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Fig. 1 Comparison of typical simulation results via different numerical methods: (a) Equiaxed dendrite simulated by PFM
and CAP"; (b) Columnar dendrites simulated by PFM and MEM"®!; (¢) Equiaxed dendrites simulated by DNNU®!
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Fig.2 Schematic diagram of formation process of micropores during solidification™"!
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Table 1 Comparison of different simulation methods of micropore
Model Comment Reference
It can predict the pore size but is inapplicable for complex
) ) ) ) ) . ) PIWONKA
I . Analytic solutions shaped industrial castings, and it cannot predict the ¢ 2]l
eta
formation, morphology, and distribution of the pores.
It can only be applied in some specific cases, and the
II.. Criteria functions accuracy is highly dependent on the alloys, casting NIYAMA et al®
techniques and geometries.
. It can predict the volume fraction, distribution and average
III . Darcy’s law coupled with the ] } ] ) 7]
. o . size of the porosity, but it cannot solve the interaction KUBO et al
conservation and continuity equations .
between microstructures and pores.
It considers the gas-diffusion-limited growth and can
IV . Hydrogen-diffusion-controlled pore achieve a good agreement with experiments, but it ignores ATWOOD
growth models the stochastic nucleation and shrinkage-driven growth of et al™!
pores.
V . Diffusion-controlled growth models It overcomes the limitations of Model IV and can solve the
coupled with stochastic nucleation (e.g., interaction between microstructure and pores, but the  LEE et al®™
CA) accuracy depends on the experiments.
It can simulate the growth and deformation of the pores,
L ) o KARAGADDE
VI. Level set method but it ignores the shrinkage effect and simplifies the bubble (195-99)
eta

shape.

VII. Phase-field method

It avoids the explicit tracking of the phase interfaces and
can obtain the evolution process of all phases, but the pore
nucleation is ignored and the computing efficiency needs to

be improved.
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Fig. 3 Schematic diagrams of interface structure: (a) Sharp interface; (b) Diffuse interface
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Fig. 5 Typical simulation results of dendrites under pure diffusion condition: (a;), (a,) 2D"** and 3D!"**! dendrite simulated
by KOBAYASHI; (b) 3D dendrite simulated by KARMA and RAPPEL!"*; (c) Solute field of Fe-Mn-C dendrite simulated by

CHA et al'*® (c,) and (c,) Distributions of Mn and C
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Fig. 6 Typical simulation results of dendrites under thermosolutal condition: (a) Solute field of one quarter of dendrite
simulated by WARREN et al'"*"; (b) Solute field of one quarter of dendrite simulated by LOGINOVA et al'"*"1; (c) One quarter

of dendrite simulated by RAMIREZ et al** **(Top and bottom quarters are dimensionless temperature and dimensionless

solute concentration); (d) Simulated dendrite simulated by ROSAM et al''*, (d) Left and right quarters being dimensionless

solute concentration and dimensionless temperature, (d,) Schematic diagram of adaptive mesh structure; (e) 2D multiple
dendrites simulated by GUO et al'"*¥; (f) 3D multiple dendrites simulated by WU et al'"*
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Fig. 7 Multiple dendrites under thermosolutal condition(a) and local enlarged image of two dendrites circled by dashed

line(b) simulated by ZHANG et al'"®"! (Number of mesh is equivalent to 8 X 10° in a single-level structure)
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Fig. 8 Typical simulation results of dendrites under forced flow (Arrows denote the flow velocity vectors): (a) Half dendrite
simulated by TONHARDT et al''*; (b) 3D dendrite simulated by LU et al''®® (Dashed lines denote the streamlines); (c)
Single dendrite simulated by MILLER et al'’*; (d) 3D multiple dendrites simulated by TAKAKI et al''”' (Colored lines
denote the streamlines); (¢) 3D columnar dendrites simulated by ZHANG et al''’®
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Fig. 9 Typical simulation results of dendrites under natural flow (Arrows denote the flow velocity vectors): (a) Solute field

of 2D equiaxed dendrite simulated by TAKAKI et al''®!; (b) Solute field of 2D columnar dendrites simulated by TAKAKI et
al'"™L; (¢) 3D equiaxed dendrites simulated by ZHANG et al'®!
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Fig. 10 Comparison of simulated dendrites under two kinds of forced flow modes'*”" (Magnitudes of velocities and forces

are marked at bottom-left corner of each subfigure): (a)—(d) Dendrite contour under velocity-imposed flow mode; (e)—(h)

