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Abstract: To understand the tensile deformation of electro-deposited Cu with nano-scale twins, a numerical study was carried out 
based on a conventional theory of mechanism-based strain gradient plasticity (CMSG). The concept of twin lamella strengthening 
zone was used in terms of the cohesive interface model to simulate grain-boundary sliding and separation. The model included a 
number of material parameters, such as grain size, elastic modulus, plastic strain hardening exponent, initial yield stress, as well as 
twin lamellar distribution, which may contribute to size effects of twin layers in Cu polycrystalline. The results provide information 
to understand the mechanical behaviors of Cu with nano-scale growth twins. 
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1 Introduction 
 

Recent experimental results demonstrated that 
electro-deposited Cu with nano-scale twins, which was 
called nanocrystalline twin copper, may show ultrahigh 
tensile strength with considerable ductility. The 
microstructures of such twin Cu were characterized by 
transmission electron microscopy (TEM) observations. It 
is found that most grains are subdivided into twin/matrix 
lamellar structures with a high density of coherent twin 
boundaries (TBs)[1]. Efforts were drawn in order to 
understand the unusual mechanical properties of Cu with 
nano-twins[2−4]. Some important clues were achieved 
based on these experimental studies. Especially, it was 
found that the twin lamellar spacing or thickness was 
critical to control the yield and hardening of the material. 
However, deformation mechanisms governing the 
corresponding mechanical behaviors remain unclear so 
far. 

Recently, HUANG and QU et al[5−6] established a 
mechanism-based strain gradient plasticity (CMSG) 
theory from the conventional Taylor dislocation model. It 
is a low-order theory that preserves the structure of 
classical plasticity without high-order stresses or 
additional boundary conditions. To understand the size 
effects associated with nano-twin Cu, it is necessary to 

extend the model with the concept of twin lamella 
strengthening zone. It is also necessary to include the 
cohesive constitutive model so that grain-boundary 
sliding and separations can be simulated. 
 
2 Conventional theory of mechanism-based 

strain gradient plasticity 
 
2.1 Constitutive relations 

The CMSG constitutive relations incorporate Taylor 
dislocation model through the effective strain rate. For 
small dislocation density, Taylor dislocation model[7−9] 
gives the shear flow stress τ in terms of the dislocation 
density ρ by  

s gb bτ αμ ρ αμ ρ ρ= = +                     (1) 
 
where μ is the shear modulus; b is the magnitude of the 
Burgers vector; α is an empirical coefficient of around 
0.3 depending on the material structures and 
characteristic[10]; ρs and ρg are densities of statistically 
stored dislocations (SSD) and geometrically necessary 
dislocations (GND)[10−11], respectively. ρs is 
accumulated by trapping each other in a random way, 
while ρg is introduced by NEY[10] to ensure the 
compatibility of the non-form plastic deformation. The 
GND density ρg is related to the effective plastic train 
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gradient ηp by 
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g r
b
ηρ =                                   (2) 

 
where r  is the Nye-factor to reflect the effect of 
crystallography on the distribution of GNDs, which is 
around 1.90 for face-centered-cubic (FCC) polycrystals; 
ηp is the effective plastic strain gradient. 

The tensile flow stress σflow is related to the shear 
stress τ by 
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where M is the Taylor factor which acts as an isotropic 
interpretation of the crystalline anisotropy at the 
continuum level and is about 3.06 for FCC metals. Since 
the effective plastic strain gradient ηp vanishes in 
uniaxial tension, the SSD density ρs is determined from 
Eq.(3) as 
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Then the flow stress accounting for the nonuniform 

plastic deformation becomes 
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is the intrinsic material length in strain gradient plasticity; 
σy is the initial yield stress; f is a non-dimensional 
function of plastic strain εp which takes the form: 
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for a power-law hardening solid; E is the elastic modulus; 
and n is the plastic work hardening exponent (0≤n<1). 

GAO et al[12] demonstrated that the power-law 
visco-plastic model incorporating the strain gradient 
effects can be applied to conventional power-law 
hardening if the rate-sensitivity exponent m is larger than 
20. Then the plastic strain rate is expressed as  
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where 2
3 ij ijε ε ε′ ′=& & &  is the effective strain rate and ijε ′&  

is the deviatoric strain rate. 
The constitutive relation in CMSG, which only 

involves the conventional stress and strain, can be 
expressed as the stress rate ijσ&  in terms of the strain rate: 
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where K is the bulk modulus of elasticity; e
3
2 ij ijσ σ σ′ ′=  

is the von Mises effective stress; kkε&  is the bulk strain 
rate and δij is the Kronecker delta tensor. The effective 
plastic strain gradient ηp in CMSG is defined in the same 
way as that in the higher-order MSG theory [13], and is 
given by 
 

p pd ,tη η= ∫ &  p pp 1 ,
4 ijk ijkη η η=& & &  p p p p

, , ,ijk ik j jk i ij kη ε ε ε= + −& & & &  

                     (10) 
where p

ijε&  is the plastic strain rate in tensor form. Since 
the CMSG theory does not involve the higher-order 
stress, equilibrium equations and traction boundary 
conditions remain the same as those in the conventional 
theories. 
 
