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i, KT =0 LB FIRKE S Y Re* (H0), 1
W TR 7 B AL, B FREEAE: HE
HUBLALL, an 432 7 AU S Sl Lo 871
2 Ok REWF T, @ XRDUZO EXAFSUO1I
XANES!?, Raman2221%%, #y 2w 2%, 3
B H AR 78 5 B A 1~2 Fh#s 5 1K
WIS, WA R BT A LS FEA—A
FARPEAT X LUR 9T DG RERH 78 A 1 2400t T 45 SR %)
278 Re™™ 5 H0 BIKAIMG, HR T A REMTHE
AERER, 5 2 BN RIS, R E . K
HHAN B 5. b, SRR A KA G G R
HIEAA A AT RO IR . 12 R K&
MBI RIMLE R B, PUBFEIEEE BEAR
R, FLRRRER B R K R AR B TK
WIG . Re(H0), MTY BT FIK M AL
SR, TR FECAECE G IN, Ko+ 2 (A7
573 [ B ARONE = 7K 3730 n BB, (H20), 5 Re?”
SRR, KoHE o BN, KaF2EH|
PeEHHERAE R, HRCA SR N, mRASE
W ZBUERK S TR, BE—IKR; BEKSD
FECR I AREEIE N, Re i+ & I TE R R — B2
HEZRKWE. NBFRERBEMESTT, HTHE—
KA Z BB AL A R I, SO T
FRBEMRE .. KBRS, 7
FE— BRI AR T8, AlAL Ko o
EAMEFHER, Re¥ (H20), FURTE AR —/KILE .
KA FHEFEA R — AL, Bk Re*™ 5 H,0 7KAK
TG — &2 . HT# LBk
JZFE BT E AR R EAN T 9~12
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PE -
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IKAAT N B L e o PRItk A2 H 2
ERF T4 Lay Ces Pr Fl Nd =M B 7 HIKE 451
VI HIBC AL 2 (Coordination number, f&#K CN) & HAE
AR 257, 38 STk 2 WL S B B A 5 e &
FIRIBE 2R, AT S DA B b 32 1) B 1 58 IR HE A 43

PR H L AR 5 S Yo R 47
1 BB

KH Material studio(MS)#X {-1¥] DMol3 bt
1T B B F KGR BURAL, R SRR BB
(GGA)H' 1] Perdew-Burke-Ernzerh(PBE)%Z #: < Bk 34
A AT WA AR A . (U IER A DFT-D )
TS f&1E. KA DSPP 4% 5, 4 HiF(All electron)
JRF AT, i 7R DNP RIT. %&
FM LR, WE BRI . AT ERS
WHE AN Fine /K, 3277, e AU SR HEIK IR
N 0.54 eV/nm, 2.72X107° eV 1 5X 107 nm, #iH7
145N 0.44 nm.
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Fig. 1 Geometry optimized La*>" (H20).(n=1-12)
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Fig.2 Geometry optimized Ce**(H20).(n=1-12)
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Fig. 3 Geometry optimized Pr**(H20).(n=1-12)
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n=3
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Fig. 4 Geometry optimized Nd**(H20).(n=1-12)

F= 1 Re’(H20)u(n=1~12)+ Re—O P
Table 1  Average bond length(Raver) of Re — O in
Re*(H20), (n=1-12)

Hydration Raver/ A
number La Ce Pr Nd
1 2.258 2.221 2.258 2.221
2 2.327 2.298 2.245 2.232
3 2.378 2.350 2.263 2.271
4 2413 2.379 2.310 2.310
5 2.448 2.406 2.358 2.341
6 2.479 2.439 2.390 2.382
7 2513 2.475 2.434 2418
8 2.557 2.514 2.479 2453
9 2.599 2.556 2.512 2.494
10 2.649 2.612 2.578 2.564
11 2.650 2.639 2.526 2.606
12 2.657 2.627 2.566 2.542

it b, KEVHAKLELRE R ITHEARW R
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I o BRA, (©)o
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Fig. 5 Re—O bond length of Re*"(H20),(n=1-12)
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BA—T R /1. ok, mEHARAEIL, K
i) H:0—O MIKEZN 2.8 A, KD FARGH
O:H—O WK EZ N 1.7 A, VIR L3 71 Re—O
AT WE W, UHEKER L SKST
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22 &R

