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Abstract: An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone 
and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were 
employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The 
multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a 
three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation 
coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression 
analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone 
concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model 
accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the 
process parameters. 
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1 Introduction 
 

Refractory gold ores have been received much 
attention owing to the depletion of easily leachable gold 
minerals and the high price of gold. A “refractory” gold 
ore is an ore that is naturally resistant to recovery by 
conventional cyanidation and carbon adsorption 
processes. Typical gold-silver refractory concentrate, 
where precious metals are found encapsulated with 
sulfides, requires pretreatment such as roasting[1−2], 
biological oxidation[3−4] and pressure oxidation[5−7] 
before cyanidation[8]. Pretreatment of refractory gold 
ores by ozone is a better alternative of conventional 
pretreatment methods as the high oxidizing potential (2.0 
V) of ozone is thermodynamically capable of oxidizing 
all metals, sulfides and arsenides[9−11]. 

Although a number of investigations have been 
conducted on the pretreatment parameters, such as 
oxidants amount, temperature, pulp concentration and 
time using various pre-oxidation techniques, the results 
of optimized parameters were found to be different for 
different refractory gold concentrate (RGC). Hence, a 

number of experiments have to be conducted for 
optimizing the pretreatment parameters for RGC when 
the content of sulfide matrix in RGC is different, which 
is very laborious and time-consuming as well as requires 
chemicals, equipments and skilled personnel. Some 
unknown, non-linear relationships may exist between the 
parameters and the pretreatment results, which are 
difficult to fit into any type of simple relationships. 
Therefore, there is a need for development of a 
generalized model or technique, which can predict 
pretreatment efficiency using pretreatment process 
parameters for any given RGC. 

Pre-oxidation of RGC constitutes one of these 
processes for which ANNs can be utilized with great 
benefits. The multiplicity of the factors to be taken into 
consideration in a pre-oxidation process of RGC 
complicates any modeling using classical statistical 
techniques because of the non-linear and complicated 
pre-oxidation process. The abilities of neural networks, 
which were used as a tool to predict pre-oxidation 
efficiency, have been approved for the modeling, 
identification and control of complex systems and to 
identify underlying highly complex relationships from 
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input and output data[12−19]. An important use of 
predictive model is to conduct “what if” experiments, 
whereby the response to an imposed change in reaction 
conditions (e.g. oxygen amount, time, ozone 
concentration, liquid to solid ratio, ferric sulfate 
concentration and temperature) can be determined 
without actually doing the experiment. Furthermore, the 
neural network model as an easy-to-use tool can be 
directly applied to smelting engineering of RGC since it 
considers only the input and output variables rather than 
the complex pretreatment process. 

To the knowledge of the authors, no work has been 
reported in literature that addresses the application of 
ANN models for predicting pre-oxidation efficiency of 
RGC. The aim of the present work is to develop a neural 
network model to examine the relationships between 
process variables and ferric extraction of RGC.  
 
2 Experimental 
 
2.1 Materials 

The samples used in this work were gold 
concentrates obtained from the Zhongyuan Gold 
Smelting Plant in Henan Province, China. The grain size 
of the concentrate was 80.0% finer than 125 μm. Table 1 
summarizes the chemical compositions of the 
concentrate. The mineral compositions were 20% pyrite, 
16% arsenopyrite, 2% anatase, 37% muscovite and 
approximately 17% quartz. Analytical reagent grade 
chemicals and distilled water were used in all 
experiments. 
 
Table 1 Chemical compositions of gold concentrate (mass 
fraction, %) 

Na Mg Al Si S Ca Ti Fe 

0.69 1.88 7.61 15.8 13.91 3.88 0.71 16.8

Cu As P Ni Mn Au* Ag*  

0.03 7.54 0.11 0.07 0.08 48.03 8.46  
*: g/t 
 
2.2 Analysis method 

The iron content of the mineral samples was 
determined by a titration method according to 
GB/T7739.7—2007 (Chinese Standard). The samples 
were decomposed by hydrochloric acid, nitric acid and 
sulfuric acid, respectively, and then evaporated to dry. 
Afterward, the mineral residues were re-dissolved with 
dilute hydrochloric acid and titrated with potassium 
dichromate standard solution. 

