EARVIE Y I FESEERFIR

Volume 32 Number 1 The Chinese Journal of Nonferrous Metals

DOI: 10.11817/j.ysxb.1004.0609.2021-37881

W BifigE Ti REE-€REa MR
BRSNS NFITA

oz e!

2022 £ 1 H
January 2021

= SNDGEE SENE A

(1. FRRE BRGESERE SRS, KD 410083;
2. FHWH KT MERZETER, & 999077)

gaasl,

& F: TiZASE-SREAMEEAT RIFH SRS AR . RABR AT 2HOR(SEM). X §2k
IS (XRD) MR 22 BRI 43 25 308 1 & A% K AF(SHPB). MATALAB #4550 W H ARBF 5T T W kL
WiE Ti & B-SRE M ENT-W)TEHEF SIS T AT . EREH: Ti-W E5MEEA B-Ti M
A B-W AR XA S R 454 24 W GRS R KT 25%(BE R B0, H4Uh T Ha/MasE W M. Ti-W
A PPRIE HE RS T 1) 5t 2 et IR oo R R B 568 58 P 1567 MIPa(Ti-30W) A 1726 MPa(Ti-30W); 3h# N
JiE IR B J 5 A0 R 9 & AT ik 2148 MPa(Ti-15W) A1 2908 MPa(Ti-30W). Hlitt, Ti-W & -5 FRLEA B 51 N AR
ZERANAR . LA T Gt (1) Johnson-Cook(JC) A #4) 15 Y Al Back-Propagation(BP) #4845t B X Ti-W &5
BIIEAT NIE Y, R BP #1245 58 T AF bR Ti-W & S MREER SRS R4 0.
XA Ti-W &E-SRE G MEL: RIAREZE; Johnson-Cook(JO) AR ; Back-Propagation(BP)## 2
] & fi 7Y

XEHRS: 1004-0609(2022)-01-0066-10

FESES: TG146.2 NHEAFERS: A

SIscg: 2 W, A &, AL B, & W RTRIY IR Ti SRR S M EINERRS I3 71 AT R0
HP A 4 4R, 2022, 32(1): 66-75. DOI: 10.11817/j.ysxb.1004.0609.2021-37881

LI Mou, ZHOU Rui, DU Meng, et al. Quasi-static and dynamic behavior of W particle reinforced Ti matrix
metal-metal composite[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 66-75. DOI:
10.11817/j.ysxb.1004.0609.2021-37881

ER-CREEMERIRR 2 a8 sl el
MGG &R R SR, 2R RE T
AFeEs G ES B NERR R, XEFR &R
ARAMEEYERE, BA RN AR, Ti
o Ti A B BT A 3 B S ik A 22 R
m, REEMER-ERESMEEEAPC, £ Ti
HEsIn WOBURL IS TE O Ti-W =& AR R & R 1T
FIPERE, W RORLA 51N TT LASR ey B2 5 b4 R A iR
ANBERE, Jf HAERIEBURIR AN, HT, KT Ti-W
S E MBI R ZAR h R R S TR RE . FESD
IR, MR TEREESR BN %], AL

EEWH: EEXAARRAESEIDE (51625404)
UiS BEA: 2020-11-24; 1&iTHHA: 2021-07-14

il thy B A R0,

MEHR SIS AR SR 7 FRL I FAZ B 7]
NS, NASH ARG Z F RIS &R . R HRIE)
AL JC AR, 2R AR, W]
LB B I B F - AR I 2ok 3k A5 . (AR, JC A
AR R L FH It 2 UK IR 22, O T 4R
R PR I, 75 AR SRR R AR PR AT 1B
IEMSIO N AR 28 75 — M B A A R A
RFIHIT % R TTEA T EMM IR A SR L 8 )
A, ATRECA0EE, stk — 1R
W H AL MR, R TR 2 546

WBIEEE: x1 vk, #d%, L, HiE: 0731-88836939; E-mail: yonliu@csu.edu.cn



FREEIH Z W & WOBRE Ti RS R-SRE A MBRERSMEE 12T 67

BN AR Rl 718,

AR SR TRCH 5 1 1 e a4l AR B ARGE 1 T VR
H& T Ti-W &R-eRE SR W HETHERR S
B KRR VERER K, IR R JC AR
TURI BP #2508, AT SR RMEHERR S B
T ITHAT N

1 S

1.1 MR

Ti-xW(x=15, 20, 25, 30, EE/R4, %) E A K
DL Ti JCERCRLE <45 pm)Fl W T 2R ChiE <2.4
um) MR B ARTE V EREWL VRS 6 h, FF AR
SAERNRYRR. MG, IRAM A B RS T
RS, WS A HA LABOX-6020Khv.
WRAEIR L . BRGE  J AR IS (8] 3 328 1200 °C.
30 MPa 1 5 min. )5, ¥R EHAFERITOE
P, ORI IR B2 A ORI IS ] 43 70 1000 “CHI 80
min, 5 BT RS AT R LN 70%.
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R A 45 14 23 HT K FH I % & 2 Rigaku
D/MAX~-2250 B! X S ERATHAC o MR RO 2R 5
HTR B & R L &% A RE B HUN X 92 Al
(EDX)¥) FEI Quanta 250 FEG 394 B 7 B 15s -