2.2 Finite element analysis for CMSG 

A finite element method might fail with strong 
strain gradient effects. However, CMSG theory is a 
lower-order theory which does not involve the 
higher-order stress so that the governing equations are 
essentially the same as those in the classical plasticity. 
An existing finite element program can be modified 
easily to deal with the plastic strain gradient effect in a 
reasonable way[14]. In the present research, a C0 plane 
strain element incorporating the CMSG theory in 
User-Material subroutine (UMAT) of the ABAQUS 
finite element program is implemented. 
 
3 Model setup and material parameters 
 
3.1 Calculation model 

Fig.1(a) shows a bright field TEM image of an 
as-deposited Cu sample. It can be seen that the twin 
boundaries separate grains into nano-meter thick 
twin/matrix lamellar structures. The thickness of twin 
lamellar geometry varies from about 20 nm to 1 μm 
(depending on the grain diameter). Most grains in the Cu 
sample with nano-scale twins are equiaxed in three 
dimensions. The post-deformation TEM microstructure 
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Fig.1 Bright field TEM image [3] (a) and schematic drawing of 
calculation model and boundary conditions (b) of Cu with 
nano-scale twins 
 
observations indicate that the interaction of dislocations 
with twin boundaries is crucial during plastic 
deformations. The dislocation configurations vary within 
the twin lamella thickness. For Cu with a low TB density, 
abundant dislocations and dislocation tangles can be seen 
inside thick matrix lamellae, while dislocations are 
hardly seen within thin twin lamellae. These 
observations indicate that the plastic deformation inside 
copper with nano-twins is extremely incompatible 
because of the appearance of twin lamellae, which leads 
to an increase in the density of geometrically necessary 
dislocations, as required by the plastic strain gradient 
(Eq.(2)). When the matrix lamellae are thicker, 
dislocations pile up at TBs at a certain stress 
concentration and the slip transmission through TBs may 
occur. For thin twin lamellae, a higher external stress is 
needed to activate dislocation reactions at TB. All these 

suggest that the mechanical parameters, such as the 
initial yield stress and the plastic strain hardening 
exponent, would vary within the lamellar spacing. To 
handle this, it is proposed that the twin lamellae as 
strengthening zones have a strengthening effect on the 
whole deformation of the electro-deposited Cu with 
twin/matrix lamellar microstructure. The initial yield 
stresses of twin lamellae and matrix lamellae with 
different thickness can be calculated by the classical 
Hall-Petch formulism. 

Fig.1(b) shows the schematic drawing of 
representative calculation model, where each grain 
contains five twin lamellae in different orientations. The 
representative calculation model consists of seven 
idealized hexagon grains, and the radius r of grain is the 
radius of the circumcircle of an hexagon. As displayed in 
Fig.1(b), the gray zones are the twin lamella 
strengthening zones with thickness dT, while the white 
zones are the matrix lamella with thickness dM. The 
cohesive interface layers with thickness dGB are grain 
boundaries between two hexagon grains. Periodic 
assumption is used in the representative calculation 
model where the orientation of twin lamellae in all the 
grains is considered periodic distribution, and the 
periodic boundary conditions are enforced along the four 
sides. Here, only the final expressions are presented:  

4 112 11v v− = −u u u u                           (11) 
 

1 222 21v v− = −u u u u                           (12) 
 

3 2 4 1v v v v− = −u u u u                           (13) 
 
where uij is the displacement vector for any material 
point on the corresponding boundary Γij and 

ivu  is the 
displacement vector for each vertex vi. Rigid body 
motions can be eliminated by requiring ,0=

kvu  for 
either k∈{1, 2, 4}. 

Both molecular dynamics simulations and direct 
experimental evidences suggest that grain boundary 
sliding and separation tend to be more important if the 
grain size becomes small. To include such effects, the 
traction-separation behavior of cohesive constitutive 
model is adopted as indicated in Fig.2. Here T and λ 
(λ=δ/δe) are the traction stress and dimensionless 
separation displacement, respectively. When the grain 
boundary traction stress T reaches the critical value T1, 
the damage is initiated and the grain boundary separation 
stiffness Kc descends. While the separation displacement 
δ increases to the critical separation displacement δc, 
namely λ=1, the grain boundary would complete the 
failure. 
 
