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Prediction of pre-oxidation efficiency of refractory gold concentrate by
ozone in ferric sulfate solution using artificial neural networks
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Abstract: An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone
and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were
employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The
multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a
three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation
coefficient (R2:0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression
analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone
concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model
accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the

process parameters.
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1 Introduction

Refractory gold ores have been received much
attention owing to the depletion of easily leachable gold
minerals and the high price of gold. A “refractory” gold
ore is an ore that is naturally resistant to recovery by
conventional cyanidation and carbon adsorption
processes. Typical gold-silver refractory concentrate,
where precious metals are found encapsulated with
sulfides, requires pretreatment such as roasting[1-2],
biological oxidation[3—4] and pressure oxidation[5—7]
before cyanidation[8]. Pretreatment of refractory gold
ores by ozone is a better alternative of conventional
pretreatment methods as the high oxidizing potential (2.0
V) of ozone is thermodynamically capable of oxidizing
all metals, sulfides and arsenides[9—11].

Although a number of investigations have been
conducted on the pretreatment parameters, such as
oxidants amount, temperature, pulp concentration and
time using various pre-oxidation techniques, the results
of optimized parameters were found to be different for
different refractory gold concentrate (RGC). Hence, a

number of experiments have to be conducted for
optimizing the pretreatment parameters for RGC when
the content of sulfide matrix in RGC is different, which
is very laborious and time-consuming as well as requires
chemicals, equipments and skilled personnel. Some
unknown, non-linear relationships may exist between the
parameters and the pretreatment results, which are
difficult to fit into any type of simple relationships.
Therefore, there is a need for development of a
generalized model or technique, which can predict
pretreatment efficiency using pretreatment process
parameters for any given RGC.

Pre-oxidation of RGC constitutes one of these
processes for which ANNs can be utilized with great
benefits. The multiplicity of the factors to be taken into
consideration in a pre-oxidation process of RGC
complicates any modeling using classical statistical
techniques because of the non-linear and complicated
pre-oxidation process. The abilities of neural networks,
which were used as a tool to predict pre-oxidation
efficiency, have been approved for the modeling,
identification and control of complex systems and to
identify underlying highly complex relationships from
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input and output data[12—19]. An important use of
predictive model is to conduct “what if” experiments,
whereby the response to an imposed change in reaction
conditions (e.g. oxygen amount, time,
concentration, liquid to solid ratio, ferric sulfate
concentration and temperature) can be determined
without actually doing the experiment. Furthermore, the
neural network model as an easy-to-use tool can be
directly applied to smelting engineering of RGC since it
considers only the input and output variables rather than
the complex pretreatment process.

To the knowledge of the authors, no work has been
reported in literature that addresses the application of
ANN models for predicting pre-oxidation efficiency of
RGC. The aim of the present work is to develop a neural
network model to examine the relationships between
process variables and ferric extraction of RGC.

0ozone

2 Experimental

2.1 Materials

The samples used in this work were gold
concentrates obtained from the Zhongyuan Gold
Smelting Plant in Henan Province, China. The grain size
of the concentrate was 80.0% finer than 125 pm. Table 1
chemical compositions of the
concentrate. The mineral compositions were 20% pyrite,
16% arsenopyrite, 2% anatase, 37% muscovite and
approximately 17% quartz. Analytical reagent grade
chemicals and distilled water were used in all
experiments.

summarizes the

Table 1 Chemical compositions of gold concentrate (mass
fraction, %)

Na Mg Al Si S Ca Ti Fe

069 188 761 158 1391 388 0.71 16.8

Cu As P Ni Mn Au*  Ag*

0.03 754 0.11 0.07 008 48.03 8.46
*: g/t

2.2 Analysis method

The iron content of the mineral samples was
determined by a titration method according to
GB/T7739.7—2007 (Chinese Standard). The samples
were decomposed by hydrochloric acid, nitric acid and
sulfuric acid, respectively, and then evaporated to dry.
Afterward, the mineral residues were re-dissolved with
dilute hydrochloric acid and titrated with potassium
dichromate standard solution.