=Wk £ T 5K T Z A LK G
{D)EIA T
Re**+1nH,0<«>Re¥ (H,0),

R B S ST, 4 ERe(Ee)iE AT
EB:EHydratestReanHzo

N T TR E DRI B HERE , AR A LA
NP, TR T KA YR S a] AR 48 25 A RE
(EaB):

Re*"(H20),+H,0<«—>Re* (H20),41
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VR 3 5K s G ReTH R 4 Rk 2 B
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Table 2 Binding energy Es and Eas of Re**(H20)u(n=1-12)

VUMM T & 5K G MG R A, B
KA FE N TR B . B 4G Koy 7 I E 1
I, Re* 1) Es {HZWHR/DN, 5K5 TG REIE
WRes. LKy THENZ D, LB TE
KRG ML EGREH RKEI/NN La>Ce>Pr>Nd, 5
Z RO LR B AR 1R B S A e )1 — 2

Ko ¥R S B REAE 0.1772~0.2022 eV
(0.0078~0.0089 Ha)Z [A]*%), OH—H,O HIERELI N
0.9088 eV (0.040 Ha)*7\, PUFFE 1 B Eap XS
EHIR TR, IEWH TR LB TESKES
I T2 R B A R e KB . 24 n=1~9 B, Y
FiFs LB T Eas MAEXHE KT OH—H0 [
B, K TFERGSHEETES; 24 il ow,
PUAHE 1 271 Eap AEXHEIFUHHI/NT OH—
HO EERE RIS, RITE AW & A -3 1
53R K RN, X5 UL G K&
H LK 7 W& S T — 2.

2.3 EBEOH

43 5 Fil ESP 5141 Mulliken %5 1 Re* (H20),
o DU <5 0 F A AT L, 45 RISk 3 i
Re Re¥(H0), HITE OIS A2 — Al 1) HeLfr e A%
W RN GRS TAEARA R R AR
MR, BEETAIEIIGIN, L8 INELKG T+
PRI T, bR RATE T D, BRI,

Hydration La Ce Pr Nd
number Eg/eV EasleV Eg/eV Eas/eV Eg/eV Eas/eV Eg/eV Eas/eV
1 —0.123 —0.123 —0.111 —0.111 —0.179 -0.179 -0.127 -0.127
2 —0.208 -0.085 -0.193 -0.082 —0.277 —0.098 -0.255 —0.128
3 -0.279 -0.072 -0.261 -0.067 —0.359 -0.082 —0.335 -0.080
4 —0.346 —0.066 —0.326 -0.065 —0.441 -0.082 ~0.409 -0.074
5 —0.409 —0.064 -0.391 -0.064 —0.506 —0.065 —0.482 -0.073
6 —0.459 —0.050 —0.441 -0.051 —0.580 -0.075 —0.545 —0.063
7 -0.512 —0.052 —0.493 -0.051 —0.629 —0.049 —0.618 -0.074
8 —0.569 —0.057 —0.539 —0.046 —0.684 -0.056 —0.647 -0.029
9 —0.607 —0.038 —0.587 —0.048 —0.726 —0.042 -0.697 -0.050
10 —0.644 -0.037 —0.625 -0.038 —0.765 -0.039 -0.733 -0.036
11 -0.673 -0.028 —0.667 —0.042 —0.809 —0.045 -0.793 ~0.060
12 —0.726 —0.053 —0.708 —0.041 —0.855 —0.046 -0.812 -0.020
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£ 3 Re*(H20)u(n=1~12)"" Re (¥ 1 73R
Table 3 Charge distribution of Re in Re**(H20)4(n=1-12)

Hydration La Ce Pr Nd
number ESP/e Mulliken/e ESP/e Mulliken/e ESP/e Mulliken/e ESP/e Mulliken/e
1 2.656 2.631 2.616 2.573 2414 2.022 2.338 2.273
2 2.499 2.475 2.474 2.424 2.438 2.491 2.187 2.071
3 2.463 2.368 2.481 2.32 2.457 2.354 2.349 2.009
4 2.377 2.275 2.378 2.227 2.051 2.208 2.134 1.959
5 2.474 2.206 2.537 2.157 247 1.920 2.339 1.887
6 2.578 2.148 2.576 2.098 2.484 2.010 2.432 1.895
7 2.550 2.069 2.591 2.025 2471 1.504 2.428 1.877
8 2.502 2.001 2.508 1.845 2.376 1.385 2.344 1.899
9 2.201 1.930 2411 1.892 2.102 1.180 2.332 1.902
10 2.069 1.889 2.351 1.852 2.001 1.111 2.228 1.899
11 2.030 1.870 2.328 1.782 2.208 1.301 2.24 1.822
12 2.168 1.851 2.378 1.810 2.129 1.202 2.368 1.853

