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Abstract: Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more 
reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing 
prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training 
of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of 
mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were 
investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength 
extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can 
be used to develop new types of wrought magnesium alloys.  
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1 Introduction 
 

Magnesium alloys are becoming increasingly 
attractive for potential use in a wide range of structural 
applications, including the automotive, transportation, 
aeronautical and aerospace industries, due to their low 
density, good machinability, favorable recycling 
capability and excellent damping capacity. However, the 
mechanical properties of magnesium alloys still could 
not satisfy the demands of some important application 
fields. For example, only some parts can be produced by 
using magnesium alloys in vehicles currently[1−5]. In 
order to improve the mechanical properties of 
magnesium alloys, new types of magnesium alloys have 
been being developed, but conventional methods for 
developing new alloys need to spend a lot of effort and 
time[6−9]. 

Because of the non-linear relationship among alloy 
composition, processing parameters and mechanical 
properties, it is hard to describe the functional 
relationship of these variants using only one equation. In 

this case, artificial neural network (ANN) seems to be 
suitable for modeling non-linear processes by means of a 
large-scale parallel-distributed information processing 
system, which contains many interconnected neurons[10]. 
It may be helpful in predicting mechanical properties of 
magnesium alloys.  

In recent years, the models based on neural network 
technique are used increasingly in magnesium alloy 
research field[6,11−14]. However, the modeling 
parameters are mainly dependent on human experience. 
It is very difficult to establish high precision models 
systematically. In the present work, a new method to 
obtain parameters with all permutations and 
combinations training has been developed for improving 
ANN models. And then, the models have been used to 
investigate the mechanical properties of Mg-Zn-Mn 
alloys and Mg-Zn-Y-Zr alloys successfully.  

The aim of the present study was to apply ANN 
models to predicting mechanical properties for 
developing new types of magnesium alloys. Considering 
the common mechanical properties types of magnesium 
alloys, three ANN models for predicting ultimate tensile 
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strength (UTS), yield strength (YS) and elongation (ELO) 
were built, respectively. All of the models have the same 
structure: three layers with a full connected multilayer 
feed forward neural network. The general scheme of the 
models is given in Fig.1. The input parameters of ANN 
models are processing parameters and alloy composition, 
including the commonly used alloying elements in 
magnesium alloys, namely Al, Zn, Mn, Zr, Y, Ce, Si, Be, 
Cu, Ni, Fe and Ca, etc. Meanwhile, the output 
parameters for models are UTS, YS and ELO, 
respectively.  
 

 

Fig.1 Schematic diagram of models for prediction of 
mechanical properties of magnesium alloys  
 

The performance of an ANN model depends upon 
the dataset used for its training. Therefore, for reliable 
neural network model a significant amount of data as 
well as powerful computing resources are necessary[15]. 
In the present work, all the data of magnesium alloys for 
model training are from the database of the National 
Engineering Research Center for Magnesium Alloys of 
China. The neural network models were designed and 
trained by using the Matlab 7.4 version on a personal 
computer with 4-core CPU and 2G memory.  
 
2 Improvement of ANN models 
 
2.1 Improved parameters 

Different modeling parameters have important 
influence on the predicted results. The improved 
parameters, including preprocessing styles, number of 
hidden layer neurons, transfer functions and algorithms, 
have been confirmed by comparing prediction errors and 
relativity values of models, which have been built with 
all the parameters used commonly (see Table 1) with 
training of all permutations and combinations. Therefore, 
there is a total of 2 016 (4×28×3×3×2) combinations of 
the common parameters. 