A=1X107

Dendrite contour under force-induced flow mode

(2) (b)

1 GRS R T BB s A 2R

Fig. 11 Typical simulation results of dendrites under thermo-solute-convection condition: (a) Half dendrite simulated by
LAN et al'"™ (Left and right parts are solute field and dendrite contour. Arrows denote the flow velocity vectors); (b) 2D
multiple dendrites simulated by GUO et al'"”; (c)—(d) 3D multiple dendrites simulated by ZHANG et al'"** ((c), (d) Solute

field and dendrite contour(Arrows denote the flow velocity vectors)
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Table 2 Comparison of different phase-field methods of eutectic microstructure

Time Model

Comment

1994

KARMAP™

It is limited to ideal eutectic with a symmetric phase diagram, and
non-equilibrium effect exists at the interface.

2000

DROLET et al®®”!

It can solve diffusion-limited growth, lamellar growth, and spinodal
decomposition but cannot predict the tilting and oscillatory growth at a
larger lamellar spacing.

2000

NESTLER et al*'”

It is limited to ideal eutectic with a symmetric phase diagram and can
identify lamellae spacing selection, but it introduces extra double-well
potential in interface energy.

2003-2005

Folch-Plapp?** ")

It introduces an antitrapping current and can achieve quantitative
simulations, but it is limited to the case with small Péclet number.

2004

KKSOP'!

It is based on interface field concept and equal chemical potential
condition and it satisfies force balance at the triple junction, but it can
only be applied at small undercoolings.

2005

Nestler-Garcke-Stinner!*™

It is derived from an entropy functional and can simulate multicomponent
alloys, but the interface thickness is dependent on the interface energy.

2006

Eiken-Bottger-Steinbach!*”!

It satisfies thermodynamic consistency and can  simulate

multicomponent multiphase systems, but it involves complex

thermodynamic calculations, and the interactions between the solute
components are dependent on the extrapolation scheme.

2012

Choudhury-Nestler!'**!

It is based on a grand-potential functional and decouples the bulk and
interface contributions, which improves the computing efficiency in
large-scale simulations, but it introduces the obstacle potential.
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Fig. 12 Typical eutectic simulation results under pure diffusion condition: (a) Solute field simulated by NESTLER et al

BELEE R EE 12
223 HoEEIET

AL PPM o3 £ Ja WK e DI RE A
gl PFM M JeBI 2 c iR B IRER . % &
B BA G FRAH B AL S SR i, HLAL
AR BN 7 E AR i 55 Y, K2 HOL R
FR AL KA ) 2 0 5 1 LA R A B ) A
. BEERALG E3E AHSEE BE R TR, RSz
BB Z BB IZHHE L, W CBry-CoCls A HLIE
fnP 0 Al-Cu 3L P2 ALST 5P Ti-Fe &
P20 12(d))s Ni-Zr LR 2205, 3R
VR R R WIMGE A RS
ot e SR SRR o G B P L Tl RS ) AR R
222722005 CBry-CoCle S A T SIS AR IEJE T
KEFR, FHHLIRRER =40 27, i 735
J2 A TB) B ) TR ML AR R 2 R AR (R DR R 2,
B 12(c)fR. B = o3t St 5o E R #ig £ ,
11 2015~2017 4F, HOTZER 25122 22872207 j 5 44
G 2800y A Al-Cu = Jrt i 10 5 1o ek i ik
FEIFR T KRBT, SR E KT N, Rl
eI BRI A KA, DR A Kl R AR i B
TESUEARET J 7 KRR, P 7 4 f =4
B EE R 25, AR Ag-Al-Cu = otk il
BRI 12(e).

