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Abstract: Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator, an artificial neural network 
model of high temperature flow stress as a function of strain, strain rate and temperature was established. In the network model, the 
input parameters of the model are strain, logarithm strain rate and temperature while flow stress is the output parameter. Multilayer 
perceptron (MLP) architecture with back-propagation algorithm is utilized. The present study achieves a good performance of the 
artificial neural network (ANN) model, and the predicted results are in agreement with experimental values. A processing map of 
Ti40 alloy is obtained with the flow stress predicted by the trained neural network model. The processing map developed by ANN 
model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming. Subsequently, the 
safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations. 
Key words: Ti40 alloy; processing map; artificial neural network 
                                                                                                             
 
 
1 Introduction 
 

Titanium alloys have been increasingly and 
extensively applied in the field of aerospace because of 
their excellent combination of high specific strength 
(strength-to-weight ratio) which is maintained at elevated 
temperature, fracture resistant characteristics and 
exceptional resistance to corrosion[1]. Because the 
advanced engines need to have good mechanical 
properties and burn resistance for some crucial parts, 
much more attention has been paid to burn-resistant 
titanium alloys in different countries, especially on 
Ti-V-Cr burn-resistant titanium alloys. In the past few 
years, Alloy C (Ti-35V-15Cr) from USA and 
Ti-25V-15Cr-2Al-0.2C from UK have been developed 
and applied in engines successfully by Pratty, Whitney 
and IRC respectively[2−3]. Ti40 (Ti-25V-15Cr-0.2Si) 
alloy, a stable β type burn-resistant titanium alloy, was 
developed by Northwest Institute for Nonferrous Metal 
Research of China in 1996[4]. The researchers have 
systemically and deeply studied its burn-resistant 
mechanism[5], hot workability and microstructure 

evolution[6], fracture criterion[7], and mechanical 
properties [8]. Although Ti40 alloy possesses better 
mechanical properties and burn resistance than other 
burn-resistant titanium alloys, but it has poor workability 
and its properties are still difficultly controlled during hot 
work processing because of its edge cracking. Therefore, 
it is necessary to properly understand the constitutive 
flow behavior of this alloy under processing conditions. 

Recently, “systems approach” philosophy[9] has 
been introduced using science-based methodology such 
as dynamic materials model (DMM) to develop a 
processing map to optimize the workability and control 
the microstructure. Briefly, a processing map is 
generated using data of flow stress as a function of 
temperature and strain rate over a wide range. The flow 
stress variation with strain rate at a given temperature is 
curve fitted using a spline function and the strain rate 
sensitivity is calculated as a function of strain rate. The 
processing map identifies “safe” and “unsafe” domains 
for processing of materials. The various mechanisms in 
the “unsafe” domain are manifested as flow localization, 
adiabatic shear band formation and dynamic strain 
ageing which are not helpful to the processing of the 
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material and also result in poor mechanical properties of 
the product. The processing map has become a powerful 
tool to design and optimize hot deformation processes. It 
not only describes the microstructural evolution 
mechanism and the flow instability domains under 
certain conditions but also provides a optimum 
deformation temperature range and strain rate range. As 
a result, it has been widely applied to many kinds of 
alloys such as aluminium alloys[10], stainless steels[11], 
Ni-based alloys[12] and titanium alloys[13−14]. 

Conventionally, the processing maps are 
constructed by means of curve fitting technique. 
However, the affecting factors (strain, strain rate and 
temperature) of flow stress presents highly complicated 
non-linear and interaction relationship during hot 
deformation, which leads to the fact that strain rate 
values of hot compression tests cover a range of four to 
five orders of magnitude. Thus it cannot be appropriate 
to obtain processing maps using curve fitting technique 
and interpolation to compute the flow stress values at 
proper temperature and strain rate intervals. With the 
development of artificial intelligence, researchers have 
paid a great deal of attention to the solution of non-linear 
and interaction problems in hot deformation behavior of 
metal alloys[15−18]. One of the main advantages of 
artificial neural network is that it is not necessary to 
postulate a mathematical model at first or identify its 
parameters. It has been successfully applied in many 
areas of engineering and has produced promising 
preliminary results in the fields of material modeling and 
processing[19−21]. However, the application of artificial 
neural network to construct processing map for titanium 
alloys is scarce. Hence, in the present investigation, 
artificial neural network model was developed to predict 
the flow stress of Ti40 alloy under different deformation 
conditions. Based on the trained artificial neural network 
(ANN), the processing map of Ti40 alloy was obtained 
and verified by metallographical observation. 
 
