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Table 1 Effect of alloying on microstructure and mechanical properties of Ti,AIND alloy

Alloyin Type of . . . . .
ving Jpe o Effect of alloying on microstructure Effect of alloying on mechanical properties
element stabilization
. Grain size increasing, Oxidation resistance increasing, density decreasin
Al a phase stabilizer z & x £ Y J

degree of order BCC increasing

elastic modulus increasing, plasticity decreasing

Creep resistance increasing, tensile properties increasing,

Nb hase stabilizer - . . . .
Fr fracture toughness increasing, density increasing
. Grain size decreasing, thickness of ~ High temperature strength increasing, microhardness
Mo p phase stabilizer & . & P et i g
lamellar O phase decreasing increasing
.. Thickness of lamellar O phase Oxidation resistance increasing, creep resistance
Zr S phase stabilizer . . P . . & P
increasing increasing
Fe p phase stabilizer - High temperature strength increasing
- Thickness of lamellar O phase . . . C .
Ta S phase stabilizer . P Yield strength increasing, plasticity increasing
decreasing
. . . High temperature tensile strength increasing, cree
W p phase stabilizer ~ Thickness of lamellar decreasing & P . > Tensth & p
resistance increasing
. . Oxidation resistance increasing, creep resistance
Si f phase stabilizer - . asing P
increasing
. Plasticity increasing, strength decreasing, oxidation
\Y p phase stabilizer - Y g £ &

resistance decreasing

Interstitial element

Strength increasing, plasticity decreasing
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Table 2 Phase structure parameters of Ti,AINb alloy
Phase Structure Crystal structure  Space group Space group Lattice constant
symbol number alA bIA A a9
B A, Disordered BCC Im3m 229 3306 3306 3306 90 90 90
B2 DO; Ordered BCC Pm3m 221 3233 3233 3.233 90 90 90
o DOy Ordered HCP P63/mmc 194 5793 5.793 4.649 90 90 120
o oCl16 Orthorhombic Cmcm 63 6.163 9.728 4704 90 90 90
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treatment at B2+0 phase field; (c) Solution treatment at B2+a,+0O phase field
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Fig. 10 Microstructures evolutions of bimodal structure for Ti,AINb alloy™: (a) Deforming at B2+a, phase field; (b) Solution

treatment at B2+0 phase field; (c) Solution and aging treatment at B2+0 phase field
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Table 3 Relationship between thermo-mechanical processing and microstructure

Deformed state Deformed phase field Phase field of heat treatment ~ Microstructure
Roll""! B2+0,+0 - Equiaxed
Isothermal forge!***) B2+0,+0 ST and AT in B2+0 Equiaxed
Roll"”! B2+0 ST in B2+0O Equiaxed
Forge™" B2+0 ST and AT in B2+0 Equiaxed
Roll*? B2+a,+0O - Bimodal
Roll"*'7) isothermal forge'™! B2+0,+0 ST and AT in B2+0 Bimodal
Roll'"”? B2+a,+0O ST in B2+a, and AT in B2+0O Bimodal
Isothermal forge!®2"*!! B2+a, ST and AT in B2+0O Bimodal
4
Forge[40] B2+a, ST in B2+a, Bimodal
Forge[40] B2+a, ST in B2+a, and AT in B2+0O Bimodal
Roll""”, isothermal forge' ¥, extrusion!*” B2 - Lamellar
g
Roll[w], isothermal forge!™! B2 Annealing in B2+0O Lamellar
g g
Roll*? B2+a, - Lamellar
Roll'"”? B2+a, ST in B2 and AT in B2+0 Lamellar
[43] - Annealing in B2 Lamellar

_%

presents no deformed or heat treatment, “ST” presents solution treatment, “AT” presents aging treatment.