WEFR S B4R E6/E Instron 8802 JJ REATEAL:
HLEBEAT, RARHER N 4X 1073 57!, KH d 6 mm X9
mm P EATERE . BSR40 2 o 85 U 1 4
RRIEAT BT, NAREZN 1654~3521 s '(RJJK
T 80%I KB I I N AR T A), KH d 5 mmX
5 mm MBEATEERE . A R I E s AR T
X o B A8 50 B 7 i v] 225 VR 3 i I T
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2 SSWER

F 1 PR Ti-W A MR B IR % AN 52 fR
. HT T W R EEY, S48 MERSEER
WERT R G5 H R R % .
2 1 Al A0, Ti-W EEME 582808, AR LA

R 1 Ti-W EEPOR B 5 AN SR

Table 1 Theoretical density and real density of Ti-W

composites
Composite Theoreticaljimit)’/ Real derissity/
(gem™) (grem)

Ti-15W 6.52 6.55
Ti-20W 7.21 730
Ti-25W 7.91 7.94
Ti-30W 8.61 8.63

2 Without alloying.
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WAL, %2 B B 20 & SRSy . A
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Fig. 1 XRD patterns of Ti-W composites
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- W-riched phase

2 Ti-W EEMEH RO S5
Fig. 2 Microstructures of Ti-W composites: (a), (c) Ti-30W;
(b) Ti-20W

R2 H200) A XA R
Table 2 Chemical compositions of different zones shown
in Fig. 2(b)

Mass fraction/%
Zone
Ti W
59.92 40.08
32 96.8

G AR TE HEFR AR T R 1 i I 5 B R0 4 28 14
I3 51N 1424 MPa F135.4% . 24 W[5 BN % 20%
I, AR IRGERE LA, YRS R . H
W SRR, AR R R R,
B AliA 1567 MPa(Ti-30W), 3 H ¥ PEAR b 45
N IXESCER[THRGE SRR A, BD W ST
AT A5 A RHE A8 & VEBR R AR /NI 0 B3 5
RFE . BEAE BRI N, YRR Ti-W 4
JE—4 J8 S A MR JeE I o B AN RN PR o P A o
Rnekass, (HJERGEER ISR, L
RIEREHT TR o, RN & 2 12
Ti-15W, T3k 50.8%; A PR 55 & 38 i 2 1 R
Ti-30W, H[iA 68.5%. [FIRS, AHXTTHEFRASZIE,
MRMEZNZS AR T BEPE R B R %

4 7R Ti-15W B G MEHERAZH 2K
0.004 s A1 1934 s BT CIES . Ti-15W EA
BHE P i S AR 3 3R (1 7 T8 3038 6 & B ER R )
(LI 4(c))BLTERN & (WL 4(6) LL T FRAEFE o
FHETT WL, S AT IR 2035 D B 1) W 2 R At 34
RGBS . 5 RASE A 0.004 57 1T
TESARLL, EAMEHERNAZE 2 1934 7 (T
TS0 2 B B/ (R A BRO% 90 53 AN EE 2 i R K TR )
5, [FINE, W RS SE R AR AT, AT
P RKEK. ENAREZ N 2657 s B, Ti-15W &
AARRAEE R AR T RERE . X 3B RO R A T
I AL R B IS B INER, ST MBI A
N B SR R iy, T CABI LY X,
2 AR R0

3 Si5STte

3.1 EffERA

Ti-W E&MELRAE Ti KAE W X 4181 57
JREER, & W XAIE Ti X¥N g4, HE2E W
XM Ti TREE T X W SEES . ZMHLIE
BRI FBEFG R : W ERTE Ti SRy #osEx
AT R FAE W AR TR AR ZE &l T Ti 24
HCP Z519%%72 5 BCC 45, JRFIRIBRIG R, T
W RFIPHY; FE, WHRT Ti R R E
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Fig.3 True compression stress—strain curves of Ti-W composite at different strain rates: (a) Ti-15W; (b) Ti-20W; (c) Ti-25W;

(d) Ti-30W
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Fig. 4 Compression fracture morphologies of Ti-15W composite : (a)—(c) 0.004 s7!; (d)—(f) 1934 s™*
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e, ATRERE WA E BT .

