Available online at www.sciencedirect.com
L 4

“e.* ScienceDirect

Trans. Nonferrous Met. Soc. China 31(2021) 3255-3280

Transactions of
Nonferrous Metals
Society of China

i s Science
ELSEVIER Press

www.tnmsc.cn

Semi-solid processing of aluminum and magnesium alloys:
Status, opportunity, and challenge in China

Gan LI', Wen-ying QU', Min LUO', Le CHENG', Chuan GUO', Xing-gang LI'?,
Zhen XU', Xiao-gang HU', Da-quan LI, Hong-xing LU, Qiang ZHU'

1. Department of Mechanical and Energy Engineering,
Southern University of Science and Technology, Shenzhen 518055, China;
2. Academy for Advanced Interdisciplinary Studies,
Southern University of Science and Technology, Shenzhen 518055, China;
3. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

Received 14 September 2021; accepted 8 November 2021

Abstract: Owing to its low cost, short process and low energy consumption, semi-solid processing (SSP) of aluminum
(Al) and magnesium (Mg) alloys has been considered as a competitive approach to fabricate complicated components
with excellent performance. Over the past decade, significant progress has been achieved in deeply understanding the
SSP process, the microstructure and performance of the fabricated components in China. This paper starts with a
retrospective overview of some common slurry preparation methods, followed by presenting the performance and the
underlying mechanisms of SSP fabricated alloys. Then, the mainstream opinions on the microstructure evolution and
rheological flow behavior of semi-solid slurry are discussed. Subsequently, the general situation and some recent
examples of industrial applications of SSP are presented. Finally, special attention is paid to the unresolved issues and
the future directions in SSP of Al and Mg alloys in China.
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great challenges to the properties of Al and Mg

1 Introduction

As the two lightest metal structural materials
of commercialization, aluminum (Al) and
magnesium (Mg) alloys exhibit excellent specific
strength, high specific stiffness, superior thermal
conductivity, good recyclability
availability, thus obtaining extensive applications in
many sectors, such as automobile, aerospace and
3C products [1-4]. In recent years, the strong
demand for lightweight structure and function
integration components with high performance and
low cost is increasingly promoting, which poses

and natural

alloys. To grapple with this long-term issue, it is
significantly essential to further develop Al and Mg
alloys by designing new alloys or optimizing their
processing routes to satisfy the requirements of the
market.

Currently, the conventional processing routes
of Al and Mg alloys primarily include liquid
forming and forging [5,6]. Liquid forming mainly
consists of sand casting, squeeze casting, gravity
casting, high pressure die casting (HPDC) and so
forth. The HPDC process has been widely explored
because it can provide vast advantages in terms of
superior metallurgical quality, high productivity and
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easy realization of automatic production. However,
it cannot be neglected that the structural integrity of
the parts processed by HPDC is always plagued by
inherent defects like shrinkage, pores and hot
cracking. In addition, these parts normally cannot
undergo means of heat treatment to further enhance
their properties due to the appearance of subsurface
blisters. Thus, these parts are not sufficient for some

structural applications required in modern industries.

Although the forged parts show good relative
density and mechanical properties, the high
production cost and low efficiency limit their wide
applications seriously. In the recent years, metal
additive manufacturing (AM), such as direct energy
deposition (DED) and laser powder bed fusion
(L-PBF), has attracted considerable interest in both
academic and industrial world as it can rapidly
build highly complex geometric and high-
performance parts without using molds [7—9]. But,
currently a very limited number of Al and Mg
alloys are regarded as “easily printed and quality
deposit”, and the feedstock (usually the
micron-sized powders) and processing costs are
also relatively expensive [10—12]. Fortunately,
compared with the above-mentioned processes,
semi-solid processing (SSP) benefiting from both
casting and forging displays a bright prospect to
commercially produce high-quality components
with low cost and short process.

The SSP, which employs the semi-solid slurry
with non-dendritic (spherical) grains as the
feedstock, is an advanced near-net-shape forming
technology. The special slurry, the state of which is
temperature- and time-dependent, ensures that the
alloy displays the thixotropic behavior under
shear [13—15]. The slurry can fill the mold in a
more controllable and non-turbulent manner to
avoid the common gas entrapment defects that
usually found in classic casting and to obtain near
fully dense parts that can be further strengthened
through suitable heat treatment [16—19]. Besides,
the relatively low forming temperature could reduce
the thermal shock to the die and lessen the
solidification shrinkage, ensuring near-net shape
forming and high surface quality [20—22].

After the development of almost half a century,
the focus of SSP has gradually transformed from
basic research to key technology and application
research. This requires not only a profound
knowledge of the process itself, but also the

evolution mechanism of microstructure and the
final performance of the fabricated components.
Significant progress in understanding the SSP of Al
and Mg alloys has been made primarily due to the
industry upgrading and the strong demand of the
market in China over the past decade. Until now,
SSP has been successfully utilized to manufacture
automobile steering arm, brake caliper, 5G base
station filter, and other components, exhibiting
favorable prospects for engineering development
and promotion. Therefore, it is of vital importance
to give a comprehensive overview of SSP of Al and
Mg alloys.

In this paper, we will first discuss the
semi-solid slurry preparation process in China,
followed by the performance of SSP fabricated
parts. Afterwards, the research status of
microstructure  evolution and flow behavior
mechanism of slurry in SSP will be summarized
and discussed. The general situation and some
examples of successful applications of SSP in China
are presented subsequently. Finally, we will
highlight the unresolved problems and put forward
the future developmental direction in this frontier
research field.

2 Slurry preparation methods

2.1 Common methods in China

Preparation of the semi-solid slurry with
non-dendritic grains as the feedstock is the first step
and prerequisite for SSP [23—25]. The main aim is
to prepare high-quality slurry with homogeneously
dispersed and spherical microstructure, which
exerts marked effect on the properties of the
components. Under the economic pressure of
reducing the production cost and time as much
as possible, the attention of SSP has
gradually converted from thixoforming to
rheoforming [26—29]. So far, around 30 types of
methods for slurry preparation have emerged based
on various solidification conditions. As summarized
in Table 1, there are nearly 20 types of methods that
consist of both self-developed and introduced
methods in China.

