“secondary-bad” vertex X axo based on steps 4 and
5. Repeat this step until a satisfactory reflection
point XX ' is generated, as presented in Fig. 7.

Step 6: Replace the “bad” vertex X/ = with
the reflection point X  and go back to Step 2.

The above procedures are implemented
through a written MATLAB code. For different
numbers of C,, the optimization results of C,, K
and the corresponding function values are listed in
Table 3.

To conclude, the objective function value
decreases as the number of C,, increases. It can be
seen that the value of the objective function is
already very close to zero when the number of C,, is
8. Thus, substituting the values of C,, in such a case
into Eq. (12), and then the mapping function of the
horseshoe-shaped tunnel can be obtained as

0.02 0.10 0.13
+ % - - +

z=w({)=6.61{ ~0.16+

0.08 0.03 0.01 0.03
;e
Figure 8 illustrates the mapped tunnel shapes
under the condition of different terms of mapping
function. It is found that the mapped tunnel shape
and the actual shape basically coincide under the
condition that the number of C,, terms is 8. This
fully proves that the proposed shrinkage
approximation method for solving the mapping
function is efficient and reliable.

€2y

3.4 Stress distribution around tunnel

In light of Eq.(20), the following
transformation of the mapping function can be
found:

X2
4 Constraint IT
J
—_ X max2 —_
- -
g £
< <
= =
= B
172] 172}
= =
S 5]
@) Q

Constraint IT

X1
Fig. 7 Schematic diagram for determining reflection
point

w(0)=6.610—-0.16+0.020"" +0.10072 —0.1307° +
0.0807* -0.0307° —0.0167°+0.030"  (22)

w(0)=6.616"—0.16+0.020 +0.100> —0.130" +

0.080* —0.036° —0.016°+0.030" (23)
w(0)=6.61-0.020% —0.190" +0.400"*
-0.320° +0.140° +0.076" —0.200’ (24)

where o stands for the point on the unit circle
boundary, i.e., {=o.

Combining Eq. (8), substituting Egs. (22)—(24)
into Eq. (11), and then the values of a, and b, can
be solved by power series method. However, we
found that the term number of a, is seven, but that
of b, is infinite. As the value of n increases, it is
seen that the value of b, gradually approaches to
zero. For example, bos=(1.06x10"""—1.86x10""1)p,
boo=(—9.77x10""+1.40x10™A)p and  b1e=(9.69x
107°=5.12x10"A)p. In this work, the term number
of b, is determined as 100. This simplified
treatment has little effect on the stress results.
Therefore, the expressions of ¢({) and w({) can be
derived according to Egs. (6)—(8), which are shown
as follows:

Table 3 Optimization results of C,,, K, and function values using shrinkage approximation method

Number of C,, Function value K Co C G G Cy Cs Cs C;
3 0.4854 6.6003 —0.0269 —0.0014 0.0131 - - - - -
4 0.1781 6.6198 —0.0219 0.0043 0.0178 -0.0183 - - - -
5 0.0403 6.6124 —0.0257 0.0023 0.0144 -0.0204 0.0124 - - -
6 0.0260 6.6138 —0.0249 0.0031 0.0148 -0.0195 0.0132 -0.0039 - -
7 0.0252 6.6144 —0.0247 0.0034 0.0150 -0.0191 0.0130 —0.0036 —0.0013 -
8 0.0188 6.6131 -0.0249 0.0025 0.0146 —0.0200 0.0122 -0.0042 —0.0017 0.0044
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Fig. 8 Comparison of actual tunnel shape and mapped
ones

?,(£)=p[0.04(A+1) p+1.65(A+1) pd +
(3.24—3.252)[7 N (0.01—0.06ﬂ)p N

¢ -
(0.02+0.052)p _(0.03+0.022)p

¢’ ¢
(0.024-0.02) p  0.01(A+1) p

& g’

(25)
v, ($)==p[-0.08(1-1) p+3.31(A-1) p{ -

(330+3332)p  (-0.08+0.094)p

¢ -
(3.24-3.264) p
o
P (9.69x107° —5.12x107" 1)
é/lOO ]

Substituting Eq. (25) into Egs. (10) and (9),
and then the three stress components (o,, gyand 1,y)
at any point in the surrounding rock of the tunnel
can be obtained by solving the equation system. On
the boundary of the horseshoe-shaped tunnel, the
tangential stress distributions at different lateral
stress coefficients are shown in Fig. 9. Since there
is no load or support on the perimeter of the tunnel,
the radial stress and shear stress are both zero
regardless of the lateral stress coefficient.