Each kind of parameter combination was trained 
five times by computer programming. Then,  the 
average errors and the mean relativity values of models 

were calculated according to the five results for each 
combination. Finally, the improved parameters can be 
obtained by comparing the average errors and the mean 
relativity values of models. It can be seen that all of the 
improved parameters for models are the same except the 
number of hidden layer neurons is 7 for UTS, 15 for YS, 
and 14 for ELO, respectively. If using these parameters, 
the models can achieve the average accuracy shown in 
Table 2 easily. Moreover, it also can be seen that the 
ELO model has the lowest average accuracy. This may 
be due to the different discrete degrees of UTS, YS and 
ELO data for training. The ELO data are generally 
concentrated between 0 and 20%, while the UTS and YS 
data are concentrated between 250 MPa and 350 MPa. 
The fitting is more difficult for the data with greater 
discrete degree, so it is the lowest average accuracy for 
ELO. 
 
Table 1 Selected common parameters for training of all 
permutations and combinations  

Parameter Common value Number

Preprocessing style [0.15, 0.90], [0.10, 0.90], 
[0.01, 0.99], [0, 1] 4 

Number of 
hidden layer neurons From 3 to 30, interval 1 28 

Transfer function 
(input layer-middle layer) logsig, tansig, purelin 3 

Transfer function 
(middle layer-output layer) logsig, tansig, purelin 3 

Algorithm trainbr, trainlm 2 

 
Table 2 Improved parameters 

Parameter UTS YS ELO 

Preprocessing style [0, 1] [0, 1] [0, 1]

Number of  
hidden layer neurons 7 15 14 

Transfer function 
(input layer-middle layer) tansig tansig tansig

Transfer function  
(middle layer- output layer) logsig logsig logsig

Algorithm trainlm trainlm trainlm

Average error of 
five times/% 2.13 2.38 14.52

Mean relativity 
value of five times 0.92 0.96 0.89 

 
2.2 Improved models 

The UTS, YS, ELO models have been built by 
using the improved parameters. After training several 
times, many improved UTS, YS, ELO models can be 
obtained, respectively. Most of the average errors of 
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models are lower than those shown in Table 2 and the 
relativity values are higher than the corresponding values 
in Table 2 at the same time. 

The best models are shown in Fig.2. It can be seen 
that all the three ANN models have good performance on 
predicting mechanical properties of magnesium alloys, 
especially the YS model has the best fitting results. The 
relativity values are 0.96 for UTS, 0.97 for YS, and 0.92 
for ELO. Obviously, the three values are higher than the 
corresponding average ones shown in Table 2.  
 

 
Fig.2 Predicted mechanical properties for magnesium alloys 
with improved models vs experimental data: (a) UTS; (b) YS; 
(c) ELO 

2.3 Comparison of previous models and improved 
models 
Compared with the previous best models using 

parameters from conventional random selection [16], the 
models have higher accuracy and can be built 
systematically by using parameters from training of all 
permutations and combinations. Table 3 lists the 
different results from the previous and improved models. 
It is easy to see that the accuracy of models can be 
improved further if using the parameters from training of 
all permutations and combinations. 

 
Table 3 Results from previous models and improved models 

Mechanical 
property Type Relativity 

value, R Mean error/%

Previous 0.95 1.80 
UTS 

Improved 0.96 1.49 

Previous 0.97 2.10 
YS 

Improved 0.97 1.99 

Previous 0.91 14.60 
ELO 

Improved 0.92 13.60 

 
The improved models also were used to predict the 

mechanical properties of Mg-Zn-Zr alloys in order to 
compare with previous models. Fig.3 shows the 
predicted results from the previous models and improved 
models as well as experimental work. T6-500-3 means 
that the solution temperature is 500 °C and the holding 
time is 3 h. For all the T6 treatment, the aging 
temperature is 180 °C and the holding time is 24 h. The 
predicted results from the improved models were found 
to have better agreement with the experimental data, 
which reveals that the improved model can be used to 
develop new types of magnesium alloys. 
 
3 Application of improved models 
 
3.1 Prediction of mechanical properties of Mg-Zn-Mn 

alloys 
The improved models were used to predict the 

mechanical properties of Mg-Zn-Mn alloys. The alloy 
composition and processing parameters are designed, as 
listed in Table 4. 