These slurry preparation methods can be
grouped into three subsets: (1) agitation/stirring,
such as mechanical stirring and electromagnetic
stirring, (2) regulation of grain nucleation and
growth process, and (3) integration of (1) and (2).
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In order to achieve superior stability of growing
spheroids, ample nuclei in the early stage of
solidification should be generated in these
subsets [79]. It can be observed in Table 1 that
almost all the methods can prepare slurry with
average particle size (APS) less than 100 um and

shape factor (Sg) over 0.5, suggesting that these
methods could theoretically generate eligible slurry
for further forming. But, most of the self-developed
methods in China are still in the experimental stage
despite some industrial trials. From the perspective
of the application, cost, efficiency, product quality

Table 1 Summary of slurry preparation methods developed and adopted in China

Process

Affiliation

Some commonly used
Al and Mg alloys

Indirect ultrasonic vibration (IUV)

Low superheat pouring with

Huazhong University
of Science and Technology

356 (£=0-0.22) [30], 5083 (£,=0-0.23) [31],
SiC,/Al [32], Mg—Zn—Y [33]

356 (£=0.4) [34], 2024 [35],

a shear field (LSPSF) Nanchang University 7075 [36], AZ91 [37]
Internal rapid cooling L o
stirring process (IRCSP) Nanchang University AZ91D (f=0—0.32) [38]

Self-inoculation method (SIM)

Forced convection stirring (FCS)

Lanzhou University of Technology

University of Science and

356 (£,=0.27) [39], 2024 [40],
6061 (£~0.4) [41], AM60 [42]

356 [43], A380 [44],

Inverted cone-shaped
pouring channel (ICSPC)

Annular electromagnetic
stirring (A-EMS)
Serpentine channel pouring (SCP)
Pulsed magnetic
field process (PMF)
Rotate casting method (RCM)

Melt spreading and
mixing technique (MSMT)

Helical curve duct (HCD)

Air-cooled stirring
rod device (ACSR)

Distributary-confluence
channel (DCC)

Enthalpy control process (ECP)
Limited angular oscillation (LAO)
+Gas induced semi-solid (GISS)

tSwirled enthalpy
equilibration device (SEED)
+New rheocasting (NRC)
tRapid slurry formation
(RSF/RheoMetal)

tCooling slope (CS)

Technology Beijing

University of Science and
Technology Beijing

General Research Institute for
Non-ferrous Metals (GRINM)

University of Science and
Technology Beijing
Nanchang Hangkong University

Harbin Institute of Technology

General Research Institute for
Non-ferrous Metals (GRINM)

Nanchang University

University of Science and
Technology Beijing

University of Science and
Technology Beijing

Southern University of
Science and Technology

Nanchang University

Massachusetts Institute of
Technology

Alcan / STAS Inc.
UBE Industries

Jonkoping University

UBE Industries

7075 (£=0.1) [45], AZ91D [43]

7075 (f=0.15, 0.46) [46,47]

357 [48], 7075 [49]

356 (£.20.5) [50,51],
A380 [52], 7075 (£=0.2) [53]

356 (£:<0.2) [54], 2024 [55]
7A09 [56]
Al6.5Si [57]

356 [58], 6063 [59], 7075 [59]

Al8Si [60], Al-Si-Fe-Mg-Sr [61],

Al7.5Si0.8Fe [62], 7075

356 (£=0.26-0.48) [63],

A380 [63], AZ91D [63]
7075 (=0.4) [23]

AZ91 [37]

356 (£:=0-0.21) [64], 383 [65],
7075 (£=0.14-0.27) [27]

356 (£:20.3-0.45) [66], 206 [67],
7075 (£=0.42—0.55) [68]

356 [69,70], AZ71 [71]

356 (£=0.28-0.35) [72],
Al7Si [73], AI8Si [74], 6063 [74]

356 [75], A380 [76], A390 [77], 6082 [78]

T Introduced methods
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and stability of the slurry preparation process have
always been the critical issues of concern. For
instance, the air-cooled stirring rod (ACSR) process,
a relatively novel method invented by QI et al [80]
has gained increasing attention across both
academic and industrial sectors. It can be used to
prepare excellent slurry with the solid fraction (f;)
of 55%, the APS of 38 um and the shape factor of
0.86, as shown in Fig. 1. Recently, their work
showed that only 25 s was required to produce
32 kg of the Al alloy slurry using this powerful
method [61]. Although only a handful of these
self-developed methods in China have been
cosmically employed in industrial production, these
studies and attempts have accumulated valuable
experience for the slurry preparation.

On the other side, some slurry preparation
methods that have demonstrated the potential of
mass production have been introduced to China to
realize engineering applications, like swirled
enthalpy equilibration device (SEED) and gas
induced semi-solid (GISS). The SEED process,
proposed by the Alcan (now Rio Tinto Alcan,

Thermocouple

Industrial resistance furnace Feeding spoon

-/

The melt

4
--
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Canada) at the end of the 1990s, is a simple but
efficient slurry preparation method that can produce
high mass slurry with a high solid fraction
(normally 35%—55%) [81,82]. This method was
introduced to China in the early 2010s, and since
then many production lines have been established.
The development and some recent innovations of
the SEED process in China will be reviewed in
detail in the following section.

2.2 Development of SEED process

Figure 2 presents the SEED unit, crucibles of
various sizes and the corresponding slurry. The
principle is based on achieving rapid and controlled
thermal equilibrium between a metallic crucible, the
molten alloy and the environment by using the
proper processing parameters such as pouring
temperature, crucible size and swirled duration.
This method includes the following three steps:
(1) titling the crucible and pouring the molten alloy,
(2) straightening the crucible and swirling it
eccentrically at a certain speed for a certain
duration, and (3) finally demolding and transferring

M

Semi-solid slurry

Air compressor
Airway

Cooling air Primary grain

Stirring rod
Airway

= Manipulator

Stirring rod

Fig. 1 Schematic diagrams and physical maps for slurry preparation of ACSR process (The inserted OM image reveals

quenched microstructure of Al-8Si alloy slurry) [62,80]

~18 kg (c) [83]
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to forming [84]. As one of the few methods that can
produce slurry with a high solid fraction, it has
developed to industry level [22,85—87].

