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Abstract: Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more
reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing

prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training
of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of
mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were
investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength
extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can

be used to develop new types of wrought magnesium alloys.
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1 Introduction

Magnesium alloys are becoming increasingly
attractive for potential use in a wide range of structural
applications, including the automotive, transportation,
aeronautical and aerospace industries, due to their low
density, good machinability, favorable recycling
capability and excellent damping capacity. However, the
mechanical properties of magnesium alloys still could
not satisfy the demands of some important application
fields. For example, only some parts can be produced by
using magnesium alloys in vehicles currently[1-5]. In
order to improve the mechanical properties of
magnesium alloys, new types of magnesium alloys have
been being developed, but conventional methods for
developing new alloys need to spend a lot of effort and
time[6—9].

Because of the non-linear relationship among alloy
composition, processing parameters and mechanical
properties, it is hard to describe the functional
relationship of these variants using only one equation. In

this case, artificial neural network (ANN) seems to be
suitable for modeling non-linear processes by means of a
large-scale parallel-distributed information processing
system, which contains many interconnected neurons[10].
It may be helpful in predicting mechanical properties of
magnesium alloys.

In recent years, the models based on neural network
technique are used increasingly in magnesium alloy
research field[6,11-14]. However, the modeling
parameters are mainly dependent on human experience.
It is very difficult to establish high precision models
systematically. In the present work, a new method to
obtain  parameters with all permutations and
combinations training has been developed for improving
ANN models. And then, the models have been used to
investigate the mechanical properties of Mg-Zn-Mn
alloys and Mg-Zn-Y-Zr alloys successfully.

The aim of the present study was to apply ANN
models to predicting mechanical properties for
developing new types of magnesium alloys. Considering
the common mechanical properties types of magnesium
alloys, three ANN models for predicting ultimate tensile
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strength (UTS), yield strength (Y'S) and elongation (ELO)
were built, respectively. All of the models have the same
structure: three layers with a full connected multilayer
feed forward neural network. The general scheme of the
models is given in Fig.1. The input parameters of ANN
models are processing parameters and alloy composition,
including the commonly used alloying elements in
magnesium alloys, namely Al, Zn, Mn, Zr, Y, Ce, Si, Be,
Cu, Ni, Fe and Ca, etc. Meanwhile, the output
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Fig.1 Schematic diagram of models for prediction of

mechanical properties of magnesium alloys

The performance of an ANN model depends upon
the dataset used for its training. Therefore, for reliable
neural network model a significant amount of data as
well as powerful computing resources are necessary[15].
In the present work, all the data of magnesium alloys for
model training are from the database of the National
Engineering Research Center for Magnesium Alloys of
China. The neural network models were designed and
trained by using the Matlab 7.4 version on a personal
computer with 4-core CPU and 2G memory.

2 Improvement of ANN models

2.1 Improved parameters

Different modeling parameters have important
influence on the predicted results. The improved
parameters, including preprocessing styles, number of
hidden layer neurons, transfer functions and algorithms,
have been confirmed by comparing prediction errors and
relativity values of models, which have been built with
all the parameters used commonly (see Table 1) with
training of all permutations and combinations. Therefore,
there is a total of 2 016 (4x28%x3x3x2) combinations of
the common parameters.

Each kind of parameter combination was trained
five times by computer programming. Then, the
average errors and the mean relativity values of models

were calculated according to the five results for each
combination. Finally, the improved parameters can be
obtained by comparing the average errors and the mean
relativity values of models. It can be seen that all of the
improved parameters for models are the same except the
number of hidden layer neurons is 7 for UTS, 15 for YS,
and 14 for ELO, respectively. If using these parameters,
the models can achieve the average accuracy shown in
Table 2 easily. Moreover, it also can be seen that the
ELO model has the lowest average accuracy. This may
be due to the different discrete degrees of UTS, YS and
ELO data for training. The ELO data are generally
concentrated between 0 and 20%, while the UTS and YS
data are concentrated between 250 MPa and 350 MPa.
The fitting is more difficult for the data with greater
discrete degree, so it is the lowest average accuracy for
ELO.