Table 5 lists the results from the improved models 
as well as experimental work. Good results can be 
 
Table 4 Composition and processing parameters of Mg-Zn-Mn 
alloys 

w/% 
Zn Mn Mg

Temperature/ 
°C  

Extrusion 
rate/(m·min−1)

Mole 
ratio

5 1 Bal. 390 1.5 25 
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Fig.3 Predicted and experimental values of mechanical 
properties of Mg-6Zn-0.5Zr alloys under different conditions 

Table 5 Predicted and experimental values of mechanical 
properties of Mg-5Zn-Mn alloys 

Mechanical property Prediction Experiment Error/%
UTS/MPa 356 312 14 
YS/MPa 232 235 1 
ELO/% 13.0 13.3 2.3 

 
obtained for the prediction of YS and ELO, and 
acceptable results can be predicted for UTS. It is 
suggested that the models can be used to develop new 
types of wrought magnesium alloys by predicting 
mechanical properties. 
 
3.2 Effects of mole ratios of Y to Zn on strength of 
Mg-Zn-Y-Zr alloys 

The improved models also were used to investigate 
the effects of mole ratios of Y to Zn on the strength of 
Mg-Zn-Zr-Y alloys. As listed in Table 6, three 
Mg-Zn-Zr-Y alloys were chosen for the study. The mole 
ratio of Y to Zn is 0 for Mg-6Zn-0.5Zr, 0.1 for 
Mg-6Zn-0.4Zr-Y and 0.8 for Mg-4.6Zn-0.6Zr-4.7Y. The 
processing parameters of extrusion for Mg-Zn-Zr-Y 
alloys are the same: temperature is 400 °C, extrusion rate 
is 1.25 m/min and mole ratio is 25. 
 
Table 6 Mg-Zn-Y-Zr alloys with different mole ratios of Y to 
Zn 

w/% 
n(Y):n(Zn)

Zn Zr Y Mg 
0 6.0 0.5 0 Bal. 

0.1 6.0 0.4 1.0 Bal. 
0.8 4.6 0.6 4.7 Bal. 

 
According to Ref.[16], the coexisting of Y and Zn 

atoms will introduce W phase (W-Mg3Y2Zn3), long 
period structure (LPS-Mg12YZn) and quasicrystalline 
phase (I-Mg3YZn6). All of these phases and MgZn2 
have contribution to mechanical properties, and the 
contributions from high to low are: W+LPS, W+I, 
MgZn2. According to their results, the phases in 
Mg-Zn-Y-Zr alloys with different Y to Zn mole ratios 
are given in Table 7.  

Figure 4 shows the predicted UTS and YS results by 
the improved model as well as experimental work of 
Mg-Zn-Zr-Y alloys. It can be seen that the predicted 
strengths are consistent with the experimental data, and 
the UTS and YS are continuously improved as the Y to  

 
Table 7 Phases in wrought Mg-Zn-Y-Zr alloys with different Y to Zn mole ratios 

n(Y):n(Zn) Alloy Phase 
0 Mg-6.0Zn-0.5Zr α-Mg+MgZn2 

0.1 Mg-6.0Zn-0.4Zr-Y α-Mg+W-Mg3Y2Zn3+I-Mg3YZn6(quasicrystal) 
0.8 Mg-4.6Zn-0.6Zr-4.7Y α-Mg+W-Mg3Y2Zn3+LPS-Mg12YZn  
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Fig.4 Predicted mechanical properties vs experimental     
data of Mg-Zn-Zr-Y alloys with different mole ratios of Y    
to Zn 

Zn mole ratio increases. The results reveal that the 
improved models can be used to develop new types of 
high strength extruded Mg-Zn-Zr-Y alloys by 
investigating the effects of Y to Zn mole ratios on the 
strengths. 
 