The ozone content of gas was determined by
iodimetry. The determination of sulfur was conducted by
gravimetric analysis of barium sulfate. Au and Ag were
analyzed by fire assay, and other elements were analyzed

by XRF.

2.3 Experimental procedure

An oxidation pretreatment of concentrates was
performed in a cylindric semi-batch glass reactor
(volume 0.5 L) with a water-cooled condenser keeping
the reactor at constant temperature. A magnetic stirrer
was used with the gas diffuser for sufficient circulation
of the slurry. Temperature change was maintained within
0.2 °C by a heating glass coil connected to a thermostat.
Ozone was generated from dry pure oxygen using a
Guolin Ozone generator.

After an appropriate amount of samples and 250 mL
ferric sulfate solution with pH 1.0 were added into
reactor, oxidizing pretreatments were conducted at a
predetermined temperature (60—100 °C) for several
reaction intervals (8—16 h). During the reaction, ozone-
oxygen mixture was continuously sparged into the slurry
solution agitated at specified speed. After reaction, slurry
was filtered in a pressure filter using air at 0.135 MPa
pressure. The filter cake was washed and dried in an
oven at 90 °C overnight. Then, the solid residue was
pulverized and analyzed.

The efficiency of pre-oxidation for refractory gold
concentrate is denoted by ferric extraction, which is
defined by the following expression:

n=>1--""yx100 (1)
CoMMy

where 7 denotes the ferric extraction; ¢, and ¢ are the
ferric content of initial feed and oxidized residues,
respectively; my and m are the mass of initial feed and
oxidized residues, respectively.

3 Artificial neural networks (ANNs)

The architecture of ANN is a massively parallelly
distributed information-processing system that has
certain performance characteristics resembling biological
networks of the human brain. Many ANN structures have
been proposed and explored since 1950s. Neural
networks are formed by input data vectors, neurons and
output functions. Input data to the neuron are
transformed by means of a base function and leave by an
activation function connection between input and output
data and neurons are made by weight factors ¥, which
determine the effect of the input variable i on the
neuron .

The multilayer feed forward network with a back
propagation (BP) learning algorithm is the most
prevalent and generalized neural network currently in use,
and straight forward to implement[20]. The network
consists of multiple input nodes, one or several hidden
layers, and a single output where each neuron is
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connected to a large number of others. The input signal is
passed among them and each of them calculates its own
output (H,) from the weights associated with connections
using the equation:

Hy = fQ wyl; =6;) ()

where f{*) is the transfer function, whereas w; and 6;
are the weight coupling the kth output node to the ith
node of the input vector / and the associated bias for the
kth output node. Generally, the transfer functions are
sigmoidal function, hyperbolic tangent and linear
function, of which the most widely used for non-linear
relationship is the sigmoidal function. The number of
neurons in the input layer is usually equal to the number
of input variables. The number of output layer neurons is
usually the same as the target variable number. The
number of neurons in the hidden layer is determined to
optimize performance. A neural network must be trained
to determine the values of the weights that will produce
the correct outputs.

For the assessment of model performance, there are
several criteria used in Refs.[21-22]. In the present work,
the following three criteria were used: the determination
coefficient (R?), the mean square error (MSE), and the
mean absolute error (MAE). The ANN responses are
more precise if R°, MSE, and MAE are found to be close
to 1, 0, and 0, respectively. These R’, MSE, and MAE
terms are defined as:

XN XX X X

L

Pre-processing to 0-1
(Premnmx)

!

g

NN training process
(train)

Simulation
(Sim)

Post-processing
(Postmnmx)

Fe extraction (%)

MSE = > (-0’ 3)
p
MSE = %x > @ —o)| (4)
2
R? =1_M ®)

Zi (Oi)2

where ¢ is the target value of the ith pattern; o; is the
output value of the ith pattern, and p is the total number
of data.