The ozone content of gas was determined by 
iodimetry. The determination of sulfur was conducted by 
gravimetric analysis of barium sulfate. Au and Ag were 
analyzed by fire assay, and other elements were analyzed 

by XRF. 
 
2.3 Experimental procedure 

An oxidation pretreatment of concentrates was 
performed in a cylindric semi-batch glass reactor 
(volume 0.5 L) with a water-cooled condenser keeping 
the reactor at constant temperature. A magnetic stirrer 
was used with the gas diffuser for sufficient circulation 
of the slurry. Temperature change was maintained within 
0.2 °C by a heating glass coil connected to a thermostat. 
Ozone was generated from dry pure oxygen using a 
Guolin Ozone generator. 

After an appropriate amount of samples and 250 mL 
ferric sulfate solution with pH 1.0 were added into 
reactor, oxidizing pretreatments were conducted at a 
predetermined temperature (60−100 °C) for several 
reaction intervals (8−16 h). During the reaction, ozone- 
oxygen mixture was continuously sparged into the slurry 
solution agitated at specified speed. After reaction, slurry 
was filtered in a pressure filter using air at 0.135 MPa 
pressure. The filter cake was washed and dried in an 
oven at 90 °C overnight. Then, the solid residue was 
pulverized and analyzed. 

The efficiency of pre-oxidation for refractory gold 
concentrate is denoted by ferric extraction, which is 
defined by the following expression: 

 

100)1(
00
×−=

mc
cmη                            (1) 

 
where η denotes the ferric extraction; c0 and c are the 
ferric content of initial feed and oxidized residues, 
respectively; m0 and m are the mass of initial feed and 
oxidized residues, respectively. 
 
3 Artificial neural networks (ANNs) 
 

The architecture of ANN is a massively parallelly 
distributed information-processing system that has 
certain performance characteristics resembling biological 
networks of the human brain. Many ANN structures have 
been proposed and explored since 1950s. Neural 
networks are formed by input data vectors, neurons and 
output functions. Input data to the neuron are 
transformed by means of a base function and leave by an 
activation function connection between input and output 
data and neurons are made by weight factors Wij, which 
determine the effect of the input variable i on the  
neuron j. 

The multilayer feed forward network with a back 
propagation (BP) learning algorithm is the most 
prevalent and generalized neural network currently in use, 
and straight forward to implement[20]. The network 
consists of multiple input nodes, one or several hidden 
layers, and a single output where each neuron is 
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connected to a large number of others. The input signal is 
passed among them and each of them calculates its own 
output (Hk) from the weights associated with connections 
using the equation: 

 
)(∑ −= kiikk IwfH θ                         (2) 

 
where f(·) is the transfer function, whereas wik and θk 
are the weight coupling the kth output node to the ith 
node of the input vector I and the associated bias for the 
kth output node. Generally, the transfer functions are 
sigmoidal function, hyperbolic tangent and linear 
function, of which the most widely used for non-linear 
relationship is the sigmoidal function. The number of 
neurons in the input layer is usually equal to the number 
of input variables. The number of output layer neurons is 
usually the same as the target variable number. The 
number of neurons in the hidden layer is determined to 
optimize performance. A neural network must be trained 
to determine the values of the weights that will produce 
the correct outputs. 

For the assessment of model performance, there are 
several criteria used in Refs.[21−22]. In the present work, 
the following three criteria were used: the determination 
coefficient (R2), the mean square error (MSE), and the 
mean absolute error (MAE). The ANN responses are 
more precise if R2, MSE, and MAE are found to be close 
to 1, 0, and 0, respectively. These R2, MSE, and MAE 
terms are defined as: 

2)(1MSE ∑ −×= i ii ot
p

                       (3) 

∑ −×= i ii ot
p

)(1MSE                       (4) 

2

2
2

)(

)(
1

∑
∑ −

−=
i i

i ii

o

ot
R                         (5) 

 
where ti is the target value of the ith pattern; oi is the 
output value of the ith pattern, and p is the total number 
of data. 
 
