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Fig. 9 SEM/BSE micrographs of iron-rich phases (deposited at wire feed speed of 6 m/min): (a) Particle 1; (b) Particle 2;

(c) Particle 3; (d) Particle 4
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Table 1 Element content of iron-rich phases with different

morphologies shown in Fig. 9

Particle Molar fraction/%

No. Cu Fe Cr Al Ni

1 1642 63.72 13.62 4.80 1.40
2 8.26 72.88 1039 6.76 1.71
3 5.99 73.54 1191 6.19 1.38
4 5.22 76.41 11.64 5.77 0.97
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Fig. 12 Microstructures of different bottom region (a), middle (b) and transiton region (c) to top region (d) in 16th deposit of

additive manufactured sample
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Microstructure and properties of additive manufactured
Cu-Al bronze alloy on St-St substrate using CMT arc as heat source

CHEN Mao-ai, ZHANG Jian-hua, YU Xiong-bing

(Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing, Ministry of Education,
Institute for Materials Joining, Shandong University, Jinan 250061, China)

Abstract: The effect of process parameters on microstructure and properties of additive manufactured Cu-Al
bronze on St-St substrate was studied. The results show that a continuous layer of Fe-based solid solution forms
between the substrate and the deposit. In addition, isolated particles composed of Fe-based solid solution and FeAl;
are distributed in the additive manufactured Cu-Al Cu matrix. The thickness of the Fe-based solid solution layer
and the particle size and number increase with increasing wire feed speed. The shear strength between the substrate
and deposit increases with the increase of wire feed speed. The shear fracture does not propagate along the
Fe-based solid solution layer, but goes through the deposited metal near the substrata. The microstructure of each
deposited pass above the second layer are divided into three zones, i.e. coarse columnar grain zone, fine columnar
grain zone and mixed zone consisting of equiaxed and horizontal columnar grains. The wire feeding speed has little
effect on the mechanical strength of thin-walled specimen. The transverse tensile strength is about 390 MPa and the
longitudinal one is about 360 MPa. All the fracture surfaces exhibit dimple structure.

Key words: cold metal transfer; additive manufacturing; microstructure; mechanical property
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