4 Network prediction model

Figure 1 presents the calculation sequence with
regards to the sample processing and training. It
demonstrates the procedures for implementing neural
network to predict pre-oxidation efficiency of refractory
gold concentrate. Neural network training can be made
more efficiently if certain pre-processing steps are
performed on the network inputs and targets. Initially,
inputs and targets were normalized so that they fall in the
range of [0, 1]. After the network has been trained, the
outputs need to be transferred back to the same units that
were used for the original targets for comparison purpose.
The commercial software package, Matlab 7.0
(MathWorks, Natick, MA, USA) was used for ANN
modeling.

Initialize weights and bias

Present inputs

| Adapt weights

Network model
calculation actual Fe extraction

Desired Fe
extraction (%)

Meet cost function criteria

No or weights convergy?

Fig.1 Calculation procedure of network prediction model: X;—Temperature, °C; X,—Time, h; X5—Liquid to solid ratio; X;—Ferric

concentration, mol/L; Xs—Ozone concentration, 1075 Xs—Oxygen amount, L/min
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There are numerous factors used to achieve the best
model performance for ANN, which include the number
of hidden layers, the number of hidden neurons, transfer
function (sigmoid, tan-sigmoid, etc), training algorithms
(BP, LM, etc), and learning parameters (learning rate,
momentum factor, and initial weights). The detailed
information about each parameter (definition, function,
range, etc) is provided by BASHEER and HAJMEER[23]
and MAIER and DANDY[24]. Depending on the
problem being solved, the success of training varies with
the selected factors, and a trial-and-error procedure is
normally preferred. In this study, a multilayered feed
forward neural network with a back propagation
algorithm (FFBP) was adopted. Five important aspects
that must be determined in design procedure of FFBP
were as follows:

1) Training and test data selection;

2) Selection of neurons’ transfer functions;

3) Selection of FFBP structure;

4) Selection of training algorithm and its parameters;

5) Testing the FFBP generalization.

5 Results and discussion

5.1 Effect of pretreatment on refractory gold

concentrate

The pre-oxidation experiments were carried out
according to the procedure described in section 2.3. After
the refractory gold concentrate was pre-oxidized by
ozone and ferric sulfate under the optimum conditions
(temperature of 100 °C, time of 8 h, liquid to solid ratio
of 20, ozone concentration of 54x107° and 0.7 mol/L
ferric concentration), the oxidized residues were
subjected to cyanide leaching tests. The following
parameters were chosen: pulp density 200 g/L, pH 9.5
(adjusted with NaOH), cyanide (NaCN) concentration
2.0-3.0 g/L, air supply 25 L/h, and temperature 20 °C.
The experiments run for 24 h. Samples were regularly
taken for analysis of cyanide and metal concentrations in
solution in order to calculate the metal extraction and
cyanide consumption. A summary of the results is given
in Table 2, clearly indicating that pre-oxidation
significantly improved the recovery of gold. The gold
extraction was 96.5%, about 77% greater than the gold
extraction without pre-oxidation. Pretreatment with
ozone and ferric ions for refractory gold concentrate was
a promising alternative to enhance the recovery of
gold[25].

Table 2 Result of cyanidation experiment

Sample Cyanidation Na-cyanide Gold
P time/h  consumption/(kgt ") recovery/%
Oxidized 24 03 96.5
residues
Untreated ore 24 0.3 19.5

5.2 FFBP model development
5.2.1 Training and testing data

The ANN model was trained using 32 randomly
selected data (accounting for 80% of the total data) while
the remaining 9 data (accounting for 20%) were utilized
for testing of the network performance. The experimental
conditions and the experimental results (ferric extraction)
were set as the input matrix and the target matrix.

Since the neural network performance can be made
more efficiently by certain pre-processing steps, all input
data and output in the present work were normalized
according to

Np:(Ap_Amean, p)/Astd, p (6)

where A4, is the actual parameter; Apean, p 1S the mean of
actual parameters; Agq , is the standard deviation of
actual parameter and N, is the normalized parameter
(input). Then the average value would be zero and the
standard deviation equals 1. Data statistics of model
variables are presented in Table 3.