To further improve the efficiency of SEED
process, LUO et al [88] conducted a secondary
development, mainly  comprising in-depth
understanding the underlying thermodynamics and
kinetic mechanisms of solidification process during
the slurry preparation, optimizing the process and
equipment (Fig. 3(a)). They concluded that the
heat-transfer coefficient of the crucible-air interface
and the slurry radius were the critical factors for
decreasing the radial temperature difference of the
slurry. Furthermore, they also established an
accurate model to comprehend the relationship
between temperature distribution along the slurry
radius and parameters at a quasi-steady state [89].
The modified SEED process can noticeably
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decrease the radial temperature gradient of the
A201 alloy melt because of the slow cooling rates,
facilitating more uniform slurry and more spherical
microstructures, as illustrated in Fig. 3(b). In
addition, the modified process can also prepare
excellent slurry for the high-strength wrought Al
alloys even though they have narrow processing
window resulting from the long solidification
temperature interval. As demonstrated in Fig. 3(c),
the comparison of internal defects in between the
original and modified SEED processes also showed
that few pores were detected in the 7050 Al alloy
part manufactured by the modified process.

Figure 4 shows the temperature distribution,
rheological state and morphology of 7108 alloy
slurry produced by the conventional and modified
SEED processes. The uniformity of temperature
distribution was obviously improved and the

L1 l-is-'w-
.(’f»zllir\g. i |

[ Modified SEED

Fig. 3 Modified SEED process (photograph of ceramic fiber cotton on external mold surface and layer boron nitride
coating on internal mold surface) (a) [89,90], A201, 2618, 6063 and 7050 Al alloy slurries at different position (b)

[87,90], and results of internal defects of 7050 parts (c) [90]

(a) Conventional SEED process

e o ! €
628 635 |
i
|
L] .
631 639 342
I
i 30mm

e o o
629 636 642 Bottom

Fig. 4 Temperature distribution, rheological state and morphology of 7108 alloy slurry produced by conventional (a)

and modified (b) SEED processes [90]



3260 Gan LI, et al/Trans. Nonferrous Met. Soc. China 31(2021) 3255-3280

temperature difference reduced from ~14 to ~5 °C
after optimizing the process, indicating that the
difference of solid fraction and viscosity in different
regions was quite small. This is conducive to
enhancing the performance of the final parts. They
also uncovered the influence of the heat exchange
process on the microstructure of the slurry,
concluding that the grain refinement can be
achieved by increasing the heat exchange rate
at the early stage of the SEED process. In addition,
the influence of grain refiner and pouring
temperature on the microstructure of 357 slurry
prepared by the SEED process was also
investigated. It was found that the fine and round
microstructure could be processed at low pouring
temperature, whereas the refiner had no significant
impact on the microstructure at low casting
temperature [25,91,92].
3 Performance of SSP fabricated
materials

With the increasing popularity of SSP, it is
significantly essential to assess the feasibility of its
use for structure components through performance
tests. The microstructural features caused by the
distinctive slurry may improve the performance. In
recent decades, a considerable number of
investigations have been performed to study the
excellent performance of the SSP fabricated
materials in terms of tensile behavior, creep
resistance, fatigue performance, wear resistance,
corrosion resistance and so forth [93—100]. This
section will mainly cover the tensile behavior and
thermal conductivity, which have received
researchers’ much attention in the literatures.

3.1 Tensile behavior

In general, SSP of Al and Mg alloys is
commonly realized by a sound combination of
slurry preparation and a range of processing
methods, such as rolling, squeeze casting (SC), high
pressure die casting (HPDC) and thixomolding (for
Mg alloys). In general, the static strength depends
on the relative density as well as the microstructure
formed during SSP. Hence, as compared to parts
processed by classical routes (i.e., casting), the
reduced defects and fine microstructure offered by
SSP primarily result in improved tensile strength
and elongation.

Some of the tensile properties of four types of
popular alloys (i.e., A356 Al, 7075 Al, AZ91 Mg
and AZ91D Mg) from the literatures are shown in
Tables 2—3 and Fig. 5. It can be clearly observed
that the SSP fabricated alloys reveal better
performance than their conventionally processed
counterpart in the as-fabricated condition,
indicating the effectiveness of the SSP. The reason
for the increment of mechanical properties is
primarily twofold. The first is the refinement of the
o-Al/a-Mg. It has been proved that fine spherical
primary particles are conducive to mechanical
properties while the refinement of ay-Al/ay,-Mg
within the eutectic structure is a critical factor
determining the yield strength of alloys [64]. Hence,
grain refinement causes an increase in both yield
strength (YS) and ultimate tensile strength (UTS)
due to the Hall-Petch effect. The second is the high
relative density resulting from less entrapped air
and shrinkage porosity. It is widely accepted that
porosity is detrimental to mechanical properties and
one of the key targets of processing structural
components is reducing internal porosity. For SSP,
the unique slurry exhibits distinctive pseudo-
plasticity and thixotropy, dramatically reducing air
entrapment during filling because of a higher
viscosity compared with the liquid metal [14,17].
The lower forming temperature during SSP also
brings about lower solidification shrinkage, which
can reduce defects and obtain near fully-dense
parts.

The mechanical properties are noticeably
improved for these heat-treatable alloys as the
porosity is very low. As exhibited in Fig. 5, there is
a remarkable increase in UTS after heat treatment.
The objective of any heat treatment procedure is to
modify the microstructure to alter the properties to
suit its function in an application [10]. However, the
heat treatment has mostly been limited to the
application of traditional routes to the SSP
fabricated materials. These traditional procedures
have been specifically tailored for the different
microstructures that are processed by conventional
processes. Accordingly, designing or revising a heat
treatment procedure for SSP should consider both
the starting and resultant microstructures.