3.2 Material parameters 

In the present analysis, to simplify the discussion of 
calculation results, some parameters are assumed as 
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Fig.2 Cohesive force curve of cohesive model 
 
constants or given from references, and the twin lamellar 
intrinsic material length lT and the matrix lamellar initial 
yield stress σyM are taken as the normalized quantity to 
normalize the material parameters of nanocrystalline 
twin copper. The parameters dependence of the 
normalized stress—strain relations of Cu with nano-scale 
twins can be given as 
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where the subscript T and M indicate twin and matrix, 
respectively. 

There are many parameters included in Eq.(14). For 
the simplification, in the present study it is considered 
that the material parameters EM=ET=500σyM, vM=vT=0.3, 
mT=mM=20, NT=NM=0.2 and σyT/σyM=3, except for some 
cases explained especially. Then two different size 
representative calculation models with grain size r=0.5LT 
and r=5LT, respectively at the same twin lamellar volume 
fraction are considered under axial tensile loading 
condition. 
 
4 Results and discussion 
 
4.1 Contours of Mises stress and equivalent plastic 

strain 
The nephogram plots of Mises stresses and 

equivalent plastic strain for representative calculation 
model of nanocrystalline twin copper, in which the 
whole strain is 8%, are indicated in Figs.3(a) and (b). As 
seen from Fig.3(a), the maximum value of Mises stresses 
is mainly concentrated inside the twin lamella 
strengthening zones, especially in which twin boundaries 
are vertical to the tensile loading direction. Otherwise, 
the distribution of Mises stresses in the twin lamella 
strengthening zones is extremely heterogeneous, 

attributing to the twin/matrix lamellae microstructures. 
For the incompatible deformation in the vicinity of grain 
boundaries, bigger Mises stresses can be also seen at the 
grain boundaries. Fig.3(b) shows the distribution of 
equivalent plastic strain when the whole strain is 8%. 
The bigger plastic strains are mainly in the matrix 
lamellae, the distributions of which form a certain angle 
with the tensile loading direction. The maximum value of 
equivalent plastic strain is concentrated in the vicinity of 
grain boundaries. These results are well consistent with 
the observation by TEM. 
 

 
Fig.3 Mises stress (a) and equivalent plastic strain (b) 
nephograms of whole model 
 
4.2 Stress—strain curves 

Fig.4 shows the dependence of stress—strain curves 
of Cu with nano-scale twins on different grain size and 
elastic modulus. From Fig.4, it is obviously that the 
elastic modulus of material microstructures has strong 
effects on the strength of the Cu with nano-scale twins. 
The size effects of material become stronger with 
increasing elastic modulus of matrix lamellae, and the 
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stress—strain curves are more sensitive to the elastic 
modulus with decreasing grain size. 

The stress—strain relations of nanocrystalline twin 
copper with different grain sizes and strain hardening 
exponents are indicated in Fig.5. As can be seen, the 
general mechanical properties of nanocrystalline twin 
copper are very sensitive to the strain hardening 
exponent of twin/matrix lamellae, especially when the 
grain size is bigger. Furthermore, with increasing strain 
hardening exponent, the size effects of material are much 
weaker. 
 

 
Fig.4 Dependence of stress—strain curves of nanocrystalline 
twin copper on grain sizes and elastic modulus (ET/σyM=500, 
m=20, ν =0.3, σyT/σyM=3, N=0.2) 
 
 

 
Fig.5 Dependence of stress—strain curves of Cu with twins on 
grain size and plastic power hardening exponent (E/σyM=500, 
m=20, ν =0.3, σyT/σyM=3) 
 

The results in Fig.6 (stress is normalized by the 
initial yield stress of twin lamellae) show that the   
stress—strain curves depend on the grain size and the 
initial yield stress of matrix lamellae. Fig.6 shows that 
the initial yield stresses of twin and matrix lamellae have 
strong effects on the general mechanical properties and 
size effects of nanocrystalline twin copper. The 

differences of the initial yield stresses between twin 
lamellae and matrix lamellae are more obvious, the size 
effects of material are stronger, and the influence of the 
initial yield stress on the stress—strain curves is smaller 
with decreasing grain size. 

Fig.7 shows the effects of tropism distribution of 
twin lamellae in grains on the general mechanical 
properties and size effects of material. Two cases are 
considered, one is that the twin boundaries of all grains 
are vertical to the tensile loading direction, the other is 
that the twin boundaries of all grains become 30° to the 
tensile loading direction. From Fig.7, the stress—strain 
curves in the case which twin boundaries of all grains are 
vertical to the tensile loading direction are obviously 
higher than that in the case which is 30° in both grain 
sizes. Furthermore, the dependence of the general 
material mechanical properties on the tropism 
distribution of twin lamellae in grains is weaker with 
decreasing grain size. 
 