4 Network prediction model 
 

Figure 1 presents the calculation sequence with 
regards to the sample processing and training. It 
demonstrates the procedures for implementing neural 
network to predict pre-oxidation efficiency of refractory 
gold concentrate. Neural network training can be made 
more efficiently if certain pre-processing steps are 
performed on the network inputs and targets. Initially, 
inputs and targets were normalized so that they fall in the 
range of [0, 1]. After the network has been trained, the 
outputs need to be transferred back to the same units that 
were used for the original targets for comparison purpose. 
The commercial software package, Matlab 7.0 
(MathWorks, Natick, MA, USA) was used for ANN 
modeling. 

 

 

Fig.1 Calculation procedure of network prediction model: X1—Temperature, °C; X2—Time, h; X3—Liquid to solid ratio; X4—Ferric 
concentration, mol/L; X5—Ozone concentration, 10−6; X6—Oxygen amount, L/min 
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There are numerous factors used to achieve the best 
model performance for ANN, which include the number 
of hidden layers, the number of hidden neurons, transfer 
function (sigmoid, tan-sigmoid, etc), training algorithms 
(BP, LM, etc), and learning parameters (learning rate, 
momentum factor, and initial weights). The detailed 
information about each parameter (definition, function, 
range, etc) is provided by BASHEER and HAJMEER[23] 
and MAIER and DANDY[24]. Depending on the 
problem being solved, the success of training varies with 
the selected factors, and a trial-and-error procedure is 
normally preferred. In this study, a multilayered feed 
forward neural network with a back propagation 
algorithm (FFBP) was adopted. Five important aspects 
that must be determined in design procedure of FFBP 
were as follows: 

1) Training and test data selection; 
2) Selection of neurons’ transfer functions; 
3) Selection of FFBP structure; 
4) Selection of training algorithm and its parameters; 
5) Testing the FFBP generalization. 

 
5 Results and discussion 
 
5.1 Effect of pretreatment on refractory gold 

concentrate 
The pre-oxidation experiments were carried out 

according to the procedure described in section 2.3. After 
the refractory gold concentrate was pre-oxidized by 
ozone and ferric sulfate under the optimum conditions 
(temperature of 100 °C, time of 8 h, liquid to solid ratio 
of 20, ozone concentration of 54×10−6 and 0.7 mol/L 
ferric concentration), the oxidized residues were 
subjected to cyanide leaching tests. The following 
parameters were chosen: pulp density 200 g/L, pH 9.5 
(adjusted with NaOH), cyanide (NaCN) concentration 
2.0−3.0 g/L, air supply 25 L/h, and temperature 20 °C. 
The experiments run for 24 h. Samples were regularly 
taken for analysis of cyanide and metal concentrations in 
solution in order to calculate the metal extraction and 
cyanide consumption. A summary of the results is given 
in Table 2, clearly indicating that pre-oxidation 
significantly improved the recovery of gold. The gold 
extraction was 96.5%, about 77% greater than the gold 
extraction without pre-oxidation. Pretreatment with 
ozone and ferric ions for refractory gold concentrate was 
a promising alternative to enhance the recovery of 
gold[25]. 
 
Table 2 Result of cyanidation experiment 

Sample Cyanidation 
time/h 

Na-cyanide 
consumption/(kg·t−1) 

Gold 
recovery/%

Oxidized 
residues 24 0.3 96.5 

Untreated ore 24 0.3 19.5 

5.2 FFBP model development 
5.2.1 Training and testing data 

The ANN model was trained using 32 randomly 
selected data (accounting for 80% of the total data) while 
the remaining 9 data (accounting for 20%) were utilized 
for testing of the network performance. The experimental 
conditions and the experimental results (ferric extraction) 
were set as the input matrix and the target matrix. 

Since the neural network performance can be made 
more efficiently by certain pre-processing steps, all input 
data and output in the present work were normalized 
according to 
 
Np=(Ap−Amean, p)/Astd, p                                       (6) 
 
where Ap is the actual parameter; Amean, p is the mean of 
actual parameters; Astd, p is the standard deviation of 
actual parameter and Np is the normalized parameter 
(input). Then the average value would be zero and the 
standard deviation equals 1. Data statistics of model 
variables are presented in Table 3. 
 