As can be seen in Fig. 9, the hoop stress
distribution on the boundary of the tunnel varies
with the lateral stress coefficient significantly.
When 4 is 0, the maximum tensile stresses formed
on the roof and floor of the tunnel are —1.0p and
—0.95p. In contrast, the two sidewalls of the tunnel

— 2=0.00
— 27025
4=0.50
— 27075
=1.00
A=1.25
— =150

4=2.00

Fig. 9 Tangential stress distribution on tunnel boundary
under different lateral stress coefficients

are concentrated by compressive stress, with a
maximum value of 3.04p. As the lateral stress
coefficient increases, both the tensile and
compressive stresses decrease. When A increases to
about 0.327, the tensile stress on the top disappears,
while the maximum tensile stress on the bottom
reduces to —0.12p. At this time, the maximum
compressive stress appearing on the sidewalls is
2.69p. With the continuous rise of the lateral stress
coefficient, it is found that, when A reaches 0.375,
the tensile stress on the floor begins to turn to
compressive stress. At this moment, the maximum
stresses on the two sides of the tunnel are 2.64p,
while that on the roof is 0.15p. After that, the
stresses on the top and bottom of the tunnel grow
with the increasing lateral stress coefficient, while
the compressive stress concentrated on the two
sides declines gradually. With the increase of lateral
stress coefficient to 2, it is found that the stress
concentration factors on the roof, floor and
sidewalls are 5.18, 4.11 and 0.92, respectively.
Moreover, we further calculated that, when 1=3, the
stress concentration factors at the centers of the
roof, floor and sidewall are 8.28, 6.64 and —0.13,
respectively, whereas those are 11.38, 9.17 and
—1.19, respectively, under A=4. To sum up, as the
lateral stress coefficient rises, the stresses on the top
and bottom of the tunnel change from tensile stress
to increasing compressive stress, while the opposite
situation occurs on the side walls. The hoop stress
distribution on the perimeter of the tunnel is
remarkably related to the in-situ stress, particularly
the lateral stress coefficient.

Additionally, the radial and hoop stresses of
any point away from the tunnel boundary can also
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be calculated. Figure 10 shows the stress
distributions at distances of one, three and five
times the polar radius from the tunnel boundary.
Since the tunnel shape has an axis of symmetry (see
Fig. 6), the surrounding stress distribution must be
symmetrical about it.

As shown in Fig. 10, for hoop stress
distribution, the stress concentration factor
decreases with the increase of the distance from the
tunnel boundary. When 4 is 0, the maximum hoop
stress on the top location of the tunnel drops from
0.03p at a distance of one time the polar radius to
0.01p at a distance of three times the polar radius,

s ——7=0.00
—e—=0.25

2.5

Tangential stress/p

90 120 150
Polar angle/(°)

Tangential stress/p

90 120 150 180 210 240
Polar angle/(°)

— —_ ) S}
= W =} W

Tangential stress/p

e
W
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Polar angle/(°)
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while the change on the bottom location is the same.
By contrast, the maximum stress concentration
factor on the sides decreases from 1.23 to 1.02. As
the lateral stress coefficient rises to 1, the
compressive stress on the top turns from 1.26p at
r=2r; to 1.03p at =6r,, whereas that on the bottom
changes from 1.27p at ¥=2r3; to 1.03p at =6r5;. By
comparison, the compressive stress concentration
factor at the centers of sides reduces from 1.26 to
1.03. When the lateral stress coefficient approaches
to 2, the stress evolution law with the increasing
distance from the tunnel boundary is the same. That
is to say, as the distance from the tunnel boundary

) —a—7=0.00
—e— 4=0.25
1.2F —v—2=0.72
& ——2=1.00
2 —e— =125
g o9t A=1.50)
B e e =S a0
.8 M
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Polar angle/(°)
o
8
=
3
<
=1
0 30 60 90 120 150 180 210 240
Polar angle/(°)
2.0

Radial stress/p
S n

o
n

0 .
0 30 60

90 120 150 180 210 240
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Fig. 10 Tangential and radial stress distribution at different distances from tunnel boundary: (a, b) One times polar

radius; (c, d) Three times polar radius; (e, f) Five times polar radius
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grows, the maximum tangential stress on the roof
and floor gradually decreases towards the
horizontally applied stress, while that on the two
sides progressively falls to the vertically acted
stress.