3.2 JIFMEEE

Ti-W S &M B BA L5 SR, J5
T 1) Ti-W EEMEEEEE S, FLRERAIC. £
FUEM B, MOEHALBRE R, )RR R
IAVE . BT FLEOE TR R gl W Fnd
PEMPRN Al Ti)Y A A2, A RAE AR AN .
TEREPER RL, FLBR S SRR ZL I N S, N
MR IR, (A MORHE BRI RL ) T
2 EBEYEM B, FLBRFEZLR IS T iR
AR, AR IEM R A, TS
MR . 2) F77E 2 Frss b ALHl I 76 Ti-15W
A Ti-20W ZEEMEH, MRS AT RN
ST AH SR, A AR B AL
WRLERT (AR, SR AEH AR TG B 4H /N ZART DLOREE T
K, I HAE G SR HAEEE A R AR R.
M 2(b) Rl (c) Al LA H, & Ti X0 R RS 2058
40 um, A EREIGH S EAGFITER . & Ti X W JEF 1Y
]V ] S 2 AR W AR, AT AR R LR . R[N )
B W XFRRN N 3 pm, B A A R
tbo E Ti-25W Al Ti-30W 84 KL 5 HLHIBR 7 5
W=F, A/NE W AR AR 2,

Ti-W S S PR AT W I (0 5 A8 T A 5 AL RO o
I H Al AR T AR U m RE B X —AF
A1, Het S ] s

20
KA o Al oy 53R & Al &, MR R B PR 53
[E. Bk, Ino-Iné RARKMFZRL T m E. 1E
Ino-Iné RRLE, WK 5 Frox. AT, Ti-W &
AR B — N IER m A8, EDAPR AR R 5 B B
N R B AN . AR ZE a4 AR F ) iR PR E
W R N AR R R R R VBOR, A 2 AT
BRI, o g520, 22 @ P o IR = AR 1
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Fig. 5 Relationship between Ino and Ing of Ti-W

composites
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F£3 Ti-W ESHE IC HEIS

Table 3 Parameters for JC model of Ti-W composites

NSAFEBRNRZE, JREWF: 1) Ti-W Z&5+
BHRRLAZ N 7T BE o B N AR AR AN B, T2 B
VLA IS NS . 2) Ti-W R A
o) A R A UM AR 70 2% R B0 /E = IR T gk
i1, Bk, BXQBEWT:

o=(A+Be+ 32,92)[c1 +C, ij (3)
&y

X Bl Bas C1 M G YRRV E S, @ XA

[ I A8 3 R (1 . 7 — 7 A Y 28 0L 5 15 BB L S 4L

W 3 fin. KEBIMIEIE JC B 5 S Bt

ITEE:, Wil 6 FiR. 1BIEM JC BALLE ShAS AR

Sample & A B B> G G
Ti-15W 1934 1769 23049 —306948 0.7263 0.277
Ti-20W 2080 1507 23346 —239551 0.7346 0.271
Ti-25W 1697 1432 25201 —252241 0.8015 0.221
Ti-30W 2032 1821 8468 —53800 0.7919 0.288
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Fig. 6 Comparison between experimental flow stresses(line) and their corresponding flow behaviors by using modified JC

plastic model(point) for Ti-W composites at different strain rates: (a) Ti-15W; (b) Ti-20W; (c) Ti-25W; (d) Ti-30W
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Fig. 7 Comparison between experimental flow stresses(line) and their corresponding flow behaviors by using BP neural
network (point) for Ti-W composites at different strain rates: (a) Ti-15W; (b) Ti-20W; (c) Ti-25W; (d) Ti-30W
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Quasi-static and dynamic behavior of
W particle reinforced Ti matrix metal-metal composite

LI Mou', ZHOU Rui"2, DU Meng!, CAO Yuan-kui', LIU Bin!, LIU Yong'

(1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
2. Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China)

Abstract: Ti matrix metal-metal composites exhibit good comprehensive properties such as strength and plasticity.
The quasi-static and dynamic behavior of W particle reinforced Ti matrix metal-metal composites(Ti-W) were
investigated by scanning electron microscopy(SEM), X-ray diffractometry (XRD), material mechanical properties
test, split Hopkinson pressure bar (SHPB) and MATALAB software. The results show that Ti-W composites exhibit
a dual phase heterostructure composed of 5-Ti and S-W. When the content of element W in the composite is greater
than 25% (mole fraction), fine W-rich phase is precipitated in the tissue. The maximum yield strength and ultimate
strength of Ti-W composites can reach 1567 MPa (Ti-30W) and 1726 MPa (Ti-30W) under quasi-static condition.
The maximum yield strength and ultimate strength can reach 2148 MPa (Ti-15W) and 2908 MPa (Ti-30W) under
dynamic condition. Therefore, Ti-W composites exhibit obvious strain strengthening effect. By comparing the
applicability of the modified Johnson-Cook (JC) constitutive model and Back-Propagation (BP) neural network
model to the mechanical behavior of Ti-W composites, it is found that BP neural network can better describe the
quasi-static and dynamic behavior of Ti-W composite.

Key words: Ti-W metal-metal composite; strain rate strengthening; Johnson-Cook (JC) constitutive model;

Back-Propagation (BP) neural network model
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