Table 3 Pre-processing parameters for ANN 

Data statistics 
Variable 

Mean Standard 
deviation Range 

Temperature/°C 91.2 10.17 60−100

Time/h 10.6 3.28 8−16 

Liquid to solid ratio 8.9 2.48 6−20 
Ferric 

concentration/(mol·L−1) 1.2 0.29 0.7−1.4 

Ozone concentration/10−6 28.9 26.27 0−54 

Oxygen amount/(L·min−1) 2.3 1.24 0−3 

Ferric extraction/% 49.9 20.79 9.29−90.10

 
5.2.2 Selection of BP algorithm 

Although ANN is a powerful tool to predict the 
nonlinear or time-variant systems, different training 
algorithms can lead to different generalization 
characteristics, and no one training algorithm may be 
uniformly best[26]. Therefore, trial and error method was 
applied to obtain the optimal training algorithm. 

In this subsection, the same neural configuration 
(6-6-1 network topology) was trained using the 11 BP 
algorithms. Also, a tangent sigmoid function (tansig) and 
a logistic sigmoid function (logsig) were used as the 
transfer functions in hidden and output layers, 
respectively. 

Eleven BP algorithms were compared to select the 
best fitting one. The performance of the BP algorithms 
was evaluated with the MSE and the determination 
coefficient (R2) between the modeled output and the 
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measured data set. Table 4 shows a brief description of 
training functions. The training results are provided in 
Table 5, which reveals that the best prediction result is 
obtained when the BP algorithm is LM algorithm. 

 
Table 4 Descriptions of training functions 

BP algorithm Function

Resilient backpropagation trainrp
Conjugate gradient backpropagation with 

Fletcher-Reeves updates 
traincgf

Conjugate gradient backpropagation with 
Polak-Ribiere updates 

traincgp

Conjugate gradient backpropagation with 
Powell-Beale restarts 

traincgb

Levenberg-Marquardt backpropagation trainlm

Scaled conjugate gradient backpropagation trainscg

BFGS quasi-Newton backpropagation trainbfg

One step secant backpropagation trainoss

Gradient descent backpropagation traingd
Gradient descent with momentum and adaptive 

learning rate backpropagation 
traingdx

Gradient descent with momentum backpropagation traingdm

 
Table 5 Comparison of 11 back propagation algorithms with 6 
neurons in hidden layer 

Function MSE R2 BLE 

trainrp 0.005 0 0.883 Y=0.977x +0.045 

traincgf 0.006 2 0.887 Y =1.123x−0.088 

traincgp 0.007 9 0.805 Y =1.042x−0.015 

traincgb 0.006 0 0.890 Y =0.854x +0.064 

trainlm 0.002 8 0.920 Y =0.926x +0.054 

trainscg 0.005 6 0.883 Y =1.171x−0.092 

trainbfg 0.003 9 0.837 Y =0.987x +0.006 

trainoss 0.007 1 0.222 Y =1.060x−0.006 

traingd 0.108 6 0.856 Y =0.834x +0.264  

traingdx 0.006 5 0.881 Y =1.094x −0.058 

traingdm 0.022 8 0.419 Y =0.691x +0.154 
 

As shown in Table 5, the MSE and R2 are 0.002 8 
and 0.920 for trainlm function, respectively. The LM 
algorithm with the least MSE and the maximum R2 is 
found as the best training algorithm, compared with other 
BP algorithms such as gradient descent algorithms and 
conjugate gradient algorithms. LM algorithm 
outperforms all the aforementioned competitors in terms 
of MSE. Such an observation is not surprising, since 
neural network training task is in fact an unconstrained 
minimization problem with the MSE performance index 

as the objective function. Hence, the LM algorithm 
selected as the best training algorithms would be 
employed for training all the FFBP networks. 
5.2.3 Determination of FFBP network topology 

Topology of an artificial neural network is 
determined by the number of its layers, the number of 
nodes in each layer and the nature of transfer functions. 
Optimization of network topology is probably the most 
important step in development of model[27]. There is no 
exact guide for the determination of these parameters. 
Topology of an artificial neural network is designed via a 
tedious trial and error process. 

Each topology was repeated 20 times to avoid 
random correlation due to random initialization of the 
weights. The MSE was used as the error function. The 
results presented are the best obtained. 
5.2.3.1 Selection of transfer functions 

One important factor in FFBP network design is the 
type of transfer functions since FFBP networks owe their 
nonlinear capability to the use of nonlinear transfer 
functions[28]. The type of transfer function to be used by 
the hidden nodes and the output node still had to be 
determined. Three commonly used transfer functions 
were examined separately in each layer, and the proper 
transfer functions were selected according to the MSE 
value of testing data. 

