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Fig. 3 Crystal structures of Cheverl phases: (a) Gray rectangling representing MosSg blocks, comprising Mo, octahedra

enclosed within Sg cube!"™; (b) Three different cavity sites formed by MogSs blocks stacked"™; (c) Schematic illustration of

diffusion distances between cavity sites®; (d) Charge-discharge curves of MoSs cathode®; (e) Mechanism of interphase

reaction between Mg and Mo4Sg from Cl -containing electrolyte
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Fig. 4 Structure of different oxides with Mg intercalation sites: (a) Schematic illustration of Mg2+ (yellow spheres) insertion

in two orthorhombic V,0s (a, ) lattices'*”; (b) Mg*insertion in layered xerogel V,0s-H,0"': (c) Schematic illustration of
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Fig. 6 Morphology diagrams of metal ion deposited on metal anodes: (a) Dendritic deposition; (b) Dense deposition
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Rechargeable magnesium batteries:
Development, opportunities and challenges
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Abstract: Rechargeable magnesium batteries (RMBs) are expected to be the preferred electrochemical devices for
large-scale energy storage technology under the vision of achieving carbon peak and neutrality goals. RMBs have
not been commercialized due to some key scientific questions and technical bottlenecks remain unresolved. In this
review, we introduced the advantages of safety and energy density of RMBs, and summarized the research history
and advances of electrolytes, cathode and anode materials in RMBs. The significant role of Grignard-based,
sulfonic acid and boron-based electrolytes in improving reversible deposition/dissolution as well as voltage
window of magnesium are discussed carefully. Meanwhile, the mechanism of magnesium ion storage of Chevrel
phase MogSs, sulfides and oxides are analyzed in detail. Then the intercalation cathode materials with high voltage
(such as spinel, layered and polyanion structure materials), conversion cathode materials with high capacity(such
as sulfur, oxygen and organic molecules) and activated carbon cathode with high power are introduced and
discussed. In addition, metals such as magnesium, magnesium alloys, bismuth and tin as well as graphite et al. as
anode are discussed from electrolyte/electrode interface reaction mechanism. Finally, the materials and devices
design and application scenarios of practical RMBs is summarized and prospected.

Key words: rechargeable magnesium batteries; electrolytes; cathode materials; anode materials; development and

challenge
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