2 Experimental 
 

A 40 kg Ti40 alloy ingot with a diameter of 140 mm 
was used in this investigation. Its nominal chemical 
composition is Ti-25V-15Cr-0.2Si. The testing 
specimens of Ti40 alloy from the cast ingot were 
machined into cylinder with 8 mm in diameter and 12 
mm in length, and the cylinder ends were grooved for 
retention of the glass lubricants. The hot compression 
tests were carried out on Gleeble−1500 thermo- 
simulation machine in the temperature range of 900−   
1 100 °C with 50 °C interval and strain rates of 0.01, 0.1, 
1 and 10 s−1. The high reduction of the specimens was 
50%. All the specimens were cooled in the air in order to 
avoid cracking. The deformed specimens for 

microstructural analysis were sectioned and prepared by 
the standard metallographic procedure. Microstructure 
observations were carried out on Olympus/PMG3 optical 
microscope. 
 
3 Theory of processing map based on DMM 
 

On the basis of fundamental principles of 
continuum mechanics of large plastic flow, physical 
system modeling and irreversible thermodynamics, the 
Dynamic Materials Model (DMM) was first developed 
by PRASAD et al[9, 22]. DMM is viewed as a bridge 
between the continuum mechanics of large plastic 
deformation and the development of dissipative 
microstructures in the materials. It can illuminate how 
the external energy dissipated through the plastic 
deformation of work piece. The processing map was 
usually developed using DMM, with the complementary 
relationship between the rate of visco-plastic heat 
generation induced by deformation and the rate of energy 
dissipation associated with microstructural mechanisms 
occurring during the deformation process. A 
non-dimensional efficiency index η is used to represent 
the power dissipation through microstructural 
mechanisms and is given as follows: 
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where m is strain rate sensitivity. The variation of η 
indicates the microstructural changes during hot 
deformation. The dissipation map can be obtained with 
the contour plot of η values on the deformation 
temperature and strain rate field. ZIEGLER[23] proposed 
the principles of maximum rate of entropy production, 
from which a condition for microstructural instability is 
obtained: 
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The parameter )(εξ &  may be evaluated as a 

function of temperature and strain rate to obtain an 
instability map, where metallurgical instabilities during 
plastic flow are predicted to occur in regimes where 

)(εξ &  is negative. The instability map is superimposed 
on the dissipation map to obtain a processing map. With 
the help of the processing map, the safe domains and 
flow instable domains can be determined. The 
temperature and stain rate corresponding to the peak 
efficiency in safe domain can be chosen as the optimum 
parameters for hot working. 
 
4 Artificial neural network modeling 
 

Artificial neural network (ANN), which is 
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considered artificial intelligence modeling technique, is 
an intelligent information treatment system with the 
characteristics of adaptive learning and treating complex 
and non-linear relationships. It is essentially a “black 
box” operation linking input to output data using a 
particular set of nonlinear basis functions. With the 
development of technology of artificial intelligence, the 
ANN has become a powerful tool in the simulation and 
control of various processes. 

A general schematic of ANN model for the present 
investigation is shown in Fig.1. It can be seen from Fig.1 
that each neural network consists of an input layer, an 
output layer and one or more hidden layers. The input 
layer is used to receive data from outside, while the 
output layer sends the information out to users. The role 
of the hidden layer, which is a layer that contains a 
systematically determined number of processing 
elements, is to provide the necessary complexity for 
non-linear problems. The number of units in input and 
output layers is dictated by the problem, but the number 
of hidden units which controls the complexity of the 
model must be determined. Because the sigmoid 
functions are easily differentiable, the processing units 
for computational convenience are employed in the 
present model: 
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Fig.1 Schematic of ANN model of Ti40 alloy 
 

Based on the hot compression test of Ti40 alloy, the 
flow stress—strain curves were obtained from the load—
displacement data automatically. Fig.2 shows the typical 
stress—strain curves at different deformation tempera- 
tures. In order to develop an ANN model, all the data 
sets obtained from these curves were divided into two 
sets. One is to be used to train the network, and the 
remaining is to be used to verify the generalization 
capability of the network. A typical neuron receives 
input signals, sums them according to their weight, 
passes it through a function and produces an output. This 
output is then compared with the experimentally 
obtained outputs, and the error is calculated. This error is 
then propagated backwards and used for adjusting the 
weight of each of the neurons. The process of using the 

experimental outputs to minimize the mean squared error 
iteratively is called as training the network. Once the 
architecture of network is defined, then through learning 
process, weights are calculated so as to present the 
desired output, and can be used later for predicting 
outputs given a different set of inputs. 