3.3 Development of high strength extruded 

Mg-Zn-Zr-Y alloys 
In order to obtain the best mechanical properties 

and the corresponding alloy compositions for high 
strength extruded Mg-Zn-Zr-Y alloys, the improved 
models were used to investigate the relationships 
between alloy compositions and mechanical properties 
under fixed experimental conditions. Considering the 
actual situation of experiment and production, the design 
for Mg-Zn-Zr-Y alloys is given in Table 8. 

Fig.5 shows the trend graphs according to the 
predicted results, which show the changes of mechanical 
 

Table 8 Design for Mg-Zn-Zr-Y alloys 
w/%  Processing parameter 

Zr Zn Y Mg  Homogenization Extrusion Aging 

0.45 
0−10.0,  

interval 1.0 
0−4.0,  

interval 0.2 
Bal. 

 
 

Temperature 390 °C, 
time 24 h 

Temperature 390 °C, 
Extrusion rate 1.75 m/min, mole ratio 55 

Temperature 170 °C, 
time 24 h 

 

 

Fig.5 Relationship between alloy compositions 

and mechanical properties of Mg-Zn-Y-Zr 

alloys 
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properties of Mg-Zn-Zr-Y alloys with different Y and Zn 
contents. Therefore, the satisfactory mechanical 
properties and the corresponding alloy compositions can 
be concluded from Fig.5. Thus, the best mechanical 
properties shown in Table 9 under the fixed experimental 
conditions can be obtained when the alloy compositions 
are Mg-7.0Zn-0.45Zr-3.0Y. In this case, the optimum 
mechanical properties are 376 MPa for UTS, 318 MPa 
for YS and 19% for elongation, which need to be verified 
in the future experiment. 
 
Table 9 Relationship between alloy compositions and 
mechanical properties of Mg-Zn-Zr-Y alloys 

Composition 
Condition 

w(Zn)/% w(Y)/% 

7.0−9.0 2.5−3.5 

<7.0 3.0−3.5 Experiment 

<8.0 2.0−3.0 

Optimum 7.0 3.0 

Mechanical property 
Condition 

UTS/MPa YS/MPa Elongation/%

>350   

 >300  Experiment 

  20 

Optimum 376 318 19 

 
4 Conclusions 
 

1) The improved parameters of ANN models for 
predicting UTS, YS, and ELO of magnesium alloys are 
obtained by training of all the parameters used 
commonly with all permutations and combinations. 

2) The prediction models with higher accuracy for 
UTS, YS, ELO of magnesium alloys can be built 
systematically by using the improved parameters. 

3) The improved models were used to predict the 
mechanical properties of Mg-Zn-Zr alloys. Compared 
with previous works, the predicted results are found to be 
better agreement with the experimental data. 

4) The improved models were applied to predicting 
the mechanical properties of Mg-Zn-Mn alloys and 
Mg-Zn-Y-Zr alloys successfully. All the applications of 
improved models indicate that the models can be used to 
develop new types of wrought magnesium alloys. 
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改进的神经网络模型在变形镁合金发展中的应用 
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摘  要：采用更为合理的建模参数，将预测变形镁合金力学性能的神经网络模型进行改进，并将此模型用于发

展新型镁合金；对所有建模参数以全排列组合训练的方式构建模型，并通过比较这些模型的预测误差及相关系

数来确定最合理的建模参数。模型的应用主要有 Mg-Zn-Mn 和 Mg-Zn-Y-Zr 两种合金。运用改进后的模型对

Mg-Zn-Mn 合金的力学性能进行预测，研究 Mg-Zn-Y-Zr 合金中 Y/Zn 摩尔比对强度的影响。最后，还利用此模

型发展了一种高强挤压态的 Mg-Zn-Y-Zr 合金。结果表明：模型预测值与实验值吻合较好，改进后的模型可以用

于发展新型变形镁合金。 

关键词：镁合金；人工神经网络；模型；力学性能 
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