Similarly, the radial stress distribution at the
periphery of the tunnel can also be obtained
utilizing this method. As the distance from the
tunnel boundary increases, it is found that the radial
stress on centers of the roof and bottom changes
approximately to the applied vertical stress (o)),
whereas that on the two sides changes gradually to
the exerted horizontal stress (o,’). For instance,
when A is zero, the maximum radial stress on the
roof increases from 0.47p at r=2r, to 0.93p at r=6r,,
while that on the tunnel side decreases from 0.27p
at r=2r14 to 0.04p at =676, Under the condition that
A = 2, the maximum radial stress on the top and
floor decreases from 1.04p and 0.95p at r=2r| to
1.01p at r=6ry, while that on the side rises from
1.18p at r=2r to 1.90p at =6r6. In summary, the
influence scope of the excavated tunnel on the
stress distribution is about five times the tunnel
dimension.

3.5 Reliability verification of proposed method
To wverify the reliability of the complex
variable method for solving the excavation-induced
stress around the tunnel, a numerical investigation
was further carried out using a finite element
method. As the presented problem belongs to plane
strain problem, the length, width and height of the
model were set to 150, 0.5, and 150 m, respectively,
which are more than ten times the maximum
dimension of the tunnel (see Fig. 11(a)). Thus, the
boundary effect can be neglected. Note that the
dimensions of the tunnel to be excavated in the

150 m

Height

Width

Length

150 m

model were the same as that in Fig. 6. With regard
to the mesh size of the model, it was divided in a
non-uniform manner; that is, the mesh size of the
zone near the tunnel was 0.05 m, while that away
from the tunnel was 5 m. In this work, the body
force was ignored and only the elastic stress state
was considered. Thus, the elastic constitutive model
was used to characterize the relation between stress
and strain. According to the elastic mechanics
theory, the inherent properties of material have no
effect on the elastic stress distribution if the body
force is constant. Consequently, the elastic modulus
was defined to be large enough to shun the plastic
deformation of the model. Besides, the six surfaces
of the model were fixed along their normal
direction.

During the modelling, to record the
excavation-induced stress at different locations
around the tunnel, three stress monitoring lines (4,
B, C) were arranged on the top, bottom and left side
of the tunnel, respectively. As shown in Fig. 11(b),
each line contains 10 monitoring points with a
spacing of 1.3 m. To facilitate calculation and
comparative analysis, only a uniform stress of
20 MPa was applied to the upper and lower surfaces,
ie., 6,=20 MPa and 2=0. In such a case, the
monitored stresses of these monitoring points after
the excavation of the tunnel were compared with
the analytical results obtained by the proposed
method, as shown in Fig. 12. The results indicate
that the two methods show good agreement, and the
average relative error of stress is only 0.29 MPa.
The slight error of the numerical method results
from the large size of the element. Actually, the
monitored stress is owned by the barycenter of the
element in which the monitor point is situated.
Thus, the smaller the element dimension, the closer

RERERRRER

0.5m
— 4

Prertrtrts

Fig. 11 Numerical modelling: (a) Schematic of model size; (b) Location of stress monitoring point
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the centroid of the element is to the monitoring
point. However, this will lead to a great many
elements and nodes, bringing difficulties for the
computer to run. Overall, the proposed method for
solving the analytical stress solution of the
horseshoe-shaped tunnel is effective and reliable.

50 (a) —s— Analytical results (4)
---=-- Numerical results (4)
40 ® —=— Analytical results (B)
\_ Numerical results (B)
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Fig. 12 Comparison of analytical and numerical results

of stress monitoring points: (a) Hoop stress; (b) Radial

stress

4 Discussion on fracture mechanism

Actually, the fracture mechanism can be
revealed according to the stress state in the model
under loads. For the intact model, the stress states
of the upper and lower ends under uniaxial
compression are three-dimensional because of the
end friction effect. As a result, a shear plane is
formed along the major diagonal, and the final
shear failure mode appears. As the confining stress
increases, the splitting tensile cracks are inhibited.
Thus, the failure is shear-dominated. With regard to
the circular opening, the stress components at an
arbitrary point around the opening can be solved
using Kirsch equation, and the hoop stress

