



Available online at [www.sciencedirect.com](http://www.sciencedirect.com)



ScienceDirect

Trans. Nonferrous Met. Soc. China 32(2022) 364–376

Transactions of  
Nonferrous Metals  
Society of China

[www.tnmsc.cn](http://www.tnmsc.cn)



## Copper and arsenic substance flow analysis of pyrometallurgical process for copper production

Xue-yi GUO<sup>\*</sup>, Yuan-lin CHEN<sup>\*</sup>, Qin-meng WANG, Song-song WANG, Qing-hua TIAN

School of Metallurgy and Environment, Central South University, Changsha 410083, China

Received 27 November 2020; accepted 30 June 2021

**Abstract:** The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method. The mass balance accounts and substance flow charts of copper and arsenic were established, indicators including direct recovery, waste recycle ratio, and resource efficiency were used to evaluate the metabolism efficiency of the system. The results showed that, the resource efficiency of copper was 97.58%, the direct recovery of copper in smelting, converting, and refining processes was 91.96%, 97.13% and 99.47%, respectively. Meanwhile, for producing 1 t of copper, 10 kg of arsenic was carried into the system, with the generation of 1.07 kg of arsenic in flotation tailing, 8.50 kg of arsenic in arsenic waste residue, and 0.05 kg of arsenic in waste water. The distribution and transformation behaviors of arsenic in the smelting, converting, and refining processes were also analyzed, and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.

**Key words:** copper smelting; substance flow analysis; copper; arsenic; distribution behavior

### 1 Introduction

Copper industry is a crucial industry in the global economy as copper is widely used in many fields and it is irreplaceable in some industries [1]. Currently, copper is mainly extracted from sulfide minerals and pyrometallurgical process is the most dominant technology for copper production [2–4]. However, the pyrometallurgical process for copper production is facing the challenge of pollution control, as copper resources become more and more complex. For example, arsenic commonly occurs in copper concentrates, and the emission of arsenic into atmosphere during the pyrometallurgical production causes a serious environmental issue [5,6]. At present, many studies about improving production efficiency or reducing pollutants discharge have been conducted, but few

of them have focused on the metabolism of copper or other detrimental elements flow in production process. Substance metabolism affects both energy and resource consumption of a factory, taking a deep insight into the metabolism of copper and other key elements is the foundation for process improvement.

Substance flow analysis (SFA) is an analytical tool that could be applied to investigating the metabolism of a specific substance flow in a given system and providing insight into the effects of the substance metabolism on economy and environment [7,8]. In the past decades, SFA has experienced a growing tendency in many fields [9]. Specially, it is extensively used to analyze the stock and flows of metals (lead, zinc, copper, etc) and other substances in local region [10], country [11–14], or global level [15,16]. Moreover, SFA was exploited as a supported tool in mineral

**Corresponding author:** Qin-meng WANG, Tel: +86-731-88876839, E-mail: [qmwang@csu.edu.cn](mailto:qmwang@csu.edu.cn)

<sup>\*</sup>Xue-yi GUO and Yuan-lin CHEN contributed equally to this work and should be considered co-first authors

DOI: 10.1016/S1003-6326(22)65801-1

1003-6326/© 2022 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science Press

resources management [17,18], industry chain evaluation [19], waste management [20], environmental risk assessment and pollution control during industrial production [21,22]. However, most previous studies that analyzed a specified substance flow just concentrated on the stock and potential waste generation in a national or regional scope [10–16].

Applying SFA to trace the substances quantities and migration in a production process could determine the metabolism efficiency of the process and reveal the pathways through which pollutants are generated, which is beneficial to the resource management and pollution control of a factory. YOSHIDA et al [23] studied the fate of total organic carbon, 32 elements and 4 groups of organic pollutants in a conventional wastewater treatment plant through SFA, and then an assessment on the treatment efficiency and potential environmental impact of the plant was given out. BAI et al [8] applied SFA to calculating lead substance balance in a lead smelting process and evaluating the metabolism efficiency of the system, through which some recommendations on improving emission control and pollution prevention for the smelting factory were also proposed. WANG et al [24] emphasized copper stocks and flows variation in production stage in the USA from 1974 to 2012, which was a meaningful reference for copper production industry of newly industrialized countries.

Most previous studies on copper metabolism were conducted at the state level, focusing mainly on the manufacturing and consumption stages, and there is rare report of SFA on the metallurgical processes of copper [25–28]. Especially, as an important associated element in copper concentrate, arsenic receives little attention in industrial metabolism analysis [29]. SFA of copper and arsenic in copper metallurgical process helps to find the measures for improving the utilization efficiency of copper concentrate and reveal the generation of arsenic-containing contaminant flows. In this study, SFA was used as an analytical tool to study the metabolism of a pyrometallurgical process for copper production. The mass balance accounts and substance flow charts of copper and arsenic in the production system were established. The metabolism efficiency of the system was evaluated, and the distribution and transformation behaviors of

arsenic were analyzed. This study focused on the element metabolism efficiency with a microcosmic perspective, providing a reference for the process improvement.

## 2 Methodology

Compared to applying SFA to a large system with the scope of global or regional scale, applying SFA to a production process is more microcosmic and more specific. The SFA model of a production process generally includes the substance flow of a single process and the whole production system composed of several single processes [8].

### 2.1 Definition of substance flows in single process

If a single process in the production system is defined as process  $j$ , the substance flows input to and output from process  $j$  include the following stages.

- (1) Input raw material flow,  $A_j$ .
- (2) Input upstream product substance flow,  $P_{m,j}$ .
- (3) Recycle substance flow from downstream process  $i$ ,  $R_{i,j}$ . The substance flow which is recycled to upstream process  $k$  from process  $j$  is called  $R_{j,k}$ .
- (4) Stock substance flow,  $S_j$ . This kind of product is temporarily stocked in the warehouse and will be put into the production process when needed.
- (5) Emission substance flow,  $E_j$ . This flow includes the by-products and pollutants which are discharged outside of the objective system from process  $j$ .
- (6) Output product substance flow,  $P_j$ . The substance flow which is the by-product of process  $j$  and is transported to process  $k$  for further treating is called  $P_{j,k}$ .

According to the conservation of mass, for the single process  $j$ , it can be expressed as

$$A_j + P_{m,j} + R_{i,j} = P_j + P_{j,k} + R_{j,k} + S_j + E_j \quad (1)$$

### 2.2 Substance flows of whole system

The combination of all the single processes makes up the whole system, and the substance flows of the whole system are the sums of corresponding flows in all single processes, which are described as follows.

- (1) Input raw material flow  $A$

$$A = \sum_{j=1}^m A_j \quad (2)$$

(2) Recycle substance flow  $R$

$$R = \sum_{j=1}^m \sum_{i=1}^m R_{i,j} \quad (3)$$

(3) Stock substance flow  $S$

$$S = \sum_{j=1}^m S_j \quad (4)$$

(4) Emission substance flow  $E$

$$E = \sum_{j=1}^m E_j \quad (5)$$

(5) Output product substance flow  $P$

$$P = \sum_{j=1}^m P_j \quad (6)$$

### 2.3 Mass balance calculation

To analyze the substance flow of a specific element, two parts of data are required. One part is the flow quantity  $M_j$ , which is the amount of each material that contains the objective element, and this part of data is collected from the daily production reports. The other part is the content  $C_j$  of an objective element in each material, and it is obtained by sampling and analyzing for each material. Then, the flow quantity of the objective element is calculated by Eq. (7):

$$m_j = M_j \times C_j \quad (7)$$

where  $m_j$  is the quantity of the objective element in the substance flow  $j$ .