© @)

o

=

[210].
b

(b) Labyrinth eutectic pattern under transverse temperature gradient simulated by PLAPP et al®'**'®l; (¢) 3D eutectic pattern

under different pulling velocities simulated by YANG et al*"’! ((c1) shows the lamellar pattern and (c,) shows the lamellar-rod
transition); (d) Ti-Fe eutectic pattern simulated by KUNDIN et al**” ((d,)—(d,) show the snapshots at different times); (e)

Ag-Al-Cu eutectic pattern simulated by HOTZER et al'**"
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Fig. 13 Diverse eutectic patterns ((a)—(c) show experiment results and (d)—(f) show corresponding simulation results):
(a) Colony pattern'™”; (b) Zigzag pattern™"; (c) Spiral pattern'*”); (d) Colony pattern simulated by PLAPP and KARMA™*;
(e) Zigzag pattern simulated by PARISI and PLAPP™'Y.; (f) Spiral pattern simulated by PUSZTAI et al'***
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Fig. 14 Eutectic patterns under thermosolutal and convection condition: (a) Solute field of lamellar eutectic under

thermosolutal condition™”; (b) Temperature field of lamellar eutectic under thermosolutal condition™”; (c) Solute field of

lamellar eutectic under natural flow”*? (Arrows denote the flow velocity vectors); (d) Solute field of lamellar eutectic under

forced flow*! (Arrows denote the flow velocity vectors)
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Fig. 15 Eutectic patterns under thermo-solute-convection condition: (a) Solute field of lamellar eutectic (Arrows denote the

flow velocity vectors); (b) Temperature field of lamellar eutectic; (c) Solute field of rod eutectic (Arrows denote the flow

velocity vectors); (d) Temperature field of rod eutectic
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Fig. 16 Typical simulation results of dendrite in presence of bubble: (a) Bubble in 2D dendrite array simulated by MEIDANI

et al®!; (b) Micropore in pure aluminum simulated by CARRE et al™"; (c) Pore surrounded by eight spherical solid grains
simulated by MEIDANI et al™”; (d) Pore entrapped by dendrite simulated by DU et al™®!
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Fig. 17 Interaction between dendrites and bubble (Arrows denote the flow velocity vectors): (a) Engulfment behavior and

bubble on top of dendrite tip®>’; (b) Entrapment behavior and bubble located between dendrites™>); (c) 3D bubble restricted

by dendrite skeleton"'*”!
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Fig. 18 Schematic diagrams of high performance computing scheme: (a) Adaptive finite element mesh structure!®”; (b)

Multiple GPUs parallel computing!”*; (c), (d) Parallel and adaptive mesh refinement ( (c) shows multilevel data structure and

(d) shows local enlarged image of dendrite circled by dashed line in (c). (d;) shows mesh structure and (d,) shows layout of

parallel processes!"*)
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Table 3 Comparison of high performance computing algorithms

Time Algorithm Comment Reference
1998 Semi-implicit Fourier-spectral method Solve long-range elastic interaction CHEN et al'***
) ) Solve phase field, solute field, temperature [156]
2002 Adaptive finite volume method LAN et al
field and flow field
o ) o Solve phase field, solute field and temperature [158]
2007 Implicit adaptive multigrid ROSAM et al
field

2013 GPU parallel computing Solve phase field, solute field and flow field TAKAKI et al**
2015 Parallel and adaptive mesh refinement Solve phase field, solute field and flow field GUO et al'"™!

Parallel and adaptive mesh Solve phase field, solute field, temperature [192]
2021 ZHANG et al

refinement-PF-LBM

field and flow field
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Phase-field modeling of microstructure and gas porosity evolution
during solidification of alloys: A review

ZHANG Ang"*?, GUO Zhi-peng’, JIANG Bin"? XIONG Shou-mei’, PAN Fu-sheng"*

(1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China;
3. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;

4. Beijing Supreium Co. Ltd., Beijing 100089, China)

Abstract: The properties of alloys are highly dependent on the solidified microstructures and could be deteriorated
by defects such as gas porosity. Uncovering the complex thermal-solute-convection interaction during
solidification is a prerequisite to control solidification process and to obtain materials with excellent properties.
With the development of computational materials science, numerical modeling is becoming an indispensable
method to investigate the underlying physics during solidification. This work reviews the recent progress on the
numerical simulation of alloy microstructure and gas porosity during solidification, especially on the phase-field
modeling in the dendrite, eutectic and porosity evolution. The development process is divided into several aspects
including from-qualitative-to-quantitative,  from-pure-to-multicomponent, from-binary-to-multiphase = and
from-single-to-multiphysics stages. Six categories of high performance computing algorithms in phase-field
computation are summarized and compared. The future direction can be focused on the development of the
sophisticated models, determination of the modeling parameters, and advance of the robust algorithms.
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