Figure 2 shows the performance results of the 
combinations of the three commonly used transfer 
functions for the hidden and the output layers in the 
FFBP model. The numbers in the x- and y-axis are the 
serial numbers for the transfer functions listed in Table 6. 
z-axis shows the MSE values, which represent the 
deviations between the estimated and experimental 
results for these combinations of different transfer 
functions. As can be seen from Fig.2, the 
tan-sigmoid/log-sigmoid combination yielded the best 
results (z=2.8×10−3) among different combinations of 
tan-sigmoid, log-sigmoid and linear functions. Therefore, 
tan-sigmoid and log-sigmoid functions were selected as 
the propagation functions in the hidden layer and output 
layer, respectively. 
 
Table 6 Transfer functions tested in this study 

Serial Transfer function Formula 

1 
Hyperbolic tangent 

sigmoid )exp()exp(
)exp()exp()(

xx
xxxf

−+
−−

=  

2 Linear f(x)=x 

3 Log-sigmoid )exp(1
1)(

x
xf

−+
=  
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Fig.2 MSE values of different combinations of transfer 
functions used in hidden and output layers 
 
5.2.3.2 Selection of number of hidden neurons 

It is usually unnecessary to use more than one 
hidden layer in a multi-layer feed-forward network, and 
varying the number of hidden nodes in the one hidden 
layer is usually sufficient for delivering distinct results. 
In this study, only one hidden layer was used. Training 
the neural networks by LM algorithm is sensitive to the 
number of neurons in the hidden layer. The more the 
number of neurons, the better the performance of the 
neural network in fitting the data. However, using too 
many hidden nodes will make the network generalize 
poorly, memorizing the training data rather than focusing 
on its significant features thus result in the overfitting. 

In order to determine the optimum number of 
hidden nodes, a series of topologies were used, in which 
the number of nodes ranged from 4 to 15. The influence 
of the number of hidden nodes on the accuracy of neural 
models for test data sets is depicted in Fig.3. From this 
figure, as the number of neurons was increased up to 8, 
there was perceivable improvement in the prediction 
accuracy. However, increase in the number of neurons 
did not lead to any improvement in the results when the 
number of hidden neurons was more than 8. Thus, for the 
prediction of the total sensory score, the simplest ANN 
model with 8 neurons in one hidden layer appeared to be 
the best, which yielded an MSE of 3.6×10−6 for the 
training data and 0.001 3 for the test data. Among various 
network configurations, 6-8-1 configuration was found to 
be the best performing network structure, and hence, was 
chosen to be the final model. 

The LM algorithm training was stopped after 13 
iterations (Trainlm, Epoch 13/1000) for the optimal 
FFBP because minimum gradient reached, which showed 
that the network converged rapidly with LM algorithm. 
Attempting to improve the results by changing some of  

 

 

Fig.3 Influence of number of hidden nodes on accuracy of 
neural models 
 
the network parameters such as learning rate and final 
error did not improve the predictive performance of the 
FFBP model. 

Thus, based on the above discussion and objective 
of the investigation, the best network designed to predict 
the pre-oxidation efficiency of RGC was obtained as 
follows: a three-layer FFBP network, with tan-sigmoid 
transfer function (tansig) at hidden layer with 8 neurons 
and a log-sigmoid transfer function (logsig) at output 
layer. A schematic of the BP network is described in 
Fig.4. Furthermore, the final feed forward neural model 
was implemented in Matlab software, with the following 
characteristics: 

1) net.trainParam.goal=0; aimed training final error; 
2) net.trainParam.lr=0.05; learning rate; 
3) net.trainParam.show=25; screen actualization 

(epochs); 
4) net.performFcn=‘mse’; 
5) net = newff(minmax(ptr), [8, 1], {‘tansig’ 

‘logsig’}, ‘trainlm’). 
where ptr represents the network inlet values of training 
set (temperature, time, liquid to solid ratio, ferric 
concentration, ozone concentration, oxygen amount). 
The outlet variable is the ferric extraction. 
 