In this study, the mass balance calculation of all single processes and the whole system is based on 1 t copper output from the production system, the flow ratio of objective element in each substance is expressed as  $f_j$ :

$$f_j = m_j / m_m \quad (8)$$

where  $m_m$  is the quantity of the objective element in the final product output from the production system.

### 2.4 Evaluation indicators of SFA

In order to evaluate the production efficiency of a process and its influence on environment, three indicators are proposed in this study as follows.

(1) Direct recovery of the primary single processes,  $D$ , the proportion of objective element in

qualified products to the total output flows of a single process, %. For a single process  $j$ ,  $D_j$  is calculated by Eq. (9):

$$D_j = P_j / (P_j + S_j + R_{j,k} + P_{j,k} + E_j) \times 100\% \quad (9)$$

A high direct recovery of a process means low resource consumption for per ton of qualified product from the process.

(2) Waste recycle ratio of the process,  $\alpha$ , the proportion of recycle substance flow in all the substance flows which are not included in the final product, %:

$$\alpha = R / (S + R + E) \times 100\% \quad (10)$$

Increasing the waste recycle ratio helps to reduce the environmental load caused by discharging of rejected substance flows and to improve resource efficiency.

(3) Resource efficiency,  $\varepsilon$ , the proportion of objective element in final product to the total input flows, including both natural and secondary resources, %:

$$\varepsilon = P / A = (A - S - E) / A \times 100\% \quad (11)$$

### 3 System boundary description and data collecting

In this study, a pyrometallurgical process of copper production, including the primary processes of smelting, converting, refining, and the assistant processes for slags, flue dust, and tail gas treatment, is chosen as system boundary. The process is exploited by a copper production enterprise in Shandong Province, China, which produces copper of  $3 \times 10^5$  t/a. And this kind of process is with great development potential. The simplified flowsheet of the objective process is shown in Fig. 1.

The oxygen-enriched smelting is conducted in a bottom blown furnace, in which the oxidation reactions occur. Copper concentrate with a grade of 20%–25% and some recycled products are fed into the bottom blown furnace along with fuel and flux. Copper matte with a grade of 65%–75% and some stock matte as a by-product in reserve are produced from smelting. The copper matte is converted into crude copper with a grade of 98.5%–99% by converting in a PS converter, and some waste copper is also put into the converting process. The crude copper is upgraded to about 99.5% through refining to meet the impurity content standard of subsequent electrolysis process. During the

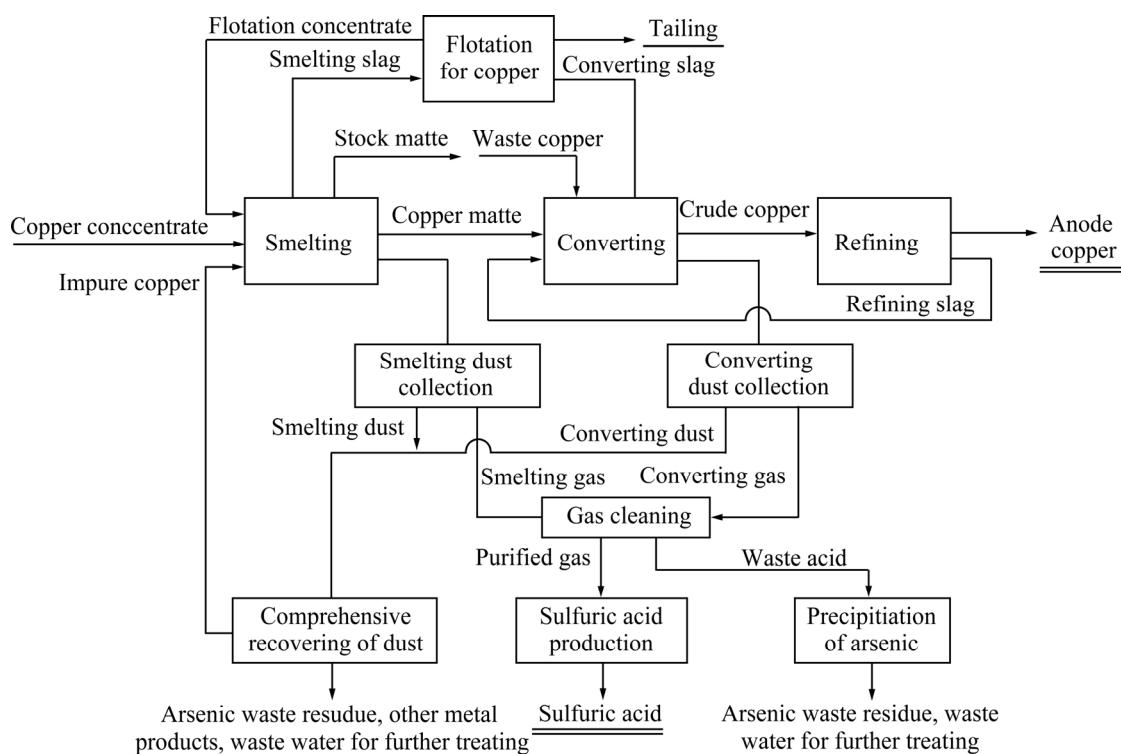



Fig. 1 Simplified flowsheet of pyrometallurgical process for copper production

production process, some slags and flue dust are also generated. The smelting slag and converting slag are cooled slowly and then transported to a flotation system for recovering residual copper. Then, the flotation concentrate is recycled to smelting process, and the refining slag is recycled to converting process. For the purposes of reducing arsenic accumulation and maximizing economic profit, the flue dust from smelting and converting is gathered to remove arsenic and recover copper after separating from tail gas, and the impure copper product from dust treatment is recycled to smelting process. The tail gas from smelting and converting, which contains a large amount of sulfur dioxide, is gathered for sulfuric acid production after cleaning. Arsenic precipitation is carried out for the waste acid produced from the gas cleaning process. The arsenic waste and waste water generated from flue dust and tail gas treating systems are considered as emission substance flows and then discharged outside the production system for further treatment. The by-product sulfuric acid is also considered as emission substance flow.

The quantities of input and output material flows were measured for the time scale of 30 d, and the data were collected from the production reports of objective plant. In order to determine the copper

and arsenic contents in each material flow, all the flows were sampled and analyzed each production day. The sampling period was 30 d corresponding to the production reports, and the copper and arsenic contents of samples were averaged for mass balance calculation.

Some solid samples were dried at 50 °C in a vacuum oven for 12 h, and then characterized through X-ray diffraction (XRD, TTR III, with Cu K $\alpha$  radiation, Rigaku, Japan) for phase composition analysis by slow scanning, at the 2 $\theta$  range from 10° to 80°, a step size of 0.02° and a scanning speed of 2 (°)/min.

## 4 Results and discussion

### 4.1 Substance flow analysis of copper

#### 4.1.1 Mass balance calculation

Based on the production data, the mass balance account of copper in all single processes of the system was built upon 1 t of copper output from the system. The flow ratio of copper in each substance flow is shown in Table 1.