Table 1 Selected common parameters for training of all

permutations and combinations

Common value Number

[0.15, 0.90], [0.10, 0.90],
[0.01, 0.99], [0, 1]

Parameter

Preprocessing style 4

Number of

hidden layer neurons From 3 to 30, interval 1 28

Transfer function

(input layer-middle layer) logsig, tansig, purelin 3

Transfer function logsie. tansie. purelin 3
(middle layer-output layer) S8, &P

Algorithm trainbr, trainlm 2

Table 2 Improved parameters

Parameter UTS YS ELO
Preprocessing style [0, 1] [0, 1] [0, 1]
Number of
hidden layer neurons 7 15 14
Transfer function tansi tansi tansi
(input layer-middle layer) ansig ansig ansig
Transfer function loosi loosi logsi
(middle layer- output layer) 0gsig OES1E 0818
Algorithm trainlm trainlm trainlm
Average error of 213 238 1452

five times/%

Mean relativity

value of five times 0.92 0.96 0.89

2.2 Improved models

The UTS, YS, ELO models have been built by
using the improved parameters. After training several
times, many improved UTS, YS, ELO models can be
obtained, respectively. Most of the average errors of
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models are lower than those shown in Table 2 and the
relativity values are higher than the corresponding values
in Table 2 at the same time.

The best models are shown in Fig.2. It can be seen
that all the three ANN models have good performance on
predicting mechanical properties of magnesium alloys,
especially the YS model has the best fitting results. The
relativity values are 0.96 for UTS, 0.97 for YS, and 0.92
for ELO. Obviously, the three values are higher than the
corresponding average ones shown in Table 2.
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Fig.2 Predicted mechanical properties for magnesium alloys
with improved models vs experimental data: (a) UTS; (b) YS;
(¢) ELO

2.3 Comparison of previous models and improved

models

Compared with the previous best models using
parameters from conventional random selection [16], the
models have higher accuracy and can be built
systematically by using parameters from training of all
permutations and combinations. Table 3 lists the
different results from the previous and improved models.
It is easy to see that the accuracy of models can be
improved further if using the parameters from training of
all permutations and combinations.

Table 3 Results from previous models and improved models

Mechanical Relativity o
property Type value, R Mean error/%

Previous 0.95 1.80

UTS
Improved 0.96 1.49
Previous 0.97 2.10

YS

Improved 0.97 1.99
Previous 0.91 14.60

ELO
Improved 0.92 13.60

The improved models also were used to predict the
mechanical properties of Mg-Zn-Zr alloys in order to
compare with previous models. Fig.3 shows the
predicted results from the previous models and improved
models as well as experimental work. T6-500-3 means
that the solution temperature is 500 °C and the holding
time is 3 h. For all the T6 treatment, the aging
temperature is 180 °C and the holding time is 24 h. The
predicted results from the improved models were found
to have better agreement with the experimental data,
which reveals that the improved model can be used to
develop new types of magnesium alloys.

3 Application of improved models

3.1 Prediction of mechanical properties of Mg-Zn-Mn
alloys

The improved models were used to predict the
mechanical properties of Mg-Zn-Mn alloys. The alloy
composition and processing parameters are designed, as
listed in Table 4.

Table 5 lists the results from the improved models
as well as experimental work. Good results can be

Table 4 Composition and processing parameters of Mg-Zn-Mn

alloys
w/% Temperature/ Extrusion Mole
Zn  Mn Mg °C rate/(m'min"")  ratio
5 1  Bal 390 1.5 25
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Fig.3 Predicted and experimental values of mechanical
properties of Mg-6Zn-0.5Zr alloys under different conditions

Table 5 Predicted and experimental values of mechanical
properties of Mg-5Zn-Mn alloys

Mechanical property ~ Prediction Experiment Error/%
UTS/MPa 356 312 14
YS/MPa 232 235 1
ELO/% 13.0 13.3 2.3

obtained for the prediction of YS and ELO, and
acceptable results can be predicted for UTS. It is
suggested that the models can be used to develop new
types of wrought magnesium alloys by predicting
mechanical properties.

3.2 Effects of mole ratios of Y to Zn on strength of
Mg-Zn-Y-Zr alloys

The improved models also were used to investigate
the effects of mole ratios of Y to Zn on the strength of
Mg-Zn-Zr-Y alloys. As listed in Table 6, three
Mg-Zn-Zr-Y alloys were chosen for the study. The mole
ratio of Y to Zn is 0 for Mg-6Zn-0.5Zr, 0.1 for
Mg-6Zn-0.4Zr-Y and 0.8 for Mg-4.6Zn-0.6Zr-4.7Y. The
processing parameters of extrusion for Mg-Zn-Zr-Y
alloys are the same: temperature is 400 °C, extrusion rate
is 1.25 m/min and mole ratio is 25.