On the other hand, it is also worth mentioning
that the SSP fabricated materials also display better-
elevated temperature properties. For example, QI
et al [62] found that the Rheo-HPDC Al-Si—Fe alloy
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Table 2 Mechanical properties of A356 and 7075 Al alloys fabricated by various SSP processes as compared to
conventionally processed alloys in different conditions

Alloy Process HT UTS/MPa YS/MPa EL/%  Hardness (HV) Ref.
HPDC AF 223 - 4.28 - [30]

IUV Rheo-HPDC AF 254 - 7.5 - [30]
IUV Rheo-SC T6 338 227 8 126 [101]
GISS Rheo-HPDC AF 235 - 7.4 - [65]
GISS Rheo-HPDC T6 312 277 7.6 - [102]
GISS Rheo-HPDC T6 305 272 9.8 - [102]
ISCT Rheo-HPDC AF 242 - 12.5 73 [103]
HPDC AF 221+17 135+6 3.7+1.4 7119 [43]

FCS Rheo-HPDC AF 260+6 1814 8.4+0.5 7945 [43]
FCS Rheo-HPDC T4 27548 166+6 13.6x1 82+7 [43]
FCS Rheo-HPDC T6 32310 23247 7.3+0.8 9348 [43]
GDC T6 315+4.9 268+2.1 3.2+1.6 - [104]

A356 CSIR Rheo-HPDC T6 317£3.6 261x1.4 6.7£1.9 - [104]
CSIR Rheo-HPDC AF 218+2.5 113£3.0 10.6£1.6 - [104]
CS Rheo-SC AF 232 - 7 - [105]

SC AF 208 - 6 - [105]

SIM Rheo-HPDC AF 271 - 7.17 - [39]
HPDC AF 211.5-220.8 - 5.4-6.7 - [106]

SCP Rheo-HPDC AF 249.8-250.1 - 12.5-13.2 - [106]
SCP Rheo-HPDC T6 327.8-331.2 - 9.8-11.3 - [106]
LSPSF Rheo-HPDC T6 330 240 13 - [34]
RBRM Rheo-HPDC AF 230 - 10.2 - [107]
HPDC AF 210 - 6.8 - [107]
HPDC AF 221+17 148+6 3.7+1.4 70+9 [63]

DCC Rheo-HPDC AF 266+7 1755 8.8+0.7 7847 [63]
HPDC AF 227.7-243.3 - 5.55 - [46]
ICSPC Rheo-HPDC AF 293.1-299.5 - 1.65 - [46]
ICSPC Rheo-HPDC T6 461.6-489.5 - 1.2 - [46]
CSIR Rheo-HPDC T6 516 453 5.3 - [108]
Metal casting T6 290-350 - 2-4 - [109]
CS Rheo-SC AF 211-288 - 1.8-3 - [109]

CS Rheo-SC T5 425 - 4.8 - [109]

CS Rheo-SC T6 453 - 4 - [109]

CS Rheo-SC T7 437 - 3.7 - [109]

CS Rheo-SC T6 502 - 5.3 - [109]
7075 HPDC AF 281+25 22249 1.6£0.9 86+14 [43]
FCR Rheo-HPDC AF 33711 249+6 5.240.6 9611 [43]
FCR Rheo-HPDC T6 543+15 506+9 4.1+0.7 172+15 [43]
LSPSF Rheo-HPDC AF 290-310 - - - [36]
LSPSF Rheo-HPDC T6 483 - 8 - [36]
GISS Rheo-HPDC T6 486 - 2 - [110]
SCP Rheo-HPDC AF 210260 - 0.2-1.7 - [53]
SCP Rheo-HPDC T6 420-453 - 1.0-1.4 - [53]
HPDC AF 293 231 1.8 - [111]
ACSR Rheo-HPDC AF 351 254 3.9 - [111]
ACSR Rheo-HPDC T6 547 494 32 - [111]
Forged T6 572 503 11 - [112]

HT: Heat treated; AF: As fabricated; HPDC: High pressure die casting; SC: Squeeze casting
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Table 3 Tensile properties of AZ91 and AZ91D Mg alloys fabricated by different processes

Alloy Process HT UTS/MPa YS/MPa EL/% Hardness (HV)  Ref.
HPDC AF 186—212 - 3.2-5 - [37]
AZ91
Rheo-HPDC AF 215-227 - 4.8-6 - [37]
HPDC AF 212 146 33 - [113]
HPDC AF 200 122 2.5 - [114]
Thixomolding AF 240 - 4.5 - [115]
NRC AF 230 - 5.5 - [69]
TBR Rheo-HPDC AF 225 138 4.5 - [116]
RCP Rheo-HPDC AF 255 157 2.3 - [113]
RDC AF 248 145 7.4 - [117]
RDC T4 230 91 11.2 - [118]
AZ91D RDC TS 236 133 6.5 - [118]
RDC T6 255 134 6.7 - [119]
RDC Tx 249 132 9.1 - [119]
FCS Rheo-HPDC AF 265 169 7.1 - [43]
FCS Rheo-HPDC T4 270 110 11.3 - [43]
FCS Rheo-HPDC T6 282 171 5.8 - [43]
Rheomolding AF 271 169 7.3 - [120]
HPDC AF 205+12 142+7 2.8+0.6 7349 [63]
DCC Rheo-HPDC AF 267+6 163+6 6,8+0.5 82+6 [63]
1o @ SSP 356-HT Al alloys o (b) Mg alloys
141 SSP 356-AF :5\\ 12 SEPAENDEL .
121 \‘\ \\ 3\\ * ‘\\
o ‘\ \\\ o 10 i \\\ \\
S 10t 09 < A \
S un SSP 7075-HT S 8F ! \
.§D gL A \‘Poo) a SSP 7075-HT é} 8 \ l‘
g '\ ,I 9/’ g 61 ‘@ ¢ \
E 6 l{ ‘\\ é [ere] 'LE Cast AZ91-AF o ‘d’
o * 9 4r
2 (Cast35CAF * PXNNK Cast AZ91D-AF
LIRS Cast AZOID-
0 I(‘nsl 7()75-/\rl 1 1 .I. . 1 1 1 2 I 1 1 1 1 1
150 200 250 300 350 400 450 500 550 600 650 180 200 220 240 260 280 300
UTS/MPa UTS/MPa

Fig. 5 Ultimate tensile strength versus elongation for some popular alloys processed by SSP and traditional processes in
different conditions: (a) A356 and 7075 Al alloys; (b) AZ91 and AZ91D Mg alloys

has superior mechanical properties at elevated
temperature than those of HPDC alloys because the

refined

and

uniformly  dispersed

iron-rich

intermetallic can prevent grain boundary sliding
more effectively. Similar results have been also
reported for hypereutectic Al-Si alloys.