 
Fig.6 Dependence of stress—strain curves of Cu with twins on 
grain size and initial yield stress of matrix lamellae 
(ET/σyT=167, m=20, ν =0.3, N=0.2) 
 
 

 
Fig.7 Dependence of stress—strain curves of Cu with twins on 
grain size and distribution of twin lamellae (ET/σyM= 500, m=20, 

ν =0.3, σyT/σyM=3, N=0.2) 
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4.3 Comparison with experimental results 
The material parameters and representative 

calculation model geometry scales of Cu with nano-scale 
twins in the present analysis are obtained from the 
experiments of SHEN et al[2]. Both the materials of twin 
lamellae and matrix lamellae are copper, and some 
material parameters of twin lamellae and matrix lamellae 
are assumed, such as the elastic modulus ET = EM=100 
GPa, the Poisson’s ratio ,3.0MT ==νν  the rate 
sensitivity exponent mT=mM=20, the Taylor factor MT= 
MM=3.06, the Nye-factor ,90.1MT == rr  the empirical 
coefficient in the Taylor dislocation Eq.(1) αT=αM= 0.25, 
and the magnitude of the Burgers vector bT=bM= 0.271 
nm, the average grain radius R of the experiment samples 
of 250 nm, and the average length scales DT of twin 
lamellae in two different samples of 100 and 30 nm, 
respectively. Corresponding to the two different length 
scales of twin lamellae, the average length scales DM of 
matrix lamellae are 100 and 46.6 nm, respectively. The 
initial yield stresses of twins lamellae and matrix 
lamellae with different thickness can be represented 
analogous to the classical Hall-Petch relation. In the 
present study, the initial yield stresses σyT of twin 
lamellae are 480 and 600 MPa, the initial yield stresses 
σyM of matrix lamellae are 360 and 500 MPa, 
respectively. 

The numerical results based on CMSG of the 
calculation model with different twin lamellae spacing 
are shown in Fig.8. 
 

 
Fig.8 Comparison between results of numerical calculation and 
experimental data 
 

From Fig.8, the stress—strain curves calculated by 
finite element method agree well with the experimental 
data qualitatively and quantitatively when the strain is 
smaller than 2%. But when the strain value is larger than 
2%, the results calculated deviate from the experimental 
results. Several factors may contribute to the deviation. 
Firstly, although two-dimensional representative 
calculation model (plane strain) idealization of actually 

three-dimensional geometries can also preserve most 
important plastic deformation characteristics, the 
difference still exists between the model and actual 
materials inevitably. Secondly, the grain size and twin 
lamellae spacing of experimental samples are accorded 
with normal distribution approximately, while the 
geometry parameters in calculation model are the 
average value. Moreover, the distribution of twin 
lamellae in grains is assumed as periodic distribution, 
while the actual distribution is random. Thirdly, the strain 
hardening exponent of the as-deposited Cu with 
nano-scale twins is sensitive to the strain rate and 
temperature, which is not considered in the numerical 
calculation. Last, a perfect elastic-plastic deformation of 
Cu with twin/matrix lamellae microstructure is assumed 
and no fracture and damage are considered. Actually, the 
specimen always contains some damages and cracks. 
 
5 Conclusions 
 

1) The incompatible plastic deformation between 
twin lamellae and matrix lamellae was characterized by 
plastic strain gradient. Twin lamellae in Cu with 
nano-scale growth twins were treated as material 
strengthening zones and cohesive elements to simulate 
the grain boundaries sliding and separation. 

2) The material parameters of twin/matrix lamellae, 
such as elastic modulus of twin lamellae and the ratio of 
initial yield stresses between twin lamellae and matrix 
lamellae, have strong effects on the general mechanical 
properties, the influences of which on the size effects of 
Cu with nano-scale twins become small with decreasing 
grain size. 

3) The comparison between the results of numerical 
calculation and experimental data shows that the 
theoretical model adopted can well characterize the 
mechanical properties and size effects of nanocrystalline 
twin copper. 

4) It is important to note that CMSG as well as other 
continuum plasticity theories must have lower limits and 
can not be applied at a scale below average dislocation 
spacing. Therefore, when the twin lamellar spacing is so 
small that the Taylor dislocation model cannot be 
established anymore, there may be new mechanisms of 
deformation such as nucleation events as shown in recent 
MD simulations in the as-deposited Cu with nano-scale 
twins that are not captured by CMSG. 
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纳米孪晶铜尺度效应的数值模拟 
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摘  要：为了理解电解沉积纳米孪晶铜的拉伸变形行为，采用基于机制的应变梯度塑性理论对其拉伸变形进行数

值模拟研究；提出孪晶薄层强化带的概念，并采用黏聚力界面模型模拟晶界的滑移和分离现象。采用的计算模型

包含晶粒尺寸、弹性模量、塑性硬化指数、初始屈服应力和孪晶薄层分布等和尺度效应相关的一系列参数。计算

结果有助于理解纳米孪晶铜的力学行为。 

关键词：铜；孪晶；应变梯度塑性；尺度效应；数值模拟 
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