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Fig. 1 Flow diagrams of traditional method(a) and one-step synthesis method(b) for producing thermal unstable and readily

water-soluble metal ammonium salts
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Fig. 2 XRD patterns of two ammonium salts prepared by one-step synthesis method for different reaction times at 313 K:
(a) (NH4)2Mo0Os4 (molar ratio of NH3 to MoOs: 3:2); (b) (NH4)2CrO4 (molar ratio of NH; to CrOs: 2:1)
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Table 1 Possible reaction equations of modular assembling process by (NH4)2M04O13

Reaction with oxygen free radical

Reaction with ammonium oxide free radical®

7Mo,0}; +50"=4Mo,05,
Mo,07; + 0" =2Mo, 03"
2Mo, 0%, + 0" ="7Mo, 03"
Mo,0%” + 0" =2Mo0;"
Mo,07; +30"=4MoO;"

7(NH4)2M040O13+5(NH4)20=4(NH4)sM 07024
(NH4)2Mo04013+(NH4)20=2(NH4)2M0207
2(NH4)sM07024+(NH4).0=7(NH1)2M 0207
(NH4)2M0207+(NH4)20=2(NH4)>M00O4
(NH4)2M04013+3(NH4)20=—=4(NH4)>M 0O+

1) Oxygen free radical index is consistent with ammonium oxide free radical index during modularity splitting process

CrOs+2 (NH4)20:(N H4)2Cr04

DRI, FEIE4IRFE T, #%EEiR NHs 5 MoOs B¢
NH; 5 CrO; ) B /R L (NH4HCOs H1 ) NH; 55 1 )44
H1 MoOs 8% CrOs I EE/R EL)FELLE, NHHCOs 548
WA DR AR T IE R M S SR P HE— S
AT 2 H br 4 @ g dh

2 —HEHERAME BIRERRIE

2.1 RE-ZHRSH

NT SR LR E R G- ik 5KiE
MBI, 2 ET RS Ny SR
Fih 4> JB 4 Th AT 7 TG-DTA 43 #r, 45 R4 3 fior .
B AP M8 ] SDTQ650 L # oA Al £
THER#E Y 3 K/min, & il il B2y 783.1.5 K.
2 N 3 PR oy il PR AN FE S ALE % 53 id 52 SR
(1 5% i PEE (T D B AL 2R (A

(NH4):MoO4 B3 ffEH 4 ANBTE(ILE 3(a)fi
(b))e MR T (273~320 K)IFI5E A5 2 AT RE AR AE K
AR b EAKIHIR . FEZSM N AR, B—
WL AR UG 1) B o 43 AR FE (407 KR 409 KA B 452 2%
R(17.21%F 16.83%)EAFAF (WK 2, ),
X (NHs):MoO4 B JHHE 73 NH3 Al HoO A B
(NH4)2Mo30y10 W 2. tFHEHE R ERMK RN
17.69%, 5525045 RVIEHUTF . 55 FIEE =M Hhuég
(W 2, B FI5E =HrB) FEZH(NHa)2MozO10 77
fiE N(NH4)2Mo4013, FFiE— 58248 MoOs 1)
R SEPURCARIE (LR 2, SEUURY B ARE & iR
R A MoOs #4629 h-MoOs il 0-MoOs, FH KA
WEJE R AR MosOn I FEUS. 25 B4 b vl i,
(NH4)2MoOq ¥ i 153 R I 2 A

(NH4):M0oO4 —2=4K 5 (NH4)Mo0309 —22210K

(NH4):Mo04013 —12%2X_5 MoO;

— 35 A A ) 4 1 (NH,).MoOy 77 i #4443 fift ik
T HH R A e AR AR D6 1) 57 B R 25 B B ) ol %
%, 5 KOVACS A FAH Luig A AR . 1X 7] R
& T AS R 7 V814 1 (NH.)2MoOy 4 T S A7 AE
Z5, HCHRA BB B A iR FE & STD
2960 [F]22 TGA/DTA #or Hr AT I &, T A% SCHY
TG-DTA k2 i SDT650 TG-DTA {3l & 2 ]«