5.3 FFBP network generalization 

The performance of the trained FFBPs was also 
measured by carrying out a regression analysis between 
the predicted outputs and the experimental values. Figure 
5 presents the comparison between the ferric extraction 
of refractory gold concentrate from the experimental and 
estimated results in the training set. It should be noted in 
this figure that for the FFBP model the slope and the 
correlation coefficient are equal to 1, thus, indicating a 
quite good fit. 
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Fig.4 Final architecture of ANN 
 

 
Fig.5 Parity plot for ferric extraction of RGC in training set 
 

Figure 6 provides the results of the comparison 
between the ferric extraction of refractory gold 
concentrate from the experimental and estimated results 
in the testing set. The R2 value and the slope between the 
estimated and experimental ferric extraction were 0.966 
and 1.035, respectively. The results in Fig.6 demonstrate 
that the FFBP model could provide desirable results in 
most of the cases, with the minimum and maximum 
deviations between the estimated and experimental ferric 
extraction being only 0.03% and 5.11%, respectively. 
The output, i.e. the estimated ferric extraction after 
pre-oxidation, matched the experimental data very well, 
indicating that the proposed FFBPs were capable of 
successfully predicting the pre-oxidation efficiency of 
refractory gold concentrate under different reaction 
conditions. 
 
5.4 Determination of importance of each input 

variable on efficiency of process 
The ANN used in this work provided the internodes 

 
Fig.6 Parity plot for ferric extraction of RGC in testing set 
 
weights. The weights are coefficients between the 
artificial neurons, which are analogous to synapse 
strengths between the axons and dendrites in real 
biological neurons. Therefore, each weight decides what 
proportion of the incoming signal will be transmitted into 
the neuron’s body[29]. The neural net weight matrix can 
be used to assess the relative importance of the various 
input variables on the output variables. 

The procedure for partitioning the connection 
weights to determine the relative importance of the 
various inputs was proposed first by GARSON[30] and 
repeated by GOH[31]. The equation based on the 
partitioning of connection weights is given as follows: 
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where Ij is the relative importance of the jth input 
variable on the output variable; Ni and Nh are the 
numbers of input and hidden neurons, respectively; w are 
the connection weights, the superscripts ‘i’, ‘h’ and ‘o’ 
refer to input, hidden and output layers, respectively, and 
subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and 
output neurons, respectively. Table 7 represents the 
weights of the input-hidden layer connections, and the 
hidden-output layer connections. The relative importance 
of various variables is summarized in Table 8. 

As can be seen, all of the variables (oxygen amount, 
time, ozone concentration, liquid to solid ratio, ferric 
sulfate concentration and temperature) have strong 
effects on the pre-oxidation efficiency of refractory gold 
concentrate. Therefore, none of the variables studied in 
this work could be neglected from the present analysis. 
However, temperature and ozone concentration, with 
relative importance of respectively 23.9% and 21.6%, 
appeared to be more influential parameters in the 
pre-oxidation process. 
 
5.5 Multivariate regression analysis (MVRA) 

The purpose of multiple regressions is to learn more 
about the relationship between several independent or 
predictor variables and a dependent or criterion variable. 
The goal of regression analysis is to determine the values 
of parameters for a function that causes the function to 
best fit a set of data provided. When there is more than 

one independent variable, then multivariate regression 
analysis is used to get the best-fit equation. Multiple 
regressions analysis solves the data sets by performing 
least squares fit. It constructs and solves the 
simultaneous equations by forming the regression matrix, 
and solving the co-efficient using the backslash operator. 
The MVRA has been done by same data sets and same 
input parameters which we used in ANN. 

The equation for prediction of ferric extraction by 
MVRA is 

 
Y=−74.18 + 0.79X1 + 0.79X2 + 1.94X3 + 2.69X4 + 

0.51X5 + 3.87X6                           (8) 
 
As shown in Fig.7, the coefficient of determination 

between the predicted and the measured values of ferric 
extraction by MVRA is 0.817 2. Figure 8 illustrates the 
comparison between the measured and predicted values 
of ferric extraction by ANN and MVRA. From Figs.6−8, 
the conclusion can be made that the prediction of ferric 
extraction by neural network is very accurate and closer 
to the measured values; the high coefficient of 
determination values shown by ANN as compared to that 
by MVRA indicates better prediction capability of ANN 
over MVRA. The mean absolute percentage error 
(MAPE) for ferric extraction was 7.66% by neural 
network method, whereas the MAPE for ferric extraction 
was 19.92% calculated by MVRA method. 