#### 4.1.2 Substance flow chart of copper

Figure 2 shows the substance flow chart of copper. There are 26 strands of substance flows within the whole system, and each of them has been

**Table 1** Input and output flow ratios of copper in each substance flow of production system

| No. | Process unit                     | Input                                 |                   | Output                                |                   |
|-----|----------------------------------|---------------------------------------|-------------------|---------------------------------------|-------------------|
|     |                                  | Substance flow                        | Flow ratio, $f_i$ | Substance flow                        | Flow ratio, $f_j$ |
| 1   | Smelting                         | Copper concentrate ( $A_1$ )          | 1.0201            | Copper matte ( $P_1$ )                | 1.0253            |
|     |                                  | Flotation concentrate ( $R_{3,1}$ )   | 0.0833            | Stock matte ( $S_1$ )                 | 0.0172            |
|     |                                  | Impure copper ( $R_{6,1}$ )           | 0.0116            | Smelting slag ( $P_{1,3}$ )           | 0.0657            |
|     |                                  |                                       |                   | Smelting dust and gas ( $P_{1,4}$ )   | 0.0068            |
| 2   | Converting                       | Total input                           | 1.115             | Total output                          | 1.115             |
|     |                                  | Copper matte ( $P_1$ )                | 1.0253            | Crude copper ( $P_2$ )                | 1.0053            |
|     |                                  | Waste copper ( $A_2$ )                | 0.0047            | Converting slag ( $P_{2,3}$ )         | 0.025             |
|     |                                  | Refining slag ( $R_{10,2}$ )          | 0.0053            | Converting dust and gas ( $P_{2,5}$ ) | 0.005             |
|     |                                  | Total input                           | 1.0353            | Total output                          | 1.0353            |
| 3   | Flotation system                 | Smelting slag ( $P_{1,3}$ )           | 0.0657            | Flotation concentrate ( $R_{3,1}$ )   | 0.0833            |
|     |                                  | Converting slag ( $P_{2,3}$ )         | 0.025             | Tailing ( $E_3$ )                     | 0.0074            |
|     |                                  | Total input                           | 0.0907            | Total output                          | 0.0907            |
| 4   | Smelting dust collection         | Smelting dust and gas ( $P_{1,4}$ )   | 0.0068            | Smelting dust ( $P_{4,6}$ )           | 0.0068            |
|     |                                  |                                       |                   | Smelting gas ( $P_{4,7}$ )            | 0                 |
|     |                                  | Total input                           | 0.0068            | Total output                          | 0.0068            |
| 5   | Converting dust collection       | Converting dust and gas ( $P_{2,5}$ ) | 0.005             | Converting dust ( $P_{5,6}$ )         | 0.005             |
|     |                                  |                                       |                   | Converting gas ( $P_{5,7}$ )          | 0                 |
|     |                                  | Total input                           | 0.005             | Total output                          | 0.005             |
| 6   | Comprehensive Recovering of dust | Smelting dust ( $P_{4,6}$ )           | 0.0068            | Impure copper ( $R_{6,1}$ )           | 0.0116            |
|     |                                  | Converting dust ( $P_{5,6}$ )         | 0.005             | Other metal products ( $E_{6-1}$ )    | 0                 |
|     |                                  |                                       |                   | Arsenic waste residue ( $E_{6-2}$ )   | 0                 |
|     |                                  |                                       |                   | Waste water ( $E_{6-3}$ )             | 0.0002            |
|     |                                  | Total input                           | 0.0118            | Total output                          | 0.0118            |
| 7   | Gas cleaning                     | Smelting gas ( $P_{4,7}$ )            | 0                 | Purified gas ( $P_{7,8}$ )            | 0                 |
|     |                                  | Converting gas ( $P_{5,7}$ )          | 0                 | Waste acid ( $P_{7,9}$ )              | 0                 |
|     |                                  | Total input                           | 0                 | Total output                          | 0                 |
| 8   | Sulfuric acid production         | Purified gas ( $P_{7,8}$ )            | 0                 | Sulfuric acid ( $E_8$ )               | 0                 |
|     |                                  | Total input                           | 0                 | Total output                          | 0                 |
| 9   | Precipitation of arsenic         | Waste acid ( $P_{7,9}$ )              | 0                 | Arsenic waste residue ( $E_{9-1}$ )   | 0                 |
|     |                                  |                                       |                   | Waste water ( $E_{9-2}$ )             | 0                 |
|     |                                  | Total input                           | 0                 | Total output                          | 0                 |
| 10  | Refining                         | Crude copper ( $P_2$ )                | 1.0053            | Anode copper ( $P_{10}$ )             | 1                 |
|     |                                  |                                       |                   | Refining slag ( $R_{10,2}$ )          | 0.0053            |
|     |                                  | Total input                           | 1.0053            | Total output                          | 1.0053            |

identified with name and flow code, as shown in Table 1.

#### 4.1.3 Evaluation of copper production process

Table 2 shows the evaluation results based on

the defined indicators. As can be seen, the direct recovery of copper in smelting, converting, and refining processes is 91.96%, 97.13%, and 99.47%, respectively. According to the definition of direct