Table 6 Mg-Zn-Y-Zr alloys with different mole ratios of Y to
Zn

n(Y):n(Zn) W%
Zn Zr Y Mg
0 6.0 0.5 0 Bal.
0.1 6.0 0.4 1.0 Bal.
0.8 46 0.6 47 Bal.

According to Ref.[16], the coexisting of Y and Zn
atoms will introduce W phase (W-Mg3Y2Zn3), long
period structure (LPS-Mgl2YZn) and quasicrystalline
phase (I-Mg3YZn6). All of these phases and MgZn2
have contribution to mechanical properties, and the
contributions from high to low are: WHLPS, W+,
MgZn2. According to their results, the phases in
Mg-Zn-Y-Zr alloys with different Y to Zn mole ratios
are given in Table 7.

Figure 4 shows the predicted UTS and Y'S results by
the improved model as well as experimental work of
Mg-Zn-Zr-Y alloys. It can be seen that the predicted
strengths are consistent with the experimental data, and
the UTS and YS are continuously improved as the Y to

Table 7 Phases in wrought Mg-Zn-Y-Zr alloys with different Y to Zn mole ratios

n(Y):n(Zn) Alloy Phase
0 Mg-6.0Zn-0.5Zr o-Mg+MgZn,
0.1 Mg-6.0Zn-0.4Zr-Y a-Mg+W-Mg3Y2Zn3+I-Mg3YZn6(quasicrystal)
0.8 Mg-4.6Zn-0.6Zr-4.7Y a-Mg+W-Mg3Y2Zn3+LPS-Mgl12YZn
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Table 8 Design for Mg-Zn-Zr-Y alloys
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Zn mole ratio increases. The results reveal that the
improved models can be used to develop new types of
high strength extruded Mg-Zn-Zr-Y alloys by
investigating the effects of Y to Zn mole ratios on the
strengths.
3.3 Development of extruded
Mg-Zn-Zr-Y alloys

In order to obtain the best mechanical properties
and the corresponding alloy compositions for high
strength extruded Mg-Zn-Zr-Y alloys, the improved
models were used to investigate the relationships
between alloy compositions and mechanical properties
under fixed experimental conditions. Considering the
actual situation of experiment and production, the design
for Mg-Zn-Zr-Y alloys is given in Table 8.

Fig.5 shows the trend graphs according to the
predicted results, which show the changes of mechanical

high strength

wi% Processing parameter
Zr Zn Y Mg Homogenization Extrusion Aging
0-10.0, 0—4.0, Bal Temperature 390 °C, Temperature 390 °C, Temperature 170 °C,
al.

interval 1.0 interval 0.2 time 24 h

Extrusion rate 1.75 m/min, mole ratio 55 time 24 h

Ultimate tensile strength/MPa
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Fig.5 Relationship between alloy compositions
and mechanical properties of Mg-Zn-Y-Zr
alloys
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properties of Mg-Zn-Zr-Y alloys with different Y and Zn
Therefore, the satisfactory mechanical
properties and the corresponding alloy compositions can
be concluded from Fig.5. Thus, the best mechanical

contents.

properties shown in Table 9 under the fixed experimental
conditions can be obtained when the alloy compositions
are Mg-7.0Zn-0.45Zr-3.0Y. In this case, the optimum
mechanical properties are 376 MPa for UTS, 318 MPa
for YS and 19% for elongation, which need to be verified
in the future experiment.

Table 9 Relationship between alloy compositions and
mechanical properties of Mg-Zn-Zr-Y alloys

.. Composition
Condition
w(Zn)/% w(Y)/%
7.0-9.0 2.5-3.5
Experiment <7.0 3.0-3.5
<8.0 2.0-3.0
Optimum 7.0 3.0
o Mechanical property
Condition -
UTS/MPa YS/MPa  Elongation/%
>350
Experiment >300
20
Optimum 376 318 19

4 Conclusions

1) The improved parameters of ANN models for
predicting UTS, YS, and ELO of magnesium alloys are
obtained by training of all the parameters used
commonly with all permutations and combinations.

2) The prediction models with higher accuracy for
UTS, YS, ELO of magnesium alloys can be built
systematically by using the improved parameters.

3) The improved models were used to predict the
mechanical properties of Mg-Zn-Zr alloys. Compared
with previous works, the predicted results are found to be
better agreement with the experimental data.

4) The improved models were applied to predicting
the mechanical properties of Mg-Zn-Mn alloys and
Mg-Zn-Y-Zr alloys successfully. All the applications of
improved models indicate that the models can be used to
develop new types of wrought magnesium alloys.
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