distributions under different lateral stress
coefficients on the hole boundary are illustrated in
Fig. 13. Clearly, the tensile stresses occurring on the
top and bottom of the opening lead to the formation
of primary-tensile cracks (see Fig. 13). As the two
stress values are equal, they initiate at the same
time. Likewise, as the distance from the hole
boundary rises, the tensile stress in the roof directly
above the tunnel drops to zero, and then becomes
compressive stress until it is equal to the exerted
horizontal stress. Consequently, the primary-tensile
cracks cease propagation when approaching a
certain length. Next, the critical stress zone is
transferred from the primary-tensile crack tip to the
regions on its both sides. This gives rise to the
occurrence of the secondary-tensile cracks.
Meanwhile, due to the high level of concentrated
compressive stress, the sidewall cracks gradually
appear on the sidewalls. Generally, the secondary-
tensile cracks develop towards the spalling zones
until coalescence appears. When the exerted
axial stress reaches a certain level, the shear cracks
are induced by strong end friction effects and
progressively propagate from the model corner to
the spalling zones along the diagonal. Thus, the
shear failure is formed eventually. With the growing
of the confining stress, the formed tensile stress on
the roof and floor disappears gradually. Instead,
only compressive stress occurs around the opening.
As the biaxial compressive strength is more than
2.5 times that of the confining stresses set in this
study, the lateral stress coefficients are less than 0.5.
Therefore, the maximum compressive stress is
formed on the sidewalls rather than the top or the
bottom. This is why spalling failure is getting worse
on the sidewalls as the confining stress increases.

— 7000
— 77025

, 1=0.50
| — 1075
J=1.00
J=1.25

— J71.50

P J=2.00

Fig. 13 Hoop stress distribution on boundary of circular
opening
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In respect of the horseshoe-shaped opening,
the fracture mechanism is similar to that of the
circular opening. The reason why the primary-
tensile crack on the roof wunder uniaxial
compression initiates earlier than that on the floor is
that the tensile stress concentration factor on the top
location (—1.01) is larger than that on the bottom
location (—0.95). Besides, we found that the stress
concentration factors on the boundary of the
circular opening are lower than those of the
horseshoe-shaped opening at the same lateral stress
coefficient. That is to say, the primary-tensile crack
initiation stress of the circular opening is relatively
large, and the spalling failure or rock burst is less
serious. Therefore, the stability of the circular
tunnel is higher than that of the horseshoe-shaped
tunnel.

5 Case study of headrace tunnel of
Jinping II Hydropower Station

5.1 Project overview

Jinping II Hydropower Station, the 9th largest
hydropower station in the world, possesses a total
installed capacity of 4.8 million kW and an average

annual power generation of about 25 billion kW-h.

It is situated on the Ya-lung River in Liangshan Yi
autonomous Prefecture, Sichuan province, China.
The Ya-lung River flows around Jinping Mountain,
leading to a maximum water level difference of 308
m between the east and west sides. In the
hydropower station, four parallel headrace tunnels
(1#, 2#, 3# and 4#) through the mountain have been
excavated for diverting water. Additionally, three
other tunnels have also been constructed, including
two auxiliary tunnels (A# and B#) for
geological exploration and transportation and one
drainage tunnel (C#) for discharging excess water,
and the details can be found in Ref. [31]. From east
to west, the axial distances of the two adjacent

R=6.5

Ya-lung River

Entrance A
. 2525m | /0

tunnels are 60, 60, 60, 45, 35 and 35 m, respectively.
The average length, slope and orientation of these
tunnels are 16.67 km, 0.365% and NS58°W,
respectively. The tunnels 1#, 3# and C#, with
diameters of 12.4, 12.4 m and 7.2 m, respectively,
are excavated by tunnel boring machine (TBM)
method. By contrast, the tunnels 2# and 4# with the
same horseshoe-shaped cross- section are excavated
by drill & blast method, and the shape and
dimensions are shown in Fig. 14(a). This method
has also been used for the excavation of the two
auxiliary tunnels A# and B#, whose sizes are
designed as 5.5 m (width) x 5.7 m (height) and 6.0
m (width) x 6.25 m (height), respectively.

5.2 Geological conditions

Jinping II Hydropower Station is located on
the slope of the Qinghai—Tibet Plateau to the
Sichuan Basin. The altitude of Jinping Mountain
varies from 4100 to 4500 m. Along the axis of the
tunnel, over 75.8% of the headrace tunnel has a
buried depth of more than 1700 m, and the
maximum value reaches 2525 m [31,32]. As
shown in Fig. 14(b), tunnels pass through various
strata from the entrance to the exit, namely,
Zagunao group marble, Chlorite schist, Zagunao
group marble, sandstone and slate in upper
Triassic, Baishan group marble and Yantang group
marble [33]. More than 80% of the tunnel is
surrounded by hard brittle marble and sandstone,
whose average uniaxial compressive strength and
tensile strength are 95—-105 MPa and 3—6 MPa,
respectively [34]. Literature [35] indicates that a
total of 15 faults were exposed during the tunnel
excavation, and their orientations are mainly NNE,
NNW, NE-NEE and NW-NWW. Note that faults
whose orientations along the NNE direction are
consistent with the main tectonic line and extension
of the Jinping Mountain. Besides, few karst caves
are found in the project area, and the maximum