3.2 Thermal conductivity
Researches on the thermal conductivity of SSP

fabricated materials (normally Al alloys) are more
recent. Al is an excellent conductor for electricity
and thermal conductivity, coupled with its mass
and price compared to copper (Cu), silver (Ag) and
gold (Au) [10]. Therefore, Al alloys have attracted
common attention and have been extensively
studied for the last years, especially in the
communication industry. It is widely accepted that
the less porosity and higher relative density induced
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by SSP trigger preferable thermal conductivity. To
date, a range of alloys with high thermal
conductivity, such as AI8Si [72], Al7.5Si0.8Fe [59],
Al-6Si—2Cu—Zn [121] alloys, that are suitable for
SSP have been explored.

A comparison of thermal conductivity of some
alloys is displayed in Fig. 6, demonstrating that SSP
can effectively increase the thermal conductivity,
posing an efficient strategy to remove excessive
heat generated by the operation of devices. The
thermal conductivity of these new alloys is higher
than that of some common alloys like A383, A356,
and A380 Al alloys. In addition, a series of Al
alloys with an outstanding combination of heat,
wear and thermal expansion properties have been
developed for SSP by LIU et al [122], ZHONG
et al [127] and XIONG [128]. It is known that as
the Mg,Si phase can expand the diffraction of
electrons to reduce the average free path of
electrons, 6063 Al alloy is a popular alloy that has
medium strength with superb thermal conductivity.
Nevertheless, systematic research on understanding
the impact of SSP on the microstructure and
performance of 6063 Al alloy is scarce.

4 Numerical modeling and simulation for
SSP

As the process of SSP is not visible, numerical
simulation technology has become one of the main
methods to visualize it, explore its specific
mechanism, and optimize the structure design of
apparatus, and processing parameters in the slurry
preparation and forming process. It is the other leg

220
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for the improvement of forming process compared
with the experimental method. The modeling and
simulation of the SSP have developed towards the
integrated, multi-scale, and multi-physical-field
direction.

Two important aspects in the numerical study
are microstructure evolution and fluid flow together
with their interactions. For the microstructure
evolution, several methods are used, like stochastic
methods Monte Carlo (MC) and Cellular Automata
(CA), direct simulation methods phase field (PF),
front tracking (FT) and level set (LS), and
deterministic method. The most used methods are
PF and CA. Because the PF method is based on the
theory of free energy minimization of systems
proposed by Ginzburg-Landau, the PF model
becomes the preferred method in studying problems
concerned with phase transformation. In the
simulation about the rheological flow of semi-solid
slurry, various apparent viscosity one-phase models
and two-phase models have been developed, as
summarized by ATKINSON [14]. The following
section will be divided into two parts. One is for the
overview of the microstructure evolution, while the
other is for fluid flow.

4.1 Microstructure evolution

In studies about the microstructure evolution
in semi-solid process, little effort has been made
compared with other forming processes, like
directional solidification, welding, and traditional
casting. Although the foundation for the
solidification is the same, the process parameters
and typical eigenvalue about the thermodynamics
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and kinetics are different. Little difference in the
eigenvalue may result in a different microstructure.
To make the difference clear briefly, different
process characteristic parameters are summarized
and compared in Table 4. It can be seen from the
data in Table 4 that only the effects of a single
factor or a few variables on the microstructure
morphology were studied, but the coupled influence
has not been investigated sufficiently. The
morphology of microstructure is the result of many
factors, including the rate of temperature change,
initial temperature, initial chemical composition,
environmental pressure, holding temperature and
time, temperature gradient, local melt convection
degree, the addition of nucleating agent, and so on.
Every phase transformation is driven by
thermodynamic and kinetic variables. The
experimental study focuses on the influence of
macroscopic parameters on the final microstructure
morphology. However, there are very complex
interactions of microscopic parameters under
macroscopic conditions. In-situ observation can

obtain some microscopic details and reveal

macroscopic phenomena to a certain extent.
However, there is no quantitatively analyzable
model, which can describe the relationship between
field variables [142—146].

The information about the final microstructure,
such as (1) intuitive understanding of various phase
morphologies, (2) statistic data about the grain size,
morphology, and volume fraction, (3) local solute
distribution, and (4) transient information from
in-situ experiments, can be obtained from the
experimental study [66,147]. These data are almost
final values or transient ones from interrupted
experiments rather than continuous process ones, so
the inner mechanism can only be deduced by
inverted deriving a formula or verifying an existing
theory. By contrast, it is a forward evolutionary
process with full information about each variable
field by numerical modeling while the simulation
results can be verified by the experimental results.
Numerical modeling and simulation are one
powerful method to uncover the mechanism
underneath the microstructure formation during
the semi-solid process. However, the concentration

Table 4 Eigenvalue about thermal and kinetic data in different processes

Cooline rate/ Undercooling Temperature Forced
Process Alloy © C-fsg*l) degree/ gradient/ convection/ Perturbation
°C (°C-mm") (m-s ™)
Semi-solid Al-4.5%Cu [129] - 20—40 - 0-0.1 -
Semi-solid Al-2.0%Si [130] - - - - 0-0.4
. 0.0162, 0.162, 2.5,8.3, 0.230, 0.442, ~
Semi-solid 357.0 [131,132] 62 163 0.657 0-0.735 0.0005
Cooling slope A380[133] 8.3-11 - - - -
- AZ91D [134] 1-2 - - 0.055-0.22 -
1 . Al-Pb, Al-Bi, Al-In, _ _ _ _ _
Free solidification Cu—Pb [135] 0.6-1.0
Directional
solidification - - a 3.0-60 - -
Al-18Si, Al-3Si, Al-6Si,
Fast solidification Al-9Si, Al-12Si, - - 1.0x10* - -
Al-15Si[136]
Directional
solidification SCN-ACE [137] ’
Directional
solidification AFFISCu138] 1
Ultrasonic Bi—8%Zn [139] - - 5.2-6.4 - -
Directional
solidification Al-Zn [140] 10.0-20.0
Welding Cu/Sn—9Zn/Cu[141] - - 50.8 - -
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paid on this aspect is far from enough, especially in
semi-solid processing. The status, problem, and
possible directions of effort about the modeling and
simulation for microstructure evolution in semi-
solid forming will be analyzed and discussed below.