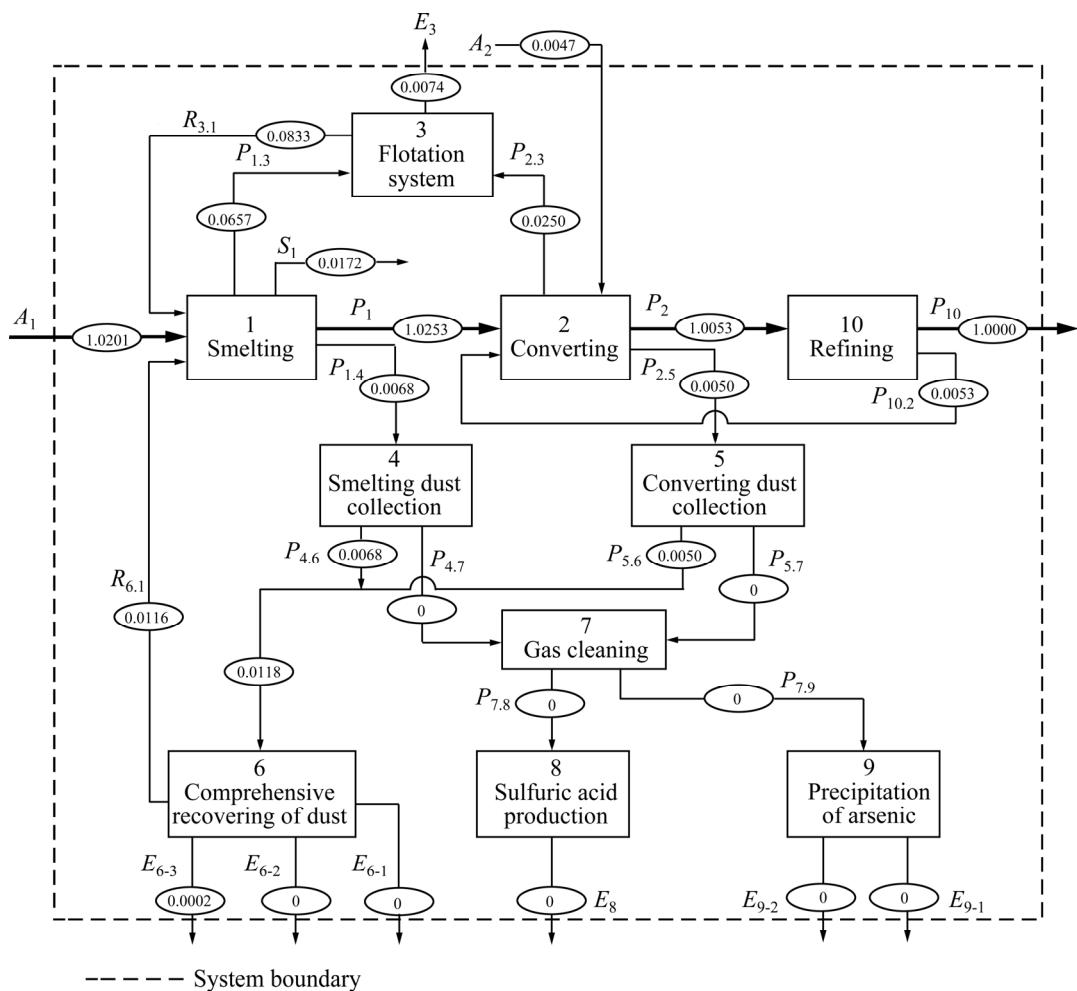



Fig. 2 Copper substance flow chart of investigated production system

Table 2 Results of evaluation indicators for copper production system

| Evaluation indicator                                  | Value  |
|-------------------------------------------------------|--------|
| Input raw material flow, $A$                          | 1.0248 |
| Recycle substance flow, $R$                           | 0.1002 |
| Stock substance flow, $S$                             | 0.0172 |
| Emission substance flow, $E$                          | 0.0076 |
| Output product substance flow, $P$                    | 1.0000 |
| Direct recovery of melting process, $D_1/\%$          | 91.96  |
| Direct recovery of converting process, $D_2/\%$       | 97.13  |
| Direct recovery of refining process, $D_8/\%$         | 99.47  |
| Waste recycle ratio of production system, $\alpha/\%$ | 80.16  |
| Resource efficiency, $\varepsilon/\%$                 | 97.58  |

recovery, the proportion of by-product (for example, stock matte) is not included in direct recovery. The waste recycle ratio of the production system is 80.16%, which means that 80.16% of the rejected

products produced during production are recycled to the system for further copper recovering. Thus, a high resource efficiency of the whole system, 97.58%, is observed due to such a high waste recycle ratio. The details of the defined substance flows of the whole production system are discussed in the following sections.

#### (1) Input substance flow of copper $A$

As is shown in Table 2, the total input substance flow is 1.0248. This result indicates that, to produce 1 t of copper into the final product (anode copper), 1.0248 t of pure copper contained in copper concentrate or waste copper is consumed. The input substance consists of two flows:  $A_1$ , copper concentrate 1.0201;  $A_2$ , waste copper, 0.0047. Suppose the copper content of copper concentrate and waste copper is 23% and 96%, respectively. Then, 4.4352 t of copper concentrate and 0.0050 t of waste copper are put into this production system to produce 1 t of copper in anode copper.

### (2) Recycle substance flow of copper $R$

There are three recycle substance flows in the production:  $R_{3,1}$ , flotation concentrate;  $R_{6,1}$ , impure copper;  $R_{10,2}$ , refining slag.

Among the recycle substance flows, flotation concentrate accounts for the largest portion, 83.13%. The flotation recovery of copper is up to 91.84%. The slag generated in refining process is recycled to converting process directly, and this strand accounts for a small portion of all the recycle substance flows, 5.29%.

As a whole, the recycle substance flow is 0.1002, accounts for 80.16% of the rejected products (including recycle substance flow of 0.1002, stock substance flow of 0.0172, and emission substance flow of 0.0076), that is the guarantee of high resource efficiency.

### (3) Emission substance flow of copper $E$

The emission substance flows consist of the flotation tailing, arsenic waste and waste water from comprehensive recovering of dust, sulfuric acid, arsenic waste and waste water during tail gas treatment. In fact, almost no copper is carried in the tail gas from the separation of flue dust for the low volatility of copper. As we can see, no copper is discharged outside the system with sulfuric acid, arsenate waste and waste water generated from tail gas treatment processes. The flotation tailing, 0.0074, accounts for 97.37% of emission substance flows, and the copper content in tailing is 0.3%. Thus, improving flotation efficiency may contribute to a higher resource efficiency. Another emission substance flow is the waste water from dust treating process, 0.0002, which contains a certain amount of copper (about 500 mg/L), accounting for 2.63% of emission substance flows. Before the waste water is discharged into environment, further copper removal should be carried out.

### (4) Stock substance flow of copper $S$

Only one stock substance flow is generated during stable production. The main portion of stock substance flow is the extra copper matte from smelting process. When the production quantity of smelting process is larger than that of converting process, the product is not digested completely. Thus, some of the copper matte is stocked in the warehouse. The other source of stock substance flow is the low-grade matte produced from the settling of slags. Usually, the stock substance flow

is relatively unstable compared to other substance flows, as it depends on the production quantity of smelting and converting to a large extent. The stock substance flow will be put into the production process when the production capacity is sufficient.

## 4.2 Substance flow analysis of arsenic

As arsenic is a hazardous element that flows into the system associated with copper rather than valuable element, the evaluation defined in Section 2.4 is not conducted for arsenic substance flow. However, for the purpose of giving an insight into the arsenic migration and translation in the production process, the distribution and transformation behaviors of arsenic in the primary single processes (smelting, converting, and refining) were analyzed based on arsenic substance flow analysis and phase analysis of some products.

### 4.2.1 Mass balance calculation

The mass balance account of arsenic in all single processes of the system was also built upon producing 1 t of copper output from the system, the results are shown in Table 3.

### 4.2.2 Substance flow chart of arsenic

Figure 3 shows the substance flow chart of arsenic. All the arsenic substance flows are corresponding to the copper substance flows in Fig. 2. The total quantity of arsenic in each kind of substance flow is shown in Table 4. The details of each substance flow are discussed in the following sections.

#### (1) Input substance flow of arsenic

The total input substance flow of arsenic is 0.01000, which indicates that to produce 1 t of copper into the final product (anode copper), 10 kg of arsenic is carried into the system. All the input arsenic is carried by copper concentrate, and the arsenic content of copper concentrate is 0.23%, which belongs to the kind of high arsenic copper concentrate. This result also reveals that, with the copper resources being complex globally, the amount of arsenic input to copper production system increases. It is necessary to clarify the transformation behavior of arsenic in the copper production process. Another input substance flow of copper, i.e. waste copper, does not carry arsenic into the system, as the arsenic content of copper products conforms to quality standard.