Table 3 Pre-processing parameters for ANN

Data statistics

Variable Mean Séi?;?;i Range
Temperature/°C 91.2 10.17 60—100
Time/h 10.6 3.28 8-16
Liquid to solid ratio 8.9 2.48 620
concentra]:t?:;l/c(mobL*') 1.2 0.29 0.7-1.4
Ozone concentration/10 289 26.27 0-54
Oxygen amount/(L-min ") 23 1.24 0-3
Ferric extraction/% 49.9 20.79  9.29-90.10

5.2.2 Selection of BP algorithm

Although ANN is a powerful tool to predict the
nonlinear or time-variant systems, different training
algorithms can lead to different
characteristics, and no one training algorithm may be
uniformly best[26]. Therefore, trial and error method was
applied to obtain the optimal training algorithm.

generalization

In this subsection, the same neural configuration
(6-6-1 network topology) was trained using the 11 BP
algorithms. Also, a tangent sigmoid function (tansig) and
a logistic sigmoid function (logsig) were used as the
transfer functions in hidden and output layers,
respectively.

Eleven BP algorithms were compared to select the
best fitting one. The performance of the BP algorithms
was evaluated with the MSE and the determination

coefficient (R*) between the modeled output and the
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measured data set. Table 4 shows a brief description of
training functions. The training results are provided in
Table 5, which reveals that the best prediction result is
obtained when the BP algorithm is LM algorithm.

Table 4 Descriptions of training functions

BP algorithm Function
Resilient backpropagation trainrp
Conjugate gradient backpropagation with .
traincgf
Fletcher-Reeves updates
Conjugate gradient backpropagation with )
o traincgp
Polak-Ribiere updates
Conjugate gradient backpropagation with )
traincgb
Powell-Beale restarts
Levenberg-Marquardt backpropagation trainlm
Scaled conjugate gradient backpropagation trainscg
BFGS quasi-Newton backpropagation trainbfg
One step secant backpropagation trainoss
Gradient descent backpropagation traingd
Gradient descent with momentum and adaptive )
traingdx

learning rate backpropagation

Gradient descent with momentum backpropagation traingdm

Table 5 Comparison of 11 back propagation algorithms with 6
neurons in hidden layer

Function ~ MSE R BLE
trainrp  0.005 0 0.883 Y=0.977x +0.045
traincgf  0.006 2 0.887 Y =1.123x-0.088
traincgp  0.007 9 0.805 Y=1.042x—-0.015
traincgb  0.006 0 0.890 Y =0.854x +0.064
trainlm  0.002 8 0.920 Y =0.926x +0.054
trainscg  0.005 6 0.883 Y=1.171x-0.092
trainbfg  0.003 9 0.837 Y =0.987x +0.006
trainoss  0.007 1 0.222 Y =1.060x—0.006
traingd  0.108 6 0.856 Y =0.834x +0.264
traingdx  0.006 5 0.881 Y =1.094x —0.058
traingdm  0.022 8 0.419 Y =0.691x +0.154

As shown in Table 5, the MSE and R? are 0.002 8
and 0.920 for trainlm function, respectively. The LM
algorithm with the least MSE and the maximum R’ is
found as the best training algorithm, compared with other
BP algorithms such as gradient descent algorithms and
conjugate  gradient algorithms. LM  algorithm
outperforms all the aforementioned competitors in terms
of MSE. Such an observation is not surprising, since
neural network training task is in fact an unconstrained
minimization problem with the MSE performance index

as the objective function. Hence, the LM algorithm
selected as the best training algorithms would be
employed for training all the FFBP networks.

5.2.3 Determination of FFBP network topology

Topology of an artificial neural network is
determined by the number of its layers, the number of
nodes in each layer and the nature of transfer functions.
Optimization of network topology is probably the most
important step in development of model[27]. There is no
exact guide for the determination of these parameters.
Topology of an artificial neural network is designed via a
tedious trial and error process.