Ya-lung River

Jinping Mountain

“7+14” rock burst

E=3Marble ] Green schist £=3Slate and sandstone [—]Fault

(b)

Fig. 14 Jinping II Hydropower Station: (a) Dimensions and cross-sectional shape of headrace tunnels 2# and 4#;

(b) Schematic diagram of geologic cross section (modified from Ref. [32])
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water pressure is up to 10 MPa [33,36]. Influenced
by the mountainous topography, various lithology
and complex geological conditions, the in-situ
stress fields of the headrace tunnels are very
complicated. Based on the field measurement using
multiple methods, it is found that the lateral stress
coefficient is 0.8—1.1. Near the eastern and western
ends of the tunnel, the principal stress is dominated
by horizonal tectonic stress (>30 MPa). On the
contrary, the vertical stress caused by gravity is the
maximum principal stress in the middle of the tunnel,
and the maximum value exceeds 70 MPa [37].

5.3 Intense rock burst and explanation

Due to the high in-situ stress, the complicated
geological structure and large-scale sizes of tunnel,
rock disasters, especially the rock burst, occur
frequently and intensely. According to the
statistics [38], 4—8 rock bursts occur every day
during the tunnel excavation. A total of more than
170 rock bursts appeared on either side of the
tunnel, followed by 138 rock bursts on the roof. By
contrast, only few rock bursts took place at the
floor. It is further found that most rock bursts occur
within 40 m away from the working face in 8 days
after the tunnel is excavated.

In this work, the “7-14” rock bursts occurring
at Stake K9+728 m to Stake K9+766 m in the
headrace tunnel 4# (see Fig. 14(b)) during its
excavation was analyzed as an example. As shown
in Fig. 15, after the rock burst, many rock
fragments from the anchored host rock on the left
sidewall of the tunnel were ejected to the right
sidewall. This results in a failure zone with a depth
of 6 m. It is surveyed that this part of the tunnel was
in an intact marble with a thickness of 2300 m, and
no obvious faults were revealed [39]. Clearly, the
vertical stress is the major principal stress, and
thekind of this rock burst can be categorized as
strain type [40]. As can be seen in Fig. 9, when 4 is
between 0.8 and 1.0, a high level of compressive
stress (123.41-136.50 MPa) concentrates on the
two sidewalls of the tunnel, and the maximum
stress concentration factors are larger than that on
the tunnel roof. This causes a large amount of
energy accumulation. When it reaches a certain
level or is disturbed by blasting, a rock burst is
induced immediately. By contrast, the compressive
stress on the tunnel floor is the smallest. Provided
that 2>1, the compressive stress on the top of the

Failure zone
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Fig. 15 Photos of headrace tunnel 4# after rock burst [40]:
(a) Rock burst failure zone; (b) Ejected anchor rod and
rock fragment

tunnel is larger than that on the sidewalls, and rock
burst may appear on the roof of the tunnel. To
conclude, rock burst is a result of sudden release of
energy accumulated inside brittle rocks under high
stress, and it is most likely to occur where the
excavation-induced stress is the greatest. The
failure behavior and location of the tunnel under
high stress coincide exactly with the numerical
study (see Fig. 4).

6 Conclusions

(1) Numerical results show that the fracture
around the horseshoe-shaped tunnel under uniaxial
compression starts from primary-tensile crack,
sidewall crack via secondary-tensile crack to shear
crack. Under biaxial compression, the tensile cracks
are restrained by lateral pressure, and only spalling
and shear cracks appear in the models.

(2) The proposed shrinkage approximation
algorithm for solving the mapping function of the
horseshoe-shaped tunnel is effective, and the
mapping accuracy of the tunnel shape is satisfactory
when the term number of C,, is 8.

(3) As the lateral stress coefficient increases,
tensile stresses occurring on the roof and floor of
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the tunnel decrease to 0 gradually, and then turn to
compressive stresses when A is larger than 0.33
and 0.38, respectively. Conversely, the stress
concentrated on the two sidewalls changes from
compressive stress to tensile stress with the growing
of the lateral stress coefficient. Additionally, as the
distance from the tunnel boundary rises, the
maximum tangential stress on the roof and floor
gradually drops towards ¢.°, while that on the two
sides progressively falls to o,". For radial stress, the
law of change is reversed.

4) The surrounding stress distributions around
the tunnel can well account for the fracture
mechanism. Also, the location of rock burst in the
headrace tunnel 4# of the Jinping II Hydropower
Station is well explained using the analytical stress
solution.
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