**Table 3** Input and output flow ratios of arsenic in each substance flow of production system

| No. | Process unit                     | Input                              |                   | Output                             |                   |
|-----|----------------------------------|------------------------------------|-------------------|------------------------------------|-------------------|
|     |                                  | Substance flow                     | Flow ratio, $f_j$ | Substance flow                     | Flow ratio, $f_j$ |
| 1   | Smelting                         | Copper concentrate, $A_1$          | 0.01000           | Copper matte, $P_1$                | 0.0034            |
|     |                                  | Flotation concentrate, $R_{3,1}$   | 0.00120           | Stock matte, $S_1$                 | 0.00007           |
|     |                                  | Impure copper, $R_{6,1}$           | 0                 | Smelting slag, $P_{1,3}$           | 0.00183           |
|     |                                  |                                    |                   | Smelting dust and gas, $P_{1,4}$   | 0.0059            |
|     |                                  | Total input                        | 0.0112            | Total output                       | 0.0112            |
| 2   | Converting                       | Copper matte, $P_1$                | 0.0034            | Crude copper, $P_2$                | 0.00032           |
|     |                                  | Waste copper, $A_2$                | 0                 | Converting slag, $P_{2,3}$         | 0.00044           |
|     |                                  | Refining slag, $R_{10,2}$          | 0.00001           | Converting dust and gas, $P_{2,5}$ | 0.00265           |
|     |                                  | Total input                        | 0.00341           | Total output                       | 0.00341           |
| 3   | Flotation system                 | Smelting slag, $P_{1,3}$           | 0.00183           | Flotation concentrate, $R_{3,1}$   | 0.0012            |
|     |                                  | Converting slag, $P_{2,3}$         | 0.00044           | Tailing, $E_3$                     | 0.00107           |
|     |                                  | Total input                        | 0.00227           | Total output                       | 0.00227           |
| 4   | Smelting dust collection         | Smelting dust and gas, $P_{1,4}$   | 0.0059            | Smelting dust, $P_{4,6}$           | 0.00432           |
|     |                                  |                                    |                   | Smelting gas, $P_{4,7}$            | 0.00158           |
|     |                                  | Total input                        | 0.0059            | Total output                       | 0.0059            |
| 5   | Converting dust collection       | Converting dust and gas, $P_{2,5}$ | 0.00265           | Converting dust, $P_{5,6}$         | 0.00194           |
|     |                                  |                                    |                   | Converting gas, $P_{5,7}$          | 0.00071           |
|     |                                  | Total input                        | 0.00265           | Total output                       | 0.00265           |
| 6   | Comprehensive recovering of dust | Smelting dust, $P_{4,6}$           | 0.00432           | Impure copper, $R_{6,1}$           | 0                 |
|     |                                  | Converting dust, $P_{5,6}$         | 0.00194           | Arsenic waste residue, $E_{6,1}$   | 0.00622           |
|     |                                  |                                    |                   | Other metal products, $E_{6,2}$    | 0                 |
|     |                                  |                                    |                   | Waste water, $E_{6,3}$             | 0.00004           |
|     |                                  | Total input                        | 0.00626           | Total output                       | 0.00626           |
| 7   | Gas cleaning                     | Smelting gas, $P_{4,7}$            | 0.00158           | Purified gas, $P_{7,8}$            | 0                 |
|     |                                  | Converting gas, $P_{5,7}$          | 0.00071           | Waste acid, $P_{7,9}$              | 0.00229           |
|     |                                  | Total input                        | 0.00229           | Total output                       | 0.00229           |
| 8   | Sulfuric acid production         | Purified gas, $P_{7,8}$            | 0                 | Sulfuric acid, $E_8$               | 0                 |
|     |                                  | Total input                        | 0                 | Total output                       | 0                 |
| 9   | Precipitation of arsenic         | Waste acid, $P_{7,9}$              | 0.00229           | Arsenic waste residue, $E_{9,1}$   | 0.00228           |
|     |                                  |                                    |                   | Waste water, $E_{9,2}$             | 0.00001           |
|     |                                  | Total input                        | 0.00229           | Total output                       | 0.00229           |
| 10  | Refining                         | Crude copper, $P_2$                | 0.00032           | Anode copper, $P_{10}$             | 0.00031           |
|     |                                  |                                    |                   | Refining slag, $R_{10,2}$          | 0.00001           |
|     |                                  | Total input                        | 0.00032           | Total output                       | 0.00032           |

## (2) Recycle substance flow of arsenic

Arsenic is recycled to the system with two flows:  $R_{3,1}$ , flotation concentrate;  $R_{10,2}$ , refining slag. The total recycled arsenic substance flow is

0.00121, accounting for 11.10% of the arsenic distributed in rejected products. Almost all of the arsenic distributed in dust and tail gas is removed in the separated treating process and is not cycled to

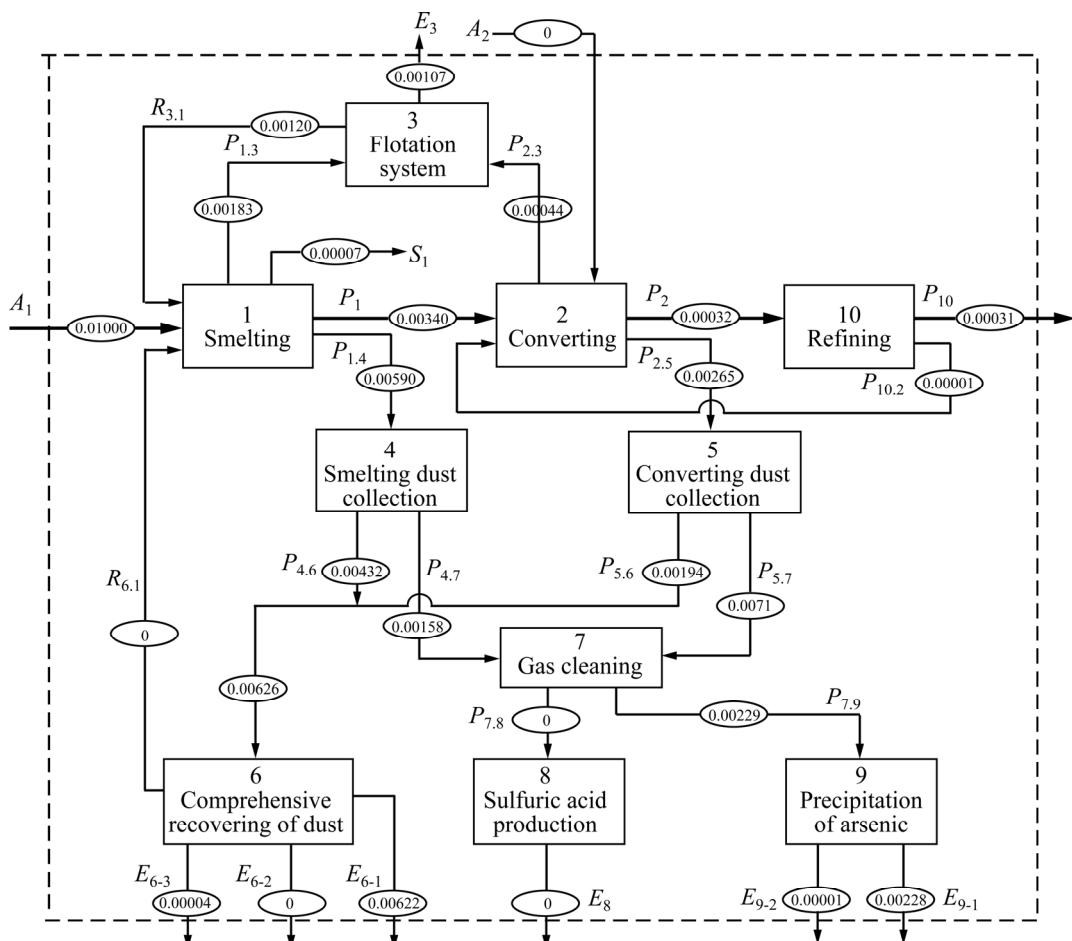



Fig. 3 Arsenic substance flow chart of investigated production system

Table 4 Flow ratio of arsenic in each substance flow of production system

| Evaluation indicator         | Value   |
|------------------------------|---------|
| Input raw material flow, $A$ | 0.01000 |
| Stock substance flow, $S$    | 0.00007 |
| Cycle substance flow, $R$    | 0.00121 |
| Emission substance flow, $E$ | 0.00962 |

the production system, which helps to avoid arsenic accumulation in production system.