HE 3(c)M(d)f) TG-DTA HiZkrl &1, 25 M
N S5 (NH4)2CrOs [R50 DU ANB B 55—
TG 1) 5t v A3 AR UL BE LT AN 32 5 ] A 4 fl ) <A
MmN 3, F—FE), iR H(NH):2Mo04
2% 2 mol Al NH; #1 1 mol HoO 2 1(NH4),Cr,07
SN, FERREZS SRR Ny R B AR R 50N
15.87%F1 16.67%. & ~/NiGAIE HBLTE 479.14 K
FAAF)M 481.95 K(N2 K404, N
(NH4)2Cr207 53R CrOs [ B 2428 S i
FEFE 2 516.68 K(N, SR IR EF & 521.05 K,
OIS = AN B B g, St R BN
CrO; SEA 53R 9 CrO; I 8L, {23 72 (1) 3118 i
KA (16.00%) 5 L FRAA(7.78% T 2 A
9.35% T No ) ABKZE R, W R A5 CrOs
IHEN CrO2e H¥EINN, CrOs 73l CrO2
IE R 2 AR At P (RS SE A, Bl CrsOo
(2Cr20;3-CrOx)!8, Cr0s. Cr;0sM, B Cra(CrO4);
(CrO22)R20 21, i [ A58 S AL W I B LR T i B i
VSRR o B8 DY RCARIE N T 687.09 K(Z A AR)
A1 720,95 K(N> SR)E, ZSFENA CrO, 4N
Cr203 IR, AH H T35 = AR B 1A A5 55 AL
YIRIAE R, PR R I R B K R (7.04% T
TRART . 441%T No SRR T 9.5%M



3638 HHEA SR AR 20214E12 A

@ — Mass ®) 11
100 | — Temperature difference’| 4 100 - v
L. > % 98.44% {10 ®
o Aot/ \/s17.98K £ = 12 2 2
=90+ 53638 K 645.83 K g = %
3 £ 290r 51627 K 11 &
S 10 5 B — Mass S
L g0t g 8 /\ ,— Temperature difference | _ =
Z 1-2 % 280 e ? %
= 8 = =)
70 - £ : 13 &
4= doo VTS =
70+ / 72.03%
409.68 K 1-4
60 1 L 1 L L L _6 n 1 Il 1 1 1
300 400 500 600 700 800 300 400 500 600 700 800
Temperature/K Temperature/K
c 516.18 K d
1009 #79.14K, ) 14 100 (&) 1
O\ N v 720.95 K~ v
94.03%
90r 12 8 90f JL lo 8
X 80 78.16% 5 3 5
E 16%  — Mass . lo % %80- -—1%
2 50l — Temperature difference 5 7 — Temperature difference o
g 2 D70t 128
2 61.37% 128 2 g
S o0 53.59% g =60l 13 g
o 14 = =
50—— R B8SA2KeV T 14
0 4736% ] 50 5235%
1 L 1 1 1  § o= 1 1 1 1 1 1 _5
300 400 500 600 700 800 300 400 500 600 700 800
Temperature/K Temperature/K

3 PR e R ARG NI TG-DTA HiZk
Fig. 3 TG-DTA curves of two metallic ammonium salts under different atmospheres: (a) Air, (NH4)2Mo0O4; (b) N2,
(NH4)2Mo0Oy4; (c) Air, (NH4)2CrO4; (d) N2, (NH4)2CrO4
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Table 2 Thermal decomposition data of (NH4)2Mo0Os4 in various atmospheres

Ist step 2nd step 3rd step 4th step
Atmosphere
Tw/K Am/% Tw/K Am/% Tw/K Am/% Tw/K Am/%
Air 407.09 17.21 517.98 3.02 536.38 5.09 645.83 -
N2 409.68 16.83 516.27 3.93 543.55 5.65 660.70 -

Tm: Maximum decomposition temperature; : Mass loss at different decomposition stages.