Each topology was repeated 20 times to avoid
random correlation due to random initialization of the
weights. The MSE was used as the error function. The
results presented are the best obtained.
5.2.3.1 Selection of transfer functions

One important factor in FFBP network design is the
type of transfer functions since FFBP networks owe their
nonlinear capability to the use of nonlinear transfer
functions[28]. The type of transfer function to be used by
the hidden nodes and the output node still had to be
determined. Three commonly used transfer functions
were examined separately in each layer, and the proper
transfer functions were selected according to the MSE
value of testing data.

Figure 2 shows the performance results of the
combinations of the three commonly used transfer
functions for the hidden and the output layers in the
FFBP model. The numbers in the x- and y-axis are the
serial numbers for the transfer functions listed in Table 6.
z-axis shows the MSE values, which represent the
deviations between the estimated and experimental
results for these combinations of different transfer
can be seen from Fig.2, the
tan-sigmoid/log-sigmoid combination yielded the best

functions. As

results (z=2.8x10°°) among different combinations of
tan-sigmoid, log-sigmoid and linear functions. Therefore,
tan-sigmoid and log-sigmoid functions were selected as
the propagation functions in the hidden layer and output
layer, respectively.

Table 6 Transfer functions tested in this study

Serial  Transfer function Formula

Hyperbolic tangent f(x)= exp(x) —exp(—x)
sigmoid exp(x) + exp(—x)
2 Linear Sfx)=x
{emoi S
3 Log-sigmoid 1+ exp(—x)
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Fig.2 MSE values of different combinations of transfer
functions used in hidden and output layers

5.2.3.2 Selection of number of hidden neurons

It is usually unnecessary to use more than one
hidden layer in a multi-layer feed-forward network, and
varying the number of hidden nodes in the one hidden
layer is usually sufficient for delivering distinct results.
In this study, only one hidden layer was used. Training
the neural networks by LM algorithm is sensitive to the
number of neurons in the hidden layer. The more the
number of neurons, the better the performance of the
neural network in fitting the data. However, using too
many hidden nodes will make the network generalize
poorly, memorizing the training data rather than focusing
on its significant features thus result in the overfitting.

In order to determine the optimum number of
hidden nodes, a series of topologies were used, in which
the number of nodes ranged from 4 to 15. The influence
of the number of hidden nodes on the accuracy of neural
models for test data sets is depicted in Fig.3. From this
figure, as the number of neurons was increased up to 8,
there was perceivable improvement in the prediction
accuracy. However, increase in the number of neurons
did not lead to any improvement in the results when the
number of hidden neurons was more than 8. Thus, for the
prediction of the total sensory score, the simplest ANN
model with 8 neurons in one hidden layer appeared to be
the best, which yielded an MSE of 3.6x10° for the
training data and 0.001 3 for the test data. Among various
network configurations, 6-8-1 configuration was found to
be the best performing network structure, and hence, was
chosen to be the final model.

The LM algorithm training was stopped after 13
iterations (Trainlm, Epoch 13/1000) for the optimal
FFBP because minimum gradient reached, which showed
that the network converged rapidly with LM algorithm.
Attempting to improve the results by changing some of

5
4 — MSE data point
4 A
L .
E:}' . .
wl
= Lot
2_
rY
l 1 1 1 1 L 1 1 1 1 1 1 1
3456 7 8 91011 1213 14 1516

Number of hidden neurons

Fig.3 Influence of number of hidden nodes on accuracy of
neural models

the network parameters such as learning rate and final
error did not improve the predictive performance of the
FFBP model.