ERKEDIIIE RO R o L7 52 52 B R 2/ G
2, WH/NT le, HERBZM L BT 1EKE R
SR ORAE T IR L, HAAr A T42e Fl+3e Z 1A,
Mon NT 10 W, BEE o BN, AR TR
BB KA RIS, MR T
L BB TR e, R ARG 2 K & ik
PR HZ A E -

2.4 HFREEMATLIES T

MR B Lewis AR, A 5 SR
REME, 5K TS TG BRI hd
SRR LE A R0, LT ZEMHNER] T ATk HE
W AT LR A A SR B B (HS AB) JR BE f) — 34y o
P& RRAE 2 B IR RE R I 2= 1A B, B LUMO L
T8, T A AR IR R A R B R AR K R B 1 Y )=
HOMO H 7140421,

JURItALE, FEETF/KEWH LUMO $uE
(Isosurface value=0.03 a.u.) /R~ 7E K 1~4 H . MELH
TKEDH LUMO HUERIAMY a5, B KT
HaEpygm, MmEsTAER LUMO #UEIRE
L “PrBAEAR L. Pl La3*(H0), B, 4 n &
MET 12, 4. 5. 6 F17 LK 9. 104 11 F112
i, LUMO U 7ML . AR A OB B A
MBS PIE, LUMO $UIs 1) o8 B AR R i A e

B, UL A KR R T
TR, U4E 9 MK FIE, WM EE TR
Re—O KR BIRNRAE THUNMOARN, HoJfEH—
KRB KRGk 8455 KT, {H LUMO
B PR, UBIER R R & TR
o SZAXRIAE, BEELSE KGN, oK
EYH) LUMO EIZHTAE R, YKol FE IR TR ,
Ut Lo R KA BOR A, DU 5K
AW LUMO 5 HOMO #UE fE =% 4 Fiw.

5 ¥ i) LUMO B, HOMO #/Ui# R B A 2 DA
SERM RV AIAEE . Rk, ASSCRH LR Hifh
T RERIKE VRS

1) FHKEYHE S LUMO #lEREME Y
HOMO $UiE g A8 1 2 R LK GV B B I .
AE=E1ymo—Enomo

Reid 2Bk, JUIE Bk, TR 1T SRl i iR
BT RSP TG 7 B P A7 B 1Y) DT RAS U BRI

2) fHH/KEYIH LUMO #LiEREEM 5K T
1) HOMO #U18 Ré fE A8 I 2 M XHE R KR KA
R T 7K 53 (R A
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Table 4 Energy calculation results of HOMO orbital and LUMO orbital of Re in Re**(H20)u(n=1-12)

Hydration Enomo/eV Erumo/eV

number La Ce Pr Nd La Ce Pr Nd
1 —11.491 —11.456 —13.418 —11.619 —-10.012 —-10.992 —12.804 —-10.914
2 —10.468 -9.991 —9.896 —10.675 —8.590 —9.591 —9.305 —9.634
3 —9.948 —9.133 —9.148 —10.186 —7.628 —8.592 —8.523 —8.756
4 —9.506 —8.583 —8.673 —9.661 =7.075 —7.988 —8.158 —7.810
5 -9.192 —8.079 -7.992 —8.904 —6.473 —7.526 -7.218 —7.509
6 —8.990 —7.599 —7.622 —8.840 —6.102 -7.110 —6.931 —7.499
7 —8.841 —7.357 —7.252 —8.158 =5.791 —6.863 —6.643 —6.722
8 —8.650 —=7.101 =7.127 —7.888 —5.655 —6.550 —6.370 —6.496
9 —8.500 -7.131 —7.460 —7.746 —5.480 —6.561 —6.721 —6.509
10 -8.313 =7.077 —6.909 —7.906 —5.404 —6.520 —6.149 —6.285
11 —8.066 —7.005 —6.689 =7.723 —5.297 —6.518 —5.944 —6.100
12 —8.102 —6.684 —6.467 —7.629 —5.185 —6.234 —5.894 —6.005