The flotation concentrate ( $R_{3,1}=0.00120$ ) accounts for most of the recycled arsenic substance flows ( $R=0.00121$ ), 99.17%, which means that improving the selective depressing of arsenic in flotation process could contribute to a smaller amount of recycled arsenic. And for this purpose, it is necessary to do sufficient liberation of arsenic minerals before floatation.

### (3) Emission substance flow of arsenic

Some arsenic is discharged outside the

production system in the form of flotation tailing  $E_3$  (0.00107), arsenic waste residue  $E_{6,1}$  (0.00622) and waste water  $E_{6,3}$  (0.00004) from comprehensive recovering of dust, arsenic waste residue  $E_{9,1}$  (0.00228) and waste water  $E_{9,2}$  (0.00001) from tail gas treating. In summary, to produce 1 t of copper, 1.07 kg of arsenic in flotation tailing, 8.50 kg of arsenic in arsenic waste residue (the sum of  $E_{6,1}$  and  $E_{9,1}$ ), and 0.05 kg of arsenic in waste water (the sum of  $E_{6,3}$  and  $E_{9,2}$ ) is generated. The other metal products from comprehensive recovering of dust and sulfuric acid do not carry arsenic out of the system.

Among these emissions, arsenic waste residue from dust and tail gas treatment accounts for 88.36%, and is considered as hazardous waste, thus the stabilization level of arsenic in waste residue should be assessed for the purpose of minimizing environmental pollution risk. And the waste water should be treated further before discharging into the natural environment, as the arsenic content of waste

water (1.4 mg/L) exceeds emission standard in China (Emission standard of pollutants for copper, nickel, cobalt industry, GB 25467—2010). Reusing the waste water to the gas cleaning process is a reasonable way.

#### (4) Stock substance flow of arsenic

The amount of arsenic in stock flow, 0.00007, is very small compared to the other substance flows. And this substance flow will be put into the production process along with copper.

#### 4.2.3 Distribution and transformation behaviors of arsenic

With the copper resources being complex globally, the amount of arsenic entering copper production system increases. It is necessary to clarify the evolution behaviors of arsenic during copper production. The content of arsenic in copper concentrate and some products from the production system is shown in Table 5. The distribution and transformation behaviors of arsenic are analyzed in detail in the following sections.

**Table 5** Contents of arsenic in copper concentrate and some products (wt.%)

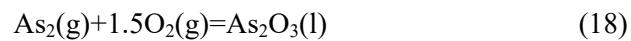
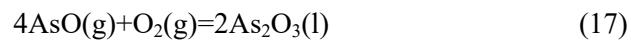
| Copper concentrate | Copper matte    | Smelting dust | Smelting slag | Crude copper |
|--------------------|-----------------|---------------|---------------|--------------|
| 0.23               | 0.22            | 7.01          | 0.10          | 0.04         |
| Converting dust    | Converting slag | Anode copper  | Refining slag |              |
| 5.93               | 0.08            | 0.03          | 0.04          |              |

#### (1) Smelting process

Table 6 shows the distribution of arsenic in the primary single processes. The results indicate that, in smelting process, a large portion of arsenic flows with flue gas (including 38.56% in smelting dust, and 14.11% in tail gas) for its low volatile point. Then, most of the volatile arsenic is collected in smelting dust by dust collection process, which results in the high arsenic content of smelting dust, 7.01%. Besides, there are still large portion of arsenic (30.36%) distributed in copper matte followed by 16.34% in smelting slag and 0.63% in stock matte.

The main occurring forms of arsenic in raw material (copper concentrate) are  $\text{Cu}_3\text{AsS}_4$  and  $\text{CuAsS}$  (shown in Fig. 4(a)), and these complex compounds are decomposed rapidly into  $\text{As}_2\text{S}_3$  at high temperatures. During copper smelting, arsenic

**Table 6** Distribution of arsenic in primary production processes of system

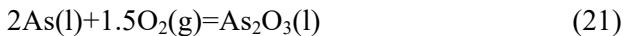
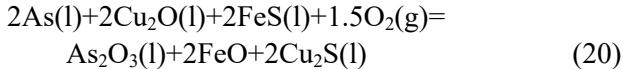


| Process unit | Product         | Flow ratio, $f_j$ | Distribution rate/% |
|--------------|-----------------|-------------------|---------------------|
| Smelting     | Copper matte    | 0.00340           | 30.36               |
|              | Stock matte     | 0.00007           | 0.63                |
|              | Smelting slag   | 0.00183           | 16.34               |
|              | Smelting dust   | 0.00432           | 38.56               |
|              | Smelting gas    | 0.00158           | 14.11               |
| Converting   | Crude copper    | 0.00032           | 9.38                |
|              | Converting slag | 0.00044           | 12.91               |
|              | Converting dust | 0.00194           | 56.89               |
| Refining     | Converting gas  | 0.00071           | 20.82               |
|              | Anode copper    | 0.00031           | 96.88               |
|              | Refining slag   | 0.00001           | 3.12                |

sulfides are oxidized and decomposed as follows:

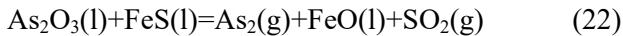


Therefore, arsenic flows into flue gas in the forms of  $\text{As}_2(\text{g})$ ,  $\text{AsS}(\text{g})$ , and  $\text{AsO}(\text{g})$ , some arsenic is further oxidized to  $\text{As}_2\text{O}_3$  during flowing, and part of it is collected into dust. The form of arsenic in smelting dust is shown in Fig. 4(c).

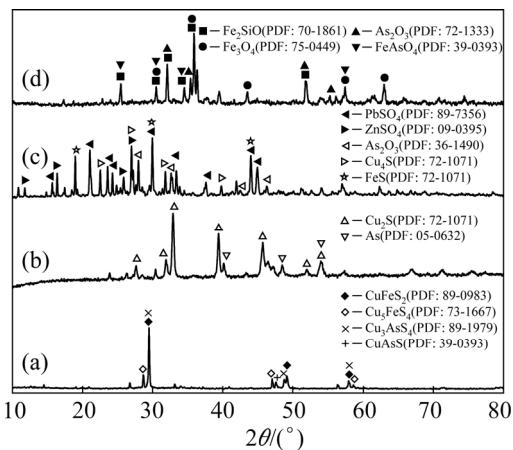
Some arsenic is also oxidized in the molten bath and enters smelting slag in the form of  $\text{As}_2\text{O}_3$  which is detected by slow scanning XRD, as shown in Fig. 4(d), and the following reactions occur:


$\text{FeAsO}_4$  is also detected as shown in Fig. 4(d). This result indicates that in the slag,  $\text{As}_2\text{O}_3(\text{l})$  further reacts with iron oxides to form iron arsenate.