Thus, based on the above discussion and objective
of the investigation, the best network designed to predict
the pre-oxidation efficiency of RGC was obtained as
follows: a three-layer FFBP network, with tan-sigmoid
transfer function (tansig) at hidden layer with 8 neurons
and a log-sigmoid transfer function (logsig) at output
layer. A schematic of the BP network is described in
Fig.4. Furthermore, the final feed forward neural model
was implemented in Matlab software, with the following
characteristics:

1) net.trainParam.goal=0; aimed training final error;

2) net.trainParam.Ir=0.05; learning rate;

3) net.trainParam.show=25;
(epochs);

4) net.performFen="mse’;

5) net = newff(minmax(ptr), [8, 1], {‘tansig’
‘logsig’}, ‘trainlm’).
where ptr represents the network inlet values of training
set (temperature, time, liquid to solid ratio, ferric
concentration, ozone concentration, oxygen amount).
The outlet variable is the ferric extraction.

screen actualization

5.3 FFBP network generalization

The performance of the trained FFBPs was also
measured by carrying out a regression analysis between
the predicted outputs and the experimental values. Figure
5 presents the comparison between the ferric extraction
of refractory gold concentrate from the experimental and
estimated results in the training set. It should be noted in
this figure that for the FFBP model the slope and the
correlation coefficient are equal to 1, thus, indicating a
quite good fit.
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Fig.5 Parity plot for ferric extraction of RGC in training set

Figure 6 provides the results of the comparison
between the ferric extraction of refractory gold
concentrate from the experimental and estimated results
in the testing set. The R value and the slope between the
estimated and experimental ferric extraction were 0.966
and 1.035, respectively. The results in Fig.6 demonstrate
that the FFBP model could provide desirable results in
most of the cases, with the minimum and maximum
deviations between the estimated and experimental ferric
extraction being only 0.03% and 5.11%, respectively.
The output, i.e. the estimated ferric extraction after
pre-oxidation, matched the experimental data very well,
indicating that the proposed FFBPs were capable of
successfully predicting the pre-oxidation efficiency of
refractory gold concentrate under different reaction
conditions.

5.4 Determination of importance of each input
variable on efficiency of process
The ANN used in this work provided the internodes

=
=)
T

o
n

<
L

Predicted ferric extraction
=)
s
T

=
b2
T

= Data points
— Best linear fit

0.1 | | | I 1 |
01 02 03 04 05 06 07 08

Experimental ferric extraction

Fig.6 Parity plot for ferric extraction of RGC in testing set

weights. The weights are coefficients between the
artificial neurons, which are analogous to synapse
strengths between the axons and dendrites in real
biological neurons. Therefore, each weight decides what
proportion of the incoming signal will be transmitted into
the neuron’s body[29]. The neural net weight matrix can
be used to assess the relative importance of the various
input variables on the output variables.

The procedure for partitioning the connection
weights to determine the relative importance of the
various inputs was proposed first by GARSON][30] and
repeated by GOH[31]. The equation based on the
partitioning of connection weights is given as follows:

} )

& in || b h

i i o
Z ‘ij‘/Z‘ka‘ ><‘Wmn
m=1 k=1

1, =
/ Ni Nh Ni
ih ih ho
S et St et
k=1 |m=1 k=1



420

where /; is the relative importance of the jth input
variable on the output variable; N; and N, are the
numbers of input and hidden neurons, respectively; w are
the connection weights, the superscripts ‘i’, ‘h’ and ‘o’
refer to input, hidden and output layers, respectively, and
subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and
output neurons, respectively. Table 7 represents the
weights of the input-hidden layer connections, and the
hidden-output layer connections. The relative importance
of various variables is summarized in Table 8.

As can be seen, all of the variables (oxygen amount,
time, ozone concentration, liquid to solid ratio, ferric
sulfate concentration and temperature) have strong
effects on the pre-oxidation efficiency of refractory gold
concentrate. Therefore, none of the variables studied in
this work could be neglected from the present analysis.
However, temperature and ozone concentration, with
relative importance of respectively 23.9% and 21.6%,
appeared to be more influential parameters in the
pre-oxidation process.