K5 R (H20)u(n=1~12)% Re ] AE FI|AE|H 545 5
Table 5 Calculation results of AE and |AE| of Re in Re*"(H20).(n=1-12)
Hydration AE/eV |AE|/eV

number La Ce Pr Nd La Ce Pr Nd
1 1.479 0.464 0.614 0.705 3.209 4.189 6.001 4.111
2 1.878 0.400 0.591 1.041 1.787 2.788 2.502 2.831
3 2.320 0.541 0.625 1.430 0.825 1.789 1.720 1.953
4 2.431 0.595 0.515 1.851 0.272 1.185 1.355 1.007
5 2.719 0.553 0.774 1.395 0.330 0.723 0.415 0.706
6 2.888 0.489 0.692 1.341 0.701 0.307 0.128 0.696
7 3.050 0.494 0.609 1.436 1.012 0.060 0.160 0.081
8 2.995 0.551 0.757 1.392 1.148 0.253 0.433 0.307
9 3.020 0.570 0.739 1.237 1.323 0.242 0.082 0.294
10 2.909 0.557 0.760 1.621 1.399 0.283 0.654 0.518
11 2.769 0.487 0.745 1.623 1.506 0.285 0.859 0.703
12 2917 0.450 0.573 1.624 1.618 0.569 0.909 0.798

B 6 Fian N Re¥(H0)u(n=1~12) " Fi + & 1
AE (7810, B 6 nlkn, DURHRE &1 3 56
FEHKFI/NA La>Nd>Pr>Ce. Mitt&EELER
TR R A : BANZ 6s BT RAMZ 5d T
BIEEE =2 4t T WEREMSEHE T, W
T RMEINE BT HE R AR, BRI S
FHEAI N: La’":[Xe]; Ce*":[Xel4f'; Pri*:[Xeldf’:
Nd**:[Xel4f. BEHF, La**fIEEE HOMO #iE A 5p

HiE, Ce*. Pr'. N&*'HJHit HOMO #UiEN 4f
HUE; La’*. Ce'HIEEE LUMO BN 5d #liE,

Prt. N HE LUMO BN 6s $iE. ik
Pauling 1Ll AE 2% KA Cotton JE T #1115 At 2% I AT 41,
i T La’ i HOMO F1 LUMO $LiB #H T 95> REZL
M, AE K, WE i E; Ce*'\ Pty Nd** ) HOMO
M LUMO #UE FITE— AR 2N, AE AR ZERE

I~He
FE LA HR

I=A
52
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Fig. 6 Changes of AE for Re ion in Re*(H20)x(n=1-12))
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Fig.7 Changes of |AE| for Re ion in Re**(H20).(n=1-12)
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DFT study on light rare earth ion hydrate
Re’*(H20). (n=1-12, Re=La, Ce, Pr, Nd)

OU Jia-cai®?, ZHANG Tian-xi"*, HUANG Li-jin-hong*, WU Bo-zeng’, HUANG Wan-fu'

(1. School of Resource and Environmental Engineering,

Jiangxi University of Science and Technology, Ganzhou 341000, China;
2. Guangxi Mining Co., Ltd., China Minmetals Rare Earth Group Co., Ltd.,
Nanning 530022, China;
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4. School of Architecture and Design,
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Abstract: DMol3 module of Material Studio was used to study the hydrate Re**(H20).(n=1-12) of four kinds of
light rare earth ion coordination water quantities of La, Ce, Pr and Nd. The geometric structure, binding energy,
frontier molecular orbital, charge and vibration of the geometrically optimized configuration were analyzed. The
results show that the minimum hydration number of the first hydration layer of La**, Ce**, Pr**and Nd** are 4, 6, 7
and 7, respectively, which can contain up to 10 water molecules. The order of average Re—O bond length is
La>Ce>Pr>Nd, the average Re—O bond length of Re**(H20)10 is about 2.6 A, and the hydration layer width of
light rare earth ionic hydrate is about 3.22—3.59 A. The hydration reaction of light rare earth ions is exothermic.
When the coordination number of water molecules is the same, the order of binding energy is La>Ce>Pr>Nd.
Charge analysis results show that rare earth ions gain electrons in the hydration reaction. When the first hydration
layer is filled, the properties of Re**(H20). gradually become stable, and the charge of Re ions is around 2e. The
results of frontier molecular orbital analysis show that, different from the change of ion radius, the hardness
sequence of the four rare earth ions is La>Nd>Pr>Ce. The simulated infrared spectra of La*"(H20), reveal that,
with the increase of the number of water molecules, the Vsym and Vasym peaks show blue shift. When # is greater
than 10, the Vsym and Vasym peaks show no blue shift, indicating that the water molecules outside the first hydration
layer will not react with La ions.
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