IREDLU R TIARTE, SRIGTE B2+ap+O —HMIXEL  FHXHACFE ] SRIEXGS AL, £ B2 A X ol mEiE
B2+0 Wi X AT AL FRYA H1 )G AT 3RS 2 2 21 B2+o, WIAHIX BT BT JG ESRA EIAT B2 B X
1E p/B2 ¥EAR R FE UL N AT VST, SR G 7E B2+O W AP IRIG H RS
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Fig. 13 Microstructures of Ti,AINb alloy deformed under different conditions™"": (a) e=30%; (b) e=50%; (c) e=70%
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Bl 14 Ti,AINb &4 A FEPRZS T i 5 g 41

Fig. 14 Microstructures of Ti,AIND alloy under different conditions'*”': (a) As-sintered; (b) As-extruded along transverse

section; (c¢) As-extruded along longitudinal section
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Fig. 15 Microstructures evolutions of Ti,AIND alloy at different solution temperatures™>”": (a) 940 °C; (b) 960 °C; (c) 980 C
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Fig. 16 Microstructures evolutions of Ti,AINb alloy at different aging temperatures™>*: (a) As solution treated; (b) 760 C;

(c) 780 C; (d) 800 C



3116 T EA O8RS

20214E 11 A

BIB2

B 17  Ti, AIND £ rh BUTRR BUAR 28 AL AL )7 2 P
Fig. 17

mechanism in Ti,AINb alloy

Schematic diagram of Ostwald ripening
[58]
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2, ARG AN L L2000 4 A 2R
ISR, XX 3R BT 75 AL SUIR S T ) v R4y
HE, HAT, L2 SRR TA& S80S .
LA AGEF RS TT, KT HE L EX TiAIND
& G HAUEAR R B TR TARE W, RILARS
PEFRIE

4 Ti,AINb & FMHEE

FEVEART Ti AIND & g AT 22 A A0S FR HiD
S, BEEEHIEGEMYEIEREN AR R
4 45T ThAIND a5 aE. ARG
y-TiAl & e Z [ BPEREM J) 22 PE e LR, T
M Ti, AINb & B A R YR ) 2A 1 g
B, AR RZAL. EASM ThAIND &4
M e Re i ¥ RERIWEU AR, FEED TR
iy WrRITE AR AR 5T AT N B AT

4.1 HIfEMERE

Ti,AINb & 4 IRLHIEBE 5 A 4o DAL
N T L 2EE IR, £ 5 FIZ T — Ay
Ti,AINb & & IR TERE - Ti, AIND & 4% 5 BAR L
BREEMK, HEHAEAREEMARMERE, 25N
LN ERA M 60%, ¥ TiAl &4t EE
B, B 18 Finh ThAIND &4 51T o B
K&, TiAl. IN718. TiAl &G Rt fE M &
IRECSRE AT L. HIA 18 AT L, Ti,AINb &4 H:
AT A A B B AR L B BB L SR
P RN IGR 4 ) R AP VT AL

SRS L ELI THLAIND &4k

Table 4 Physical and mechanical properties of advanced high temperature materials for aero-engines

/ Elasticity Yield Tensile RT HT  Limit temperature Antioxidation
Material (@ cp m?) modulus/ strength/ strength/  ductility/ ductility/ of creep limit
£ GPa MPa MPa % % resistance/'C  temperature/C
Titanium 4.5 95-115 380—-1150  480-1200 1025 12-50 600 600
Ni-based alloy 7.9-8.5 206 800—-1200 1250—-1450  3-25 20—80 800—1090 870-1090
y-TiAl 3.7-42 160-180 350—600 500—-800 1-4 10-60 750—-800 800—900
Ti,AINb 53-5.7 110-145  900-1130 1010-1250  3-16 15-35 650-750 650—-750