3 (NHa)CrOs 7623 S F Ny SR H IR i K di

Table 3 Thermal decomposition data of (NH4)2CrOs4 in various atmospheres

Ist step 2nd step 3rd step
Atmosphere
Tw/K Am/% Tw/K Am/% Tw/K Am/%
Air 500.92 20.90 523.04 12.94 690.72 5.06
N 505.08 21.14 523.75 15.87 726.80 2.03

Twm: Maximum decomposition temperature; : Mass loss at different decomposition stages.
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Fig. 4 FTIR spectra of precursors and two metallic ammonium salts prepared by one-step approach: (a) (NH4)2Mo04O13;

(b) (NH2)2MoOy; (c) CrO3; (d) (NHs)2CrO4



3640

hEA OG8RI

20214E12 A

—C—X R MERERRSBN, W TR I SRR M B )
PRBN(APJE T MBI AE AR, Wb R kA48 1), 8
WA BRI R, S5A PR &R ks
PRI RR AR ILHEAT T H 2k, i 5 FioR.

FH I 5(a) AT %1, (NHa)aMoOs 7 2 6 1 K
£ 400 em™ BAF IR BHIE A Mo—O £ 1) 5 # 4R 31,
K 800~1000 ecm ™! [X 35k IR BN U4 S Mo=0 £ ¥ X
PR IR B FIAER AR AN AR BN, X LeHR B 1) 7
5 SCHR[24-26 1B I FE A —F . 3K 4 FTF18 MoO;
BT FERSEEREAT)E, FEAERAR
SR B IVEPER) Ay A1 By WM IRENEE L, HH T
(NH4):MoOs4 s A 55 5 11 %7 F% M, 78 &y 3 4L
(800~1000 cm M)Ak HY B 4 ARSI Ay A g o FR 1 48
TR BN RS MR AR BN (vs T vas), TR I BOAL H 3N
(MRS Uy Ag N Bog 25 RSN (0), BE25 A5 30wk

[26]#iE F A —3K .

HHE 5(b)af 1, (NHa)2CrOs 47 2 Y61l H BT
WU PRI B 5 (NH)aMo O F23IT , 1X -5 FLARBUR f 1
GERIAE D% FHUERTED, P 410 em™ LR RS IE
N Cr—O # HiHRES0, 1M 800~1000 cm™' XI5
PRBhE N Cr=0 B FRFIAEXS BRIP4 k30 & 5
Finh Cro; B F R B h i tiRan U8, 5
CARTER ZEPTHF 78 FR CrO; 347 2 6 e R 2 I
I B 5645

2.4 FESEM ={E

T BHATIRAR S NH4HCOs — 256 Bt
B YERT, RH IMS-7900F %!
RS BB X (NH4)2MoO4 A (NHa)2CrO4
AR TS EAT 04, a6 s

890.61
(@ ;
(al) (0]
3 [
g O=—Mo—O" NH;
2 Q
- =
823.23 311.41 =
I805.21 330.67)
933.10) w %
WU i
vof Mo=Obonds  J of Mo—O bonds
1500 1000 500 200
Wavenumber/cm !
b 845.46 bl
(b) (bD) r
O——Cr—O NH;
5 877.00
S : Q
& Z
[}
£
344.32
380.58 ;
v ofICr—O bonds ) qf Cr—O bonds
1500 1000 500 200
Wavenumber/cm™

5 DA A P R R R 1 B 2O 1R

Fig. 5 Raman spectra of two metallic ammonium salts prepared by one-step approach (v—Symmetric and asymmetric
stretching vibrations; 6—Bending or rocking vibrations): (a), (a1) (NH4)2MoOs4; (b), (b1) (NH4)2CrO4



H31 B 120 VAR, . S OME S KIEYE SRR — P ik % 3641

R4 MoO; T EEH 23 RN AR

Table 4 Assignments of Raman-active vibrational modes for MoO;:"

Wavenumber/cm!