Although the existing numerical studies can
depict some typical phenomena found in practice,
(see Fig. 7) a universally accepted explanation for
the mechanism has not been found. Table 5 shows
that the numerical work concerned grain growth in
the semi-solid slurry is very limited. Since there is
no systematic and perfect parameter and simulation
system, it is mnot portable to simulate the
microstructure of different alloys with different
process parameters. Variation of process parameters
will affect some phase transition coefficients (like
solute partition coefficient, solidus, and liquidus,
etc.) in a certain way. But how and to what extent
these coefficients have been affected have not been
studied. The existing simulation work only uses
empirical values, which are not properly modified
when applied to alloys with different compositions.
At present, high-performance computing and model
optimization have made great progress. The
computing power and model convergence stability
have been greatly improved. Then much
fundamental research needs to be done about the
material properties and solidification characteristics
to improve simulation accuracy.

4.2 Fluid flow simulation

The flow simulation of the mold filling process
is another one of the most interesting aspects.
Although many models concerned with one-phase

Liquid :
phase
50000At 80000At 100000At

20000At

20000At 3(')000At

Fig. 7 Typical phenomena depicted in numerical
simulation: (a) Detaching [148]; (b) Nucleation
effect [131]; (c) Fluid flow effect [131]

() 10000At

®

or multiphase and simulation methods have been
proposed, as summarized in Ref. [14], these models
and simulation methods are not universal, but only
applicable to a certain alloy, product, and process.
The reason is because of the multiple properties of
semi-solid slurry. Its macroscopic flow conforms to
the power-law model of shear thinning, while the
microscopic movement of its internal particles
conforms to the multiphase flow theory. Three

Table 5 Status about microstructure simulation in semi-solid process

Static Kipematic Liquid/solid  Kinetic coefficient Gibbs—Thpmson Lewis
Method Alloy anisotropy anisotropy surface energy/ between phases/ coefficient/
coefficient coefficient (J-em?) (em* T s (m-K) number
PF A380[133] 0.5 0.2 2x107° 0.05 - -
PF anBolynEleS] ; - - a B -
PF 357.0 [131] 0.02 - - - - 1
PF 357.0 [132] 0.02 - - - - 1
PF 357.0 [149] 0.02 - - - - 1
CA A356[150] - - - - 9x107® -
CAFE Al-7Si [151] - - - - 2x1077 -
Self-developed

software AZ91D [134] - -
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viewpoints about the multiphase nature of semi-
solid slurry are drawn from the literatures and listed
in Table 6. These viewpoints artificially divide the
two phases in the slurry, and there is a certain
deviation between the established model and the
reality. Liquid and solid particles in the semi-solid
slurry are an organic whole, and they interact with
each other in complex ways. However, the current
studies only focus on the macroscopic rheological
flow behavior or the internal multiphase flow
characteristics, and do not combine the two
organically to study the constitutive flow behavior.
Figure 8 shows the efforts and simulation results of
establishing a two-phase flow model by considering
interphase interactions [156,157]. Although the
spatial distribution of the solid phase can be
depicted and has a certain accuracy compared with
the experimental results, it is difficult to visualize
the granular phase as separate particles.

The next research direction is combining CFD
and DEM, and coupling the microstructure
characteristics with the macroscopic rheological
properties to establish a rheological model of slurry
based on its internal microstructure characteristics.
This model is not the one that only takes a slurry

Gan LI, et al/Trans. Nonferrous Met. Soc. China 31(2021) 3255-3280

temperature or solid fraction as wvariables but
considers the size, morphology, and volume fraction
of the solid particles in the slurry as essential
variables. The corresponding numerical results will
give more details about the forming process of
phase segregation, porosity, and other filling defects,
also the final microstructure which determines the
performance of products. This detailed information
is critical to process optimization.

5 Industrial application

5.1 General situation

SSP of Al and Mg alloys has been investigated
and developed for about half a century. In 1978,
Alumax engineered metal process (AEMP, USA)
has established an SSP production line, which
means that SSP technology has entered the stage of
industrial application research. Since then, more
production lines have been set up in Europe, the
United States and so forth. Since the 1980°s, China
has been involved in SSP research, which has
gradually attracted the extensive attention of
scholars. In 2000, researchers from mainland China
first participated in the 6th International Conference

Table 6 Three viewpoints about multiphase property of semi-solid slurry

Semi-solid slurry Point 1 [152]

Point 2 [153] Point 3 [154]

Solid phase Skeleton Non-Newtonian Viscoplastictyield
Liquid phase Darcy’s law Newtonian Newtonian
( ) 0.0 00‘)<l 0.191 0’?60 S’ 0.477 0.572 0.63 6( )
- .
t1=0.5s ¥ l'.’=0.8$ 13=1.0s
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| & lmlc nnu .89 l’llll% 9\ nuug
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Fig. 8 Simulation of fluid flow during SSP: (a) Two-phase simulation [155]; (b) In-situ observation [156]; (c) Two-

phase flow, and experiment results of T-shape cavity [157]
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on SSP held in Italy, and the studies on SSP
technology were rising. Furthermore, the SSP
technology was officially listed in the “industrial
development catalog in China” in 2011, marking
the application in China’s industrialization. Since
2010, the upsurge of research and application of
SSP in the world seemed to fade. But there seems
to be a resurgence in demand for SSP as
demonstrated by a considerable number of
participants at the 15th SSP Conference in
Shenzhen, China (S2P 2018) [21].

Although the research of SSP in China is
relatively late, great progress has been achieved
with the support of a collection of policies and
funds and with the drive of industrial upgrading.
Recently, as a huge industrial power and potential
market, China immensely promotes the application
of SSP primarily due to the automobile lightweight
and the upgrading of communication equipment.
Currently, at least 30 enterprises focus on the
research and development (R&D) of SSP in China,
whereas the number for North America and Europe

Table 7 SSP processed products in production [158]
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is relatively limited. Similar to the distribution
pattern of other manufacturing industries in China,
the SSP enterprises are mostly situated in the
eastern coastal areas, particularly in the Pearl River
Delta (PRD) and Yangtze River Delta (YRD)
regions. It also should be noted that the COVID-19
has been basically well controlled in China, which
is also favorable in the recovery and development
of the SSP industry.