“RT” presents room temperature, “HT” presents high temperature
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MR, % ThAINb 2455 58 % 3117
&5 L Ti,AIND &&= iRA R
Table 5 Tensile properties of typical Ti,AINb alloy at room temperature
Nominal component Deformed state ~ Microstructure R, /MPa Ry02/MPa A%
Ti-12A1-38Nb"! Forge and roll Lamellar 869 809 12.3
Ti-22A1-24Nb"! Forge and roll Lamellar 916 836 45
Ti-22A1-25Nb*) Free forge Duplex 1180 1100 35
Ti-22A1-27Nb"" Roll Duplex 1160 1050 10.1
Ti-23Al1-17Nb"! Forge Duplex 1095 910 13.0
Ti-25A1-24Nb"! Forge and roll Equiaxed 1237 1125 5.0
Ti-22Al1-23Nb-1Mo-1Zr"4 Forge Lamellar 1028 882 20.0
Ti-22A1-24Nb-3Ta!'"! Roll Duplex 1110 1100 14
Ti-22A1-20Nb-7Ta'") Roll Duplex 1320 1200 9.8
Ti-22A1-24Nb-2V!* Roll Lamellar 888 740 3.3
Ti-22A1-24Nb-2W!% Forge Lamellar 960 860 0.8
R, ultimate tensile strength; Ry»: yield strength; 4: elongation.
25 25
b
@) Ti,AINb RT ®) Nin71s
20 | T13A1 20 L
2 = .
= i < Ti-22A1-25Nb
£t Neara £ 15 | Ti-23A1-15Nb Tu-1100
= 2 IMI834
5 E
S 10r S 10} I Ti-25A1-10Nb-3V-1Mo
a £ |Ti-24AL-11Nb (-Ti-23A1-27NE)
sl sl Ti-22A1-27Nb
| | TiAl . TiAl _=
| I | | I Ti-46Al-3Nb-
0 1 1 0 2.1Cr-0.2W | | 1
500 1000 150 2000
Alloy type Yield strength/MPa

Specific yield strength/km

TiAl

IN718

| |
200 400

0

1 |
600 800

Temperature/'C

fe, ZHANG ZEP2EF98 T Ti-22A1-25Nb Fl Ti-22A1-
23.9Nb-1.1Mo A& =AM 650 CHHMERE, AN
Mo #1453 Ti-22A1-23.9Nb-1.1Mo & 4> 25 I 5 5 F1 98

|
1000 1200

18 T AINb 55T a 8. ThAL

IN718 TiAl %54 G h A i J L s o L)
Fig. 18 Comparison of tensile properties and
specific yield strength of Ti,AIND alloy and to
near-a titanium, TisAl, IN718 and TiAl alloym]:
(a) Fracture strain; (b) Fracture strain vs yield

strength; (c) Specific yield strength
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Fig. 19 Room temperature fracture toughness of Ti,AINb alloy with different microstructures and its relationship with Ti;Al,

TiAl and near-o titanium alloy at different yield strength™ (Fracture elongation at room temperature is more than 1%): (a)

Fracture toughness of Ti,AIND alloy; (b) Fracture toughness vs yield strength for Ti,AINb, near-a titanium alloy, Ti;Al and

TiAl alloys
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Fig. 20 Creep properties of Ti,AIND alloy in comparison
to titanium alloy'"® and TiAl alloy!”
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HFC properties of Ti,AINb, TiAl and near-a
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Research and prospect of Ti,AIND alloy

LIU Shi-shuang, CAO Jing-xia, ZHOU Yi, DAI Sheng-long, HUANG Xu, CAO Chun-xiao

(Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys,
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: Ti,AINb alloy is the key material for new generation aero-engine with characteristics of low density,

high specific strength, high creep resistance and excellent oxidation resistance, making it a promising light-mass,

high-temperature structural material for aero-engine. This paper summarized the research progresses of Ti,AINb

alloy at home and abroad in recent years. A brief review of the research results in the four aspects of alloying,

phase transformation, microstructure evolution and mechanical properties was conducted,aiming to better guide the

engineering applications of Ti,AINb alloy in aerospace field. At the same time, the problems to be solved urgently

of Ti,AIND alloy were pointed out and its applications in aero-engine is prospected.
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