5.5 Multivariate regression analysis (MVRA)

The purpose of multiple regressions is to learn more
about the relationship between several independent or
predictor variables and a dependent or criterion variable.
The goal of regression analysis is to determine the values
of parameters for a function that causes the function to
best fit a set of data provided. When there is more than

Table 7 Weights of adopted FFBP

LI Qing-cui, et al/Trans. Nonferrous Met. Soc. China 21(2011) 413-422

one independent variable, then multivariate regression
analysis is used to get the best-fit equation. Multiple
regressions analysis solves the data sets by performing
the
simultaneous equations by forming the regression matrix,

least squares fit. It constructs and solves
and solving the co-efficient using the backslash operator.
The MVRA has been done by same data sets and same
input parameters which we used in ANN.

The equation for prediction of ferric extraction by

MVRA is

Y=-74.18 + 0.79X; + 0.79X, + 1.94X; + 2.69X, +

0.51X; + 3.87X, (8)

As shown in Fig.7, the coefficient of determination
between the predicted and the measured values of ferric
extraction by MVRA is 0.817 2. Figure 8 illustrates the
comparison between the measured and predicted values
of ferric extraction by ANN and MVRA. From Figs.6—8,
the conclusion can be made that the prediction of ferric
extraction by neural network is very accurate and closer
the high coefficient of
determination values shown by ANN as compared to that
by MVRA indicates better prediction capability of ANN
over MVRA. The mean absolute percentage error
(MAPE) for ferric extraction was 7.66% by neural
network method, whereas the MAPE for ferric extraction
was 19.92% calculated by MVRA method.

to the measured values;

/4 W,
Variable
Neuron Bias Neuron Weight Bias
X X, X3 Xy Xs Xs
1 -22640 -0.3723 -0.5913 -0.3922 —0.1578 03167 2.638 5 1 —-1.2118 0.0839
2 1.1062  —0.4037 —0.3630 —0.3050 0.9886 04199 1.272 8 2 0.7070 0.0839
3 0.400 3 0.144 2 0.3050 0.5458 —0.6604  0.1579 2.409 0 3 0.5058 0.0839
4 1.317 1 —-1.2233  0.094 6 19147 -1.0355 04133 1.5699 4 —0.3337 0.0839
5 -04757 0.7501 -13009 —0.7435 22610 —1.0727 0.019 1 5 —0.4962 0.0839
6 1.045 1 -0.2256 -13744 -13075 04916 0.0193 23018 6 —0.3682 0.0839
7 —0.993 8 1.3966  —0.5277  0.2318 3.1689 —0.3218 0.863 0 7 0.6575 0.0839
8 1.0219  —-0.6051 1.6665 0.196 9 0.0523 -1.6769 -2.2210 8 —0.3944 0.0839

W,: weights between input and hidden layers; ¥,: weights between hidden and output layers; X;: temperature, °C; X: time, h; X: liquid to solid ratio; X: ferric

. . —6 .
concentration, mol/L; Xs: ozone concentration, 10 °; Xs: oxygen amount, L/min.

Table 8 Relative importance of input variables on value of efficiency

Input ) Liquid to Ferric . Oxygen
. Temperature Time . . ) Ozone concentration Total
variable solid ratio concentration amount
Importance/% 23.9 12.0 16.3 153 21.6 10.9 100
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Fig.7 Measured ferric extraction vs predicted one by MVRA
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Fig.8 Comparison of measured ferric extraction with predicted
ferric extraction by ANN and MVRA

6 Conclusions

1) The pre-oxidation efficiency of RGC by ozone
and ferric ions was successfully predicted by applying a
three-layer neural network with 8 neurons in the hidden
layer, and using a back propagation algorithm.
Simulations based on the ANN model were performed in
order to estimate the ferric extraction under different
conditions.

2) All of the studied parameters in this work have
considerable effects on the pre-oxidation process, and the
temperature and ozone concentration with a relative
importance of 23.9% and 21.6% appear to be the most
influential parameters in the pretreatment process.

3) The results of modeling confirm that neural
network  modeling can  effectively  reproduce
experimental data and predict the process. It was seen
that the error rate predicted by the artificial neural
network is smaller than that predicted by the multiple
regression analysis.

4) The prediction capability of ANN model offers
an advantage for the optimization of processing
conditions to increase profits in gold smelting plants.
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