As discussed in Section 2.1, only very limited
number of SSP technologies are suitable for
large-scale practical production and commercial
development. For Mg alloys, thixomoulding is the
dominant process in the world [1]. The major SSP
of Al alloys applied in China is rheocasting
in terms of SEED, RSF/RheoMetal and GISS
processes, and they have a wide range of
applications, as listed in Table 7. Very recently, the
DCC and ACSR processes are also gaining favor
quickly across the academic and industrial
sectors [28,60]. Some recent examples of successful
development and applications in China will be

Application field GISS RSF/RheoMetal SEED
Auto gearbox Compressor parts Brackets
Brake system components Cooling units for power electronics Control arm
) Chain covers Engine bearing cap
Automotive ) )
Engine block Engine bracket
Oil pan Shock towers
Steering wheels Turbo impeller
Handphone covers Heat sinks Heat sinks
) Hard disc drive housing Radio filters 4G and 5G Radiator housing
Electronics .
Heat sinks
Radio filters 4G and 5G
Brake calliper
Brackets
Heavy duty Truck gearbox Muffler holders
truck components Knuckle
Skeleton joint

Machinery

Marine application Sacrificial anode

Medical components Prosthetics

Military components Cast 7075 composite armour plate
Bicycle components
Sports
Motorcycle parts

Machine parts with steel inserts

Winch housing

Motocross frame

Bicycle components
Wheel knuckle
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exhibited and discussed in more detail in the next
section.

5.2 Some outstanding cases

As illustrated in Figs. 9(a—d), a sequence of Al
components has been redesigned for automotive by
our team. These Al components have replaced
conventional steel parts and a significant mass
reduction of 35%—65% was achieved. Figure 9(e)
demonstrates the performance comparison of
radiator housing processed by SEED Rheo-HPDC
and traditional HPDC, signifying that the SEED
process can markedly improve the thermal
conductivity while noticeably reducing the cost and
mass. This promising method was also used to
explore and manufacture a series of Al parts in

n.@!m"

ipe C‘Ihnﬁp

various sectors, such as steering knuckle for
passenger cars, bracket for commercial vehicles,
inverter main box for new energy vehicles and
communication cavity used in communication
industry, as shown in Fig. 10. As illustrated in
Figs. 9 and 10, the outline of the parts fabricated by
SEED process is quite clear without obvious defects
and exhibit high surface quality, illustrating that the
mold filling process is quite satisfactory.

The RSF process, introduced into China in
2008, with over 30 machines delivered, has mainly
found its applications within light emitting
diode (LED) fittings and heat sinks, as well as other
applications within the transportation industries, as
shown in Figs. 11(a—h). Some application examples
from marine equipment, sports equipment and

SEED Rheo-HPDC

A

(e) Traditional HPDC

Fig. 9 Al parts fabricated by SEED: (a) Pipe clamp for cement pump truck; (b) Pipe clamp for fire engine; (c) Battery

bracket; (d) Engine support; (¢) Radiator housing

Fig. 10 Some SEED produced components used in various sectors: (a) Steering knuckle; (b) Control arm; (c) Bracket;

(d) Inverter main box; (¢) Module end plate, (f) Communication cavity
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railway transport have also been illustrated. For
example, the lock body (Fig. 11(d)), one of the key
components of high-speed train door produced by
the CAM (Jiangle) Institute of Semi-solid Metal
Technology (Sanming, China), has brought about a
mass reduction of 65% with machining reduction
by half. The V-shaped radiating tooth filter housing,
as shown in Fig. 11(i), with middle disconnection

and with minimum tooth thickness of 1.1 mm
displays the clearly discernible outlines and
excellent surface quality of the shell part, signifying
that the mold filling is well-pleasing.

Figure 12 shows some typical automobile and
communication products fabricated by ACSR
Rheo-HPDC. These parts were developed by the
group in the University of Science and Technology

Fig. 11 RSF fabricated components: (a, b) Al-8Si telecommunication parts with complex structure; (c) Auto-hub;
(d) Lock body; (e) LED fittings; (f) Swing arm; (g) Explosion-proof tire bracket; (h) V-shaped radiating tooth filter

housing; (i) Crossbeam for new energy vehicles [72,159]

Mnunk\ A

Fig. 12 Typical ACSR Rheo-HPDC products: (a—c) Application scenario and morphology of large thin-walled 5G base
station heat dissipation shells; (d) 4G heat dissipation shells; (¢) New energy vehicle end cover; (f) New energy vehicle
power converter shell; (g) Another large thin-walled 5SG base station heat dissipation shells [61,160]
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Beijing (Beijing, China) and were produced by
Zhuhai Runxingtai Electric Appliance Co., Ltd
(Zhuhai, China). Dozens of production lines have
been built at Zhuhai and over 3 million components
are manufactured each year [21]. Figures 12(a—c)
display the application scenario, the front and the
back of large thin-walled 5G communication base
station heat dissipation shells, with outer
dimensions of 933 mm X 470 mm X 80 mm, a
tooth thickness of 1 mm, and a tooth height of
70 mm [61]. A recent large thin-walled part is also
exhibited in Fig. 12(g), with the external
dimensions of 878 mm x 447 mm x 171 mm [160].
These successful applications have proved again the
feasibility of SSP to grapple with the issue of large
thickness difference of the thin-walled parts, which
has long been regarded as a thorny problem in the
casting industry. Furthermore, these ACSR
fabricated components for different applications
also demonstrate higher strength and elongation,
higher heat conductivity, more excellent corrosion
resistance and mass reductions in comparison with
traditional casting [59].

The GISS process has found the broadest
range of applications, and over 70 companies are
using this powerful technology in China for the
mass-production  of parts and
communication components [20,63,158,161]. It is
recently reported that GISS has been commercially
used in almost all areas, but the dominant field is
within the communication and electronics
industry [158]. The improved productivity and
reliability, low cost, and good comprehensive
performance of components are the main elements
for them to win the favor of the market [20,161]. As
displayed in Fig. 13, it is feasible for GISS to
precisely produce the communication components
that always have multifarious characteristics and
sizes.

automotive

6 Summary and outlook

6.1 Summary

The past several years have witnessed the
significant progress of the SSP in the fundamental
research and industrial applications in China. In this
review, we first focus on discussing the
development of slurry preparation methods and
recent innovations of the SEED process.
Subsequently, the performance of components
fabricated by SSP in terms of tensible behavior and
thermal conductivity are overviewed. Then the
foundation understanding about the microstructure
evolution and rheological flow behavior obtained
by numerical modeling and simulation is reviewed
and discussed. Finally, we summarize the current
general situation of industrial application and
present a range of successful examples. The
remarkable success has definitely established SSP
among the competitive approaches for fabricating
high-quality components due to its low cost, short
process and low energy consumption. SSP will
contribute to the further development and
exploration of processing cost-effective and
complex structural components in a range of
industries in the future.