 
Table 7 Weights of adopted FFBP 

W1  W2 

Variable  
Neuron 

X1 X2 X3 X4 X5 X6 
Bias 

 
Neuron Weight Bias 

1 −2.264 0 −0.372 3 −0.591 3 −0.392 2 −0.157 8 0.316 7 2.638 5  1 −1.211 8 0.083 9

2 1.106 2 −0.403 7 −0.363 0 −0.305 0 0.988 6 0.419 9 1.272 8  2 0.707 0 0.083 9

3 0.400 3 0.144 2 0.305 0 0.545 8 −0.660 4 0.157 9 2.409 0  3 0.505 8 0.083 9

4 1.317 1 −1.223 3 0.094 6 1.914 7 −1.035 5 0.413 3 1.569 9  4 −0.333 7 0.083 9

5 −0.475 7 0.750 1 −1.300 9 −0.743 5 2.261 0 −1.072 7 0.019 1  5 −0.496 2 0.083 9

6 1.045 1 −0.225 6 −1.374 4 −1.307 5 0.491 6 0.019 3 2.301 8  6 −0.368 2 0.083 9

7 −0.993 8 1.396 6 −0.527 7 0.231 8 3.168 9 −0.321 8 0.863 0  7 0.657 5 0.083 9

8 1.021 9 −0.605 1 1.666 5 0.196 9 0.052 3 −1.676 9 −2.221 0  8 −0.394 4 0.083 9
W1: weights between input and hidden layers; W2: weights between hidden and output layers; X1: temperature, °C; X2: time, h; X3: liquid to solid ratio; X4: ferric 
concentration, mol/L; X5: ozone concentration, 10−6; X6: oxygen amount, L/min. 
 
Table 8 Relative importance of input variables on value of efficiency 

Input 
variable 

Temperature Time 
Liquid to 
solid ratio 

Ferric 
concentration 

Ozone concentration 
Oxygen 
amount 

Total

Importance/% 23.9 12.0 16.3 15.3 21.6 10.9 100 
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Fig.7 Measured ferric extraction vs predicted one by MVRA 
 

 
Fig.8 Comparison of measured ferric extraction with predicted 
ferric extraction by ANN and MVRA 
 
6 Conclusions 
 

1) The pre-oxidation efficiency of RGC by ozone 
and ferric ions was successfully predicted by applying a 
three-layer neural network with 8 neurons in the hidden 
layer, and using a back propagation algorithm. 
Simulations based on the ANN model were performed in 
order to estimate the ferric extraction under different 
conditions. 

2) All of the studied parameters in this work have 
considerable effects on the pre-oxidation process, and the 
temperature and ozone concentration with a relative 
importance of 23.9% and 21.6% appear to be the most 
influential parameters in the pretreatment process.  

3) The results of modeling confirm that neural 
network modeling can effectively reproduce 
experimental data and predict the process. It was seen 
that the error rate predicted by the artificial neural 
network is smaller than that predicted by the multiple 
regression analysis.  

4) The prediction capability of ANN model offers 
an advantage for the optimization of processing 
conditions to increase profits in gold smelting plants. 
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摘  要：使用神经网络模型预测难选冶金精矿在臭氧和三价铁氧化条件下的铁浸出率。神经网络的输入结点是 6

个操作参数：臭氧浓度，三价铁离子浓度，液固比，氧气量，氧化时间，反应温度；神经网络的输出结点是难选

冶金精矿中铁的氧化率。基于误差反向传播算法的多层前向神经网络使用 33 组实验值，采用 6−11−1 的网络结

构经过反复训练得到一个良好模型，其相关系数 R2为 0.966。对神经网络与常规的多元线性回归 2 种模型进行对

比。神经网络的计算结果表明：在所有操作参数中，温度是最重要的影响因素，臭氧为第二重要的影响因素。神

经网络模型能够准确地预测黄金冶炼厂的难选冶金矿的预处理步骤中铁的氧化率，并可用来优化工艺参数。 

关键词：预氧化；多元回归分析；人工神经网络；难选冶金精矿 
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