During the flowing of the melt,  $\text{As}_2\text{O}_3$  is reduced to  $\text{As}(\text{l})$  that is the existing form in copper matte (shown in Fig. 4(b)) by  $\text{FeS}$  as follows:




Meanwhile, a part of  $\text{As}(\text{l})$  in copper matte can also be oxidized to  $\text{As}_2\text{O}_3(\text{l})$  by  $\text{Cu}_2\text{O}$  and then enters the smelting slag:



Besides, a part of  $\text{As}_2\text{O}_3$  is also reduced to  $\text{As}_2\text{S(g)}$ , and flows back into flue dust:

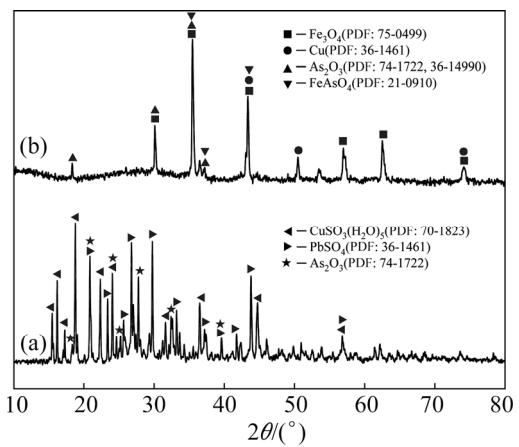


In fact, all of the above reactions form a balanced cycle in the smelting process.

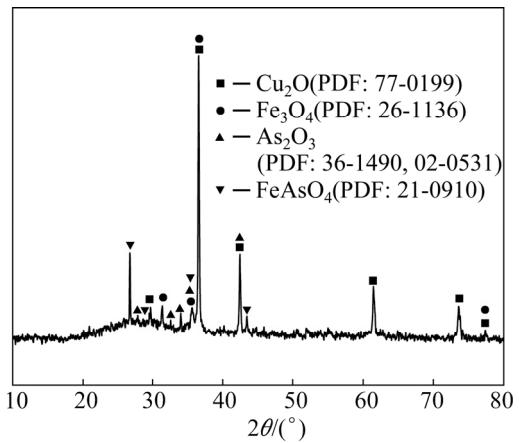


**Fig. 4** Slow scanning XRD patterns of copper concentrate (a), copper matte (b), smelting dust (c), and smelting slag (d)

### (2) Converting process


As shown in Table 6, in converting process, the arsenic collected in converting dust accounts for the largest portion, 56.89%, resulting in high arsenic content of the dust, 5.93%. 20.82% of arsenic flows into converting gas, 12.91% of arsenic is distributed in converting slag, and 9.38% of arsenic is distributed in crude copper.

During this process in PS converter, the arsenic in copper smelt is oxidized to  $\text{As}_2\text{O}_3$  by  $\text{O}_2$ , and Eqs. (20) and (21) occur. A large amount of  $\text{As}_2\text{O}_3$  flows into flue gas and part of it is collected into dust (shown in Fig. 5(a)) in converting dust collection process. A part of  $\text{As}_2\text{O}_3$  enters converting slag and can be detected by XRD as shown in Fig. 5(b). Similar to the smelting process, some  $\text{As}_2\text{O}_3$  further reacts with iron oxides to form iron arsenate, and  $\text{FeAsO}_4$  can be detected (shown in Fig. 5(b)). A small amount of arsenic in copper matte is not oxidized and stays in crude copper.


### (3) Refining process

In refining process, 96.88% of arsenic stays in anode copper and the rest in slag is recycled to converting process. During this process, the arsenic

in crude copper is difficult to be oxidized due to its low content (0.04%). Thus, most of arsenic is distributed in anode copper in the form of  $\text{As(l)}$ , and a small part of arsenic is oxidized to  $\text{As}_2\text{O}_3$  (shown in Fig. 6) and enters refining slag. Besides, some  $\text{As}_2\text{O}_3$  also reacts with iron oxides, and thus iron arsenate  $\text{FeAsO}_4$  is formed as shown in Fig. 6.



**Fig. 5** Slow scanning XRD patterns of converting dust (a) and converting slag (b)



**Fig. 6** Slow scanning XRD pattern of refining slag

It is worth noting that, in consideration of the high arsenic content in dust from smelting and converting, centralized treatment of the two dusts is a reasonable way to avoid arsenic accumulation in the production system instead of recycling it to smelting and converting processes directly.

## 5 Conclusions and recommendations

(1) For the copper substance flows, the resource efficiency of copper for the production process is 97.58%. The direct recovery of copper in smelting, converting, and refining processes is 91.96%, 97.13%, and 99.47%, respectively.

(2) For the arsenic substance flows, to produce 1 t of copper, 10 kg of arsenic is carried into the system, with the generation of 1.07 kg of arsenic in flotation tailing, 8.50 kg of arsenic in arsenic waste residue, and 0.05 kg of arsenic in waste water. In smelting process, the distribution rate of arsenic in smelting dust, tail gas, copper matte, smelting slag, and stock matte is 38.56%, 14.11%, 30.36%, 16.34%, and 0.63%, respectively. In converting process, the distribution rate of arsenic in converting dust, tail gas, crude copper, and converting slag is 56.89%, 20.82%, 9.38%, and 12.91%, respectively. In refining process, the distribution ratio of arsenic in anode copper and slag is 96.88% and 3.12%, respectively. For the transformation behaviors, arsenic occurs in dust from smelting and converting as  $As_2O_3$ , in slag from smelting, converting and refining as  $As_2O_3$  and arsenate, in copper matte, crude copper and anode copper as As.

(3) Some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis: The centralized treatment of dust from smelting and converting with high arsenic content is a reasonable way for avoiding arsenic accumulation in the production system. The selective depressing of arsenic in flotation process should be improved for a smaller amount of recycled arsenic. Meanwhile, improving flotation efficiency may contribute to a higher copper resource efficiency. The stabilization level of arsenic in waste residue should be assessed to minimize the risk of environmental pollution. The waste water from dust and tail gas treatment should be treated further before discharging into natural environment. Since the arsenic content is high, it is with good environmental and economic benefits to reuse the waste water to the gas cleaning process.

## Acknowledgments

The authors are grateful for the financial supports from the National Key R&D Program of China (No. 2019YFC1907400), and the National Natural Science Foundation of China (Nos. 51904351, 51620105013).

## References

[1] NIKOLIC I, MILOSEVIC I, MILIJIC N, MIHAJLOVIC I.

Cleaner production and technical effectiveness: Multi-criteria analysis of copper smelting facilities [J]. *Journal of Cleaner Production*, 2019, 215: 423–432.

[2] LIU Zhi-hong, XIA Long-gong. The practice of copper matte converting in China [J]. *Mineral Processing and Extractive Metallurgy*, 2019, 128: 117–124.

[3] LIU Wei-feng, FU Xin-xin, YANG Tian-zu, ZHANG Du-chao, CHEN Lin. Oxidation leaching of copper smelting dust by controlling potential [J]. *Transactions of Nonferrous Metals Society of China*, 2018, 28(9): 1854–1861.