6.2 Outlook

With the rapid pace of industrialization,
industrial parts made in China occupy more and
more share in the international market [162—-164].
At present, China is the large automobile consumer
market in the world, and the annual sales of the
sixth straight year have been more than 24 million,
as shown in Fig. 14(a). In addition, although the
outbreak and spread of COVID-19 shatter the
global automotive industry, China has not been
greatly affected and constitutes over 32.4% of the

Fig. 13 Application cases of communication parts with various shapes and sizes processed by GISS
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world’s car sales in 2020, hitting record levels.
There was also a dramatic increase in the number of
base stations in China, as shown in Fig. 14(b). It is
reported that China has built the world’s largest
communication network, with 5.75 million 4G and
0.72 million 5G base stations, accounting for more
than 50% and 70% of the world’s total, respectively.
Following the swift growth of automotive and
communication industries, high-quality components
with low cost are eagerly desired, which brings a
promising opportunity for the development and
application of SSP of Al and Mg alloys [5,167].
Overview of SSP of Al and Mg alloys
regarding some key aspects and characteristics is

@) 150

(b)
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displayed in Fig. 15, indicating that there is quite a
long process from scientific spark to engineering
realization. Based on the previous studies, this
section  primarily summarizes the current
deficiencies of SSP of Al and Mg alloys in both
scientific and application sectors, and presents an
outlook for the follow-up research work and
delivers guidelines on the future progress of this
frontier field.

(1) It is widely known that materials should be
designed for their processing route. But, so far,
almost all the materials that are widely used in SSP
are developed for traditional processes, as shown in
Table 1. Hence, effective control during the slurry
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preparation is lacking. The complete and in-depth
understanding of the structure-property relationship
is necessary to improve the performance of the
products. Accordingly, besides the advances
regarding the readily-available alloys, developing
or tailoring more reliable alloys specifically for
SSP that consider both the process needs and the
target properties concurrently is significantly
crucial [5,18]. For instance, various requirements
are proposed for the automotive components, e.g.,
high strength, high fatigue resistance, creep
resistance or wear resistance. Even though some

materials have been successfully developed,
different material systems are highly desired
to fulfill more requirements for industrial

applications [168,169].

(2) As aforementioned, only a small part of
SSP methods can successfully achieve industrial
production. Thus, it is of vital importance to
optimize existing methods or develop novel
methods that can have both improved production
efficiency and good stability during slurry
preparation and subsequent processing. Moreover,
the performance of SSP fabricated parts is hard to
reach the same level as the forged counterparts.
This is also an important reason why SSP is hard to
have a huge market share. Accordingly, it is also
essential to further understand and control the
defects formed in SSP fabricated parts, such as
blowholes, blisters and hot cracks to improve the
comprehensive performance [170-174]. In addition,
SSP is now mainly adopted in the transportation
and communication communities, so this
competitive technology is expected to explore its
applications in more fields, like the aerospace field
and wearable devices.

(3) As the process of SSP is not visible,
numerical simulation technology has become one of
the main methods to visualize it, explore its specific
mechanism, and optimize the structure design of
apparatus and process parameters in the slurry
preparation and forming process. The flow
simulation of the mold filling process is one of the
most interesting aspects. Although many models
concerned with one-phase [15] or multiphase [155]
and simulation methods have been proposed, these
models and simulation methods are not universal,
and only applicable to a certain alloy, product, and
process. The reason is because of the multiple
properties of semi-solid slurry. Its macroscopic flow

conforms to the power-law model of shear thinning,
while the microscopic movement of its internal
particles conforms to the multiphase flow theory.
However, the current studies only focus on the
macroscopic non-Newtonian flow behavior or the
internal multiphase flow characteristics, and do not
combine the two organically to study the
constitutive flow behavior. The solution is to couple
the microstructure characteristics with  the
macroscopic rheological properties and establish a
rheological model of slurry based on its internal
microstructure characteristics, which is not the one
that only takes a slurry temperature or solid fraction
as variables.

(4) Along with the development of the global
economy, the market is extremely exacting on price
and lead time, which requires the supply chain to
foster and promote the core competence. With the
rapid development of the artificial intelligence (AI),
the highly integrated design and intelligent control
of the SSP equipment are highly needed to
ulteriorly improve the production efficiency and
reduce the cost. For example, special dies and
molds for SSP have been developed to improve
the mechanical properties and reduce the
cost [175-178]. It should also be noted that
although SSP can provide considerable cost-saving,
high performance, and high structural complexity of
parts, there is a relatively long procedure to develop
qualified parts and hence many technical problems
will inevitably arise, as shown in Fig. 16. That
requires concerted efforts and working hand in
glove between demand-side and alloy/process
developers to develop and produce new parts and
promote the SSP to a commercially acceptable level.
In addition, it is also essential for universities and
institutions to provide talent support and knowledge
contribution for SSP development by cultivating
motivated and excellent students and highly skilled
technicians.

(5) Although SSP has been developed for
almost half a century, the systematic industry
specification or standard for SSP is still scarce,
which is not beneficial to the further promotion and
development of SSP. Fortunately, some enterprises
in China have developed their own internal
standards, such as Dongfeng Motor, Beijing
Foton Daimler Automotive and Shaanxi Heavy
Duty Automobile Co., Ltd. In addition, a national
specification on process called “Casting aluminum
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Fig. 16 Flow diagram of developing new parts suitable for SSP

alloys—Process specification for semisolid rheo-
diecasting forming (GB/T 40809—2021)” has been
released and will be officially implemented in May
2022.

As a concluding remark, it has been proven
that SSP is a powerful approach in the mass-
production of high-performance components with
some successful cases in China. Significantly, the
SSP fabricated parts have demonstrated excellent
properties that basically meet the demand of
markets. Meanwhile, their fabrication is readily
scalable and cost-effective, which provides a solid
function for industrial production. Therefore, we
propose that SSP will shed light on the landscape of
batch fabrication for the next generation of
advanced structural components and contribute to
the realization of “Made in China 2025”.
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