. o Symmetry Assignment

933.10 896 Ay vs of Mo—O bonds in [MoO4]*
890.61 842 A, vas of Mo—O bonds in [MoOa4]*
823.23 834 Ag vas of Mo—O bonds in [MoOa4]*
805.21 807 Ag vas of Mo—O bonds in [MoO4]*
357.94 361 Ag

- 337 Ag
330.67 327 Ag 6 of Mo—O bonds in [MoQ4]*
311.41 323 By

- 285 Ag

o0: bending vibration; v.s: asymmetric stretching vibration; vs: symmetric stretching vibration; vexp: measured wavenumbers of

MoO4% ion; veer: wavenumbers of MoO4?” ion in research article of DING Ya-ni, et al?®!

&S5 Cro; BT EEN SRR AR

Table 5 Assignments of Raman-active vibrational modes for CrO;

Wavenumber/cm™'
Symmetry Assignment
Vexp Vret[ 27
877.00 879 2A44+Bs vs of Cr—O bonds in [CrO4]*
845.46 846 2A44+Bs vas of Cr—O bonds in [CrO4]>
406.64 409 AgtBg
380.58 381 AgtBg 6 of Cr—O bonds in [CrO4]*
344.32 344 AgtBg

o0: bending vibration; va.s: asymmetric stretching vibration; vs: symmetric stretching vibration; vexp: measured wavenumbers of

CrO;  ion; veer: wavenumbers of CrO;  ion in research article of CARTER et all*”)

6 — AL & AW I B K FESEM 1R
Fig. 6 FESEM images of two metallic ammonium salts synthesized by one-step approach: (a) (NH4)2Mo0Os4; (b) (NH4)2CrO4

H1&l 6 I, (NHa):MoOs Fh R E R HEB AR 5 # HOIX S8 8 Jm ¥ Eh A2 A OB 3 1 5% 45 ik
REH, ZJE (NHa)MoOs it Fr B S HER; 1 WIS HP M AAAE €20, DK BIREER2
(NHa)2CrOs d RN 2ARME R ARG, FfESE  ARIEHRNY 5 S AL RTTH . 5356, (NHa):MoOs
EHERR AR SR IDEIT B UM HEAE G M FM(NHa)2CrOs S A FARANIZ 2 AR H R, th
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One-step approach for preparing thermal unstable and
readily water-soluble metal ammonium salts

YANG Li-qun, ZHOU Qiu-sheng, PENG Zhi-hong, LIU Gui-hua, QI Tian-gui, LI Xiao-bin

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: Thermal unstable and readily water-soluble metal ammonium salts, such as ammonium monomolybdate
and ammonium monochromate, exhibit many important application values, but few related preparation studies
have been reported due to their complicated preparation processes and harsh storage environment. In this work, we
proposed a simple approach for preparing these salts by the reaction of corresponding metal compound precursors
(ammonium tetramolybdate ((NH4)2M04O13) or chromium trioxide (CrOs)) with ammonium bicarbonate powder in
an enclosed environment. The results of X-ray diffraction patterns, thermogravimetry and differential thermal
analysis curves, Fourier transform infrared spectroscopy and Raman spectra show that, these metal ammonium
salts synthesized by this novel approach are well consistent with the expected target products. The proposed
one-step approach for preparing metal ammonium salts has potential advantages such as simple operations,
cost-effectiveness and high efficiency, and may develop a new methodology for the syntheses of such substances.

Key words: thermal unstable and readily water-soluble metal ammonium salts; ammonium monomolybdate;

ammonium monochromate; one-step approach; ammonium bicarbonate
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