[4] ZHENG Yong-xing, LV Jin-fang, LAI Zhen-ning, LAN Zhuo-yue, WANG Hua. Innovative methodology for separating copper and iron from Fe–Cu alloy residues by selective oxidation smelting [J]. *Journal of Cleaner Production*, 2019, 231: 110–120.

[5] LI Yong-kui, ZHU Xing, QI Xian-jin, SHU Bo, ZHANG Xin, LI Kong-zhai, WEI Yong-gang, WANG Hua. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel [J]. *Chemical Engineering Journal*, 2020, 394: 124833.

[6] YAO Li-wei, MIN Xiao-bo, XU Hui, KE Yong, WANG Yun-yan, LIN Zhang, LIANG Yan-jie, LIU De-gang, XU Qiu-jing, HE Yu-yang. Physicochemical and environmental properties of arsenic sulfide sludge from copper and lead–zinc smelter [J]. *Transactions of Nonferrous Metals Society of China*, 2020, 30(7): 1943–1955.

[7] LOISEAU E, JUNQUA G, ROUX P, BELLON-MAUREL V. Environmental assessment of a territory: An overview of existing tools and methods [J]. *Journal of Environmental Management*, 2012, 112: 213–225.

[8] BAI Lu, QIAO Qi, LI Yan-ping. Substance flow analysis of production process: A case study of a lead smelting process [J]. *Journal of Cleaner Production*, 2015, 104: 502–512.

[9] HUANG Chu-long, MA Hwong-wen, YU Chang-ping. Substance flow analysis and assessment of environmental exposure potential for triclosan in Mainland China [J]. *Science of the Total Environment*, 2014, 499: 265–275.

[10] LINDQVIST A, von MALMBORG F. What can we learn from local substance flow analyses? The review of cadmium flows in Swedish municipalities [J]. *Journal of Cleaner Production*, 2004, 12(8–10): 909–918.

[11] GUO Xue-yi, ZHONG Ju-ya, SONG Yu, TIAN Qing-hua. Substance flow analysis of zinc in China [J]. *Resources, Conservation and Recycling*, 2010, 54(3): 171–177.

[12] LIN Shao-hua, MAO Jian-su, CHEN Wei-qiang, SHI Lei. Indium in Mainland China: Insights into use, trade, and efficiency from the substance flow analysis [J]. *Resources, Conservation and Recycling*, 2019, 149: 312–321.

[13] ZHANG Ling, CAI Zhi-jian, YANG Jia-meng, YUAN Zeng-wei, CHEN Yan. The future of copper in China—A perspective based on analysis of copper flows and stocks [J]. *Science of the Total Environment*, 2015, 536: 142–149.

[14] DAIGO I, MATSUNO Y, ADACHI Y. Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan [J]. *Resources, Conservation and Recycling*, 2010, 54(11): 851–863.

[15] ELSHKAKI A, GRAEDEL T. Dynamic analysis of the

global metals flows and stocks in electricity generation technologies [J]. *Journal of Cleaner Production*, 2013, 59: 260–273.

[16] LI L, WANIA F. Tracking chemicals in products around the world: Introduction of a dynamic substance flow analysis model and application to PCBs [J]. *Environment International*, 2016, 94: 674–686.

[17] SAKAMORNSNGUAN K, KRETSCHMANN J. Substance flow analysis and mineral policy: The case of potash in Thailand [J]. *The Extractive Industries and Society*, 2016, 3(2): 383–394.

[18] YELLISHETTY M, MUDD G. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India [J]. *Journal of Cleaner Production*, 2014, 84: 400–410.

[19] LIU Jian, AN Rui, XIAO Rong-ge, YANG Yong-wei, WANG Gao-shang, WANG Qian. Implications from substance flow analysis, supply chain and supplier' risk evaluation in iron and steel industry in Mainland China [J]. *Resources Policy*, 2017, 51: 272–282.

[20] ARENU U, GREGORIO F. A waste management planning based on substance flow analysis [J]. *Resources, Conservation and Recycling*, 2014, 85: 54–66.

[21] CHEVRE N, COUTU S, MARGOT J, WYNN H, BADER H, SCHEIDEGGER R, ROSSI L. Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system [J]. *Water Research*, 2013, 47(9): 2995–3005.

[22] CHU Jian-wen, YIN Xiao-bo, HE Meng-chang, OUYANG Wei, LIN Chun-ye, LIU Xi-tao. Substance flow analysis and environmental release of antimony in the life cycle of polyethylene terephthalate products [J]. *Journal of Cleaner Production*, 2021, 291: 125252.

[23] YOSHIDA H, CHRISTENSEN T, GUILDAL T. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant [J]. *Chemosphere*, 2015, 138: 874–882.

[24] WANG Min-xi, CHEN Wu, LI Xin. Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012 [J]. *Resources, Conservation and Recycling*, 2015, 105: 36–48.

[25] GUO Xue-yi, SONG Yu. Substance flow analysis of copper in China [J]. *Resources, Conservation and Recycling*, 2008, 52: 874–882.

[26] HAN Feng, YU Fei, CUI Zhao-jie. Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China [J]. *Resources, Conservation and Recycling*, 2016, 133: 459–466.

[27] ZHANG Ling, CHEN Tian-ming, YANG Jia-meng, CAI Zhi-jian, SHENG Hu, YUAN Zeng-wei, WU Hui-jun. Characterizing copper flows in international trade of China, 1975–2015 [J]. *Science of the Total Environment*, 2017, 601/602: 1238–1246.

[28] PFAFF M, GLOSER-CHAHOUD S, CHRUBASIK L, WALZ R. Resource efficiency in the German copper cycle: Analysis of stock and flow dynamics resulting from different efficiency measures [J]. *Resources, Conservation and Recycling*, 2018, 139: 205–218.

[29] HU Zhong-qiu, QU Jun, GUO Li, MA Wen-bo, HU Nan, ZHAN Wei, DU Dong-yun. Selective leaching of arsenic and valuable metals in copper smelting soot strengthened by ball milling pretreatment [J]. *The Chinese Journal of Nonferrous Metals*, 2020, 30(8): 1915–1924. (in Chinese)

## 铜火法冶炼过程中铜和砷物质流分析

郭学益, 陈远林, 王亲猛, 王松松, 田庆华

中南大学 治金与环境学院, 长沙 410083

**摘要:** 采用物质流分析方法对铜火法冶炼过程铜和砷的代谢进行分析, 建立铜和砷的物质平衡表及物质流图。采用直接回收率、废物循环率和资源效率等指标评价流程代谢效率。结果表明, 该流程铜资源效率为 97.58%, 在熔炼、吹炼和精炼单元过程铜的直接回收率分别为 91.96%、97.13% 和 99.47%。同时, 生产 1 t 金属铜有 10 kg 砷进入系统。其中, 1.07 kg 砷进入浮选尾矿, 8.50 kg 砷进入除砷废渣, 0.05 kg 砷进入生产废水。此外, 分析生产过程中砷在熔炼、吹炼和精炼单元中的分配和转化行为, 并在物质流分析基础上, 提出提高铜资源效率及控制污染的建议。

**关键词:** 铜冶炼; 物质流分析; 铜; 砷; 分配行为

(Edited by Wei-ping CHEN)