In this study, because multilayer network has 
greater representational power to deal with highly 
non-linear and multivariable system, a multilayer 
perceptron (MLP)-based feed-forward network trained 
by back propagation (BP) type learning algorithm was 
used[24]. Although multilayer neural network does not 
ensure a global minimum solution for any given problem, 
it is a reasonable approximation that if the network is 
trained with a comprehensive database, the resulting 
model will approximate all of the laws of mechanics that 
the actual material or process obeys. In the present ANN 
model, the inputs of the model are strain (ε), logarithm 
strain rate ( ε&lg ) and deformation temperature (T). The 
output of the model is flow stress (σ). Instead of strain 
rate, logarithm strain rate was chosen because flow stress 
usually varies with logarithm strain rate on a physical 
basis. 

The input and output parameters must be 
standardized and fall in the closed interval [0, 1]. 
Because of this conversion method, the normalization 
technique is used in the proposed ANN according to the 
following formula: 
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where Z is the experimental value of strain, logarithm 
strain rate, deformation temperature or flow stress; and Z′ 
is the normalized value of Z, which has a maximum and 
minimum values given by Zmin and Zmax, respectively. 
Once the best-trained network is found, all the 
transformed data converts to its equivalent values, which 
can be expressed as follows: 
 

minminmax 95.0)95.005.1( ZZZZZ +−′=           (5) 
 

The total experimental data sets were then divided 
into two parts. Data sets at the strain of 0.4 were 
removed and the remaining data sets were used for 
training. The removed datasets were subsequently used 
for testing the network. A logistic sigmoid function 
expressed as Eq. (3) was employed as the activation 
function; the learning is based on gradient descent 
algorithm and hence requires the activation function to 
be differentiable. The number of hidden neurons 
determines the complexity of neural network and 
precision of predicted values. In this application, 8−15 
hidden-layer neurons were employed to test. The 
algorithm with 12 hidden-layer neurons was suggested to 
be used in present application since minimum mean  
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square error is obtained. The other parameters of MLP 
architecture and training are listed in Table 1. 
 
Table 1 Setting of training parameters for neural network 

Name of network parameter Content 

Learning algorithm Back propagation 

Training function Trainlm 

Activation functions for hidden and 
output layers 

Log-sigmoid 

Performance function MSE 

Training epoch 20 000 

Goal 0.000 1 

 
5 Results and discussion 
 

After training the network successfully, it has been 
tested by using the known training data. Statistical 
methods are used to compare the results produced by the 
network. A wide variety of standard statistical 
performance evaluation measures have been employed to 
evaluate the model performance. The generalization 
capability of the training and testing network is 
quantified in terms of correlation coefficient (R), average 
absolute relative error (eAARE), average root mean square 
error (eRMSE) and scatter index (IS). They are defined as 
follows, respectively. 

 

 

 

 

 

Fig.2 True stress—true strain curves of Ti40 

alloy at high temperature compression 

deformation: (a) 900 °C; (b) 950 °C; (c) 1 000 

°C; (d) 1 050 °C; (e) 1 100 °C 
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where E is the experimental value and P is the predicted 
value obtained from the neural network model; E  and 
P  are the mean values of E and P, respectively; N is the 
total number of data employed in the investigation. 

The performance of BP neural network prediction 
for both the training and testing data is depicted in Table 
2. eAARE and eRMSE are computed by comparison of the 
relative error and therefore are unbiased statistics for 
measuring the predictability of a model. As can be seen 
from Table 2, the values of eAARE for the training and test 
dataset are only 2.890% and 1.814%, respectively, which 
shows that the generalization capability of the training 
and testing network is satisfied. 
 
Table 2 Performance of ANN model for training and testing 
datasets of Ti40 alloy 

Dataset R eRMSE/% eAARE/% IS 

Training 0.9982 7.802 2.890 0.034 

Testing 0.9992 4.616 1.814 0.021 

 
In addition, the comparison between the 

experimental and corresponding predicted results for 
both training and testing datasets of Ti40 alloy is shown 
in Fig.3. The correlation coefficient is a commonly used 
statistic and provides information on the strength of 
linear relationship between observed and computed 
values. In Fig.3(a), the corresponding correlation 
coefficient (R) is found to be 0.998 2 which indicates that 
a very good correlation between experimental and 
predicted results has been obtained, and suggests that the 
trained neural network is able to predict the compressive 
deformation behaviors of Ti40 alloy successfully. 
Performance of the model for flow stress prediction is 
shown in Fig.3(b). The correlation coefficient of the 
testing network is higher than that of training network, 
indicating that the model prediction fits well with the 
experimental observation. Therefore, the artificial neural 
network trained with back propagation algorithm has 
been developed to present the excellent performance of  

 

 
Fig.3 Comparison of flow stress values predicted by BP neural 
network and experimental values for training (a) and testing 
dataset (b) 
 
flow stress prediction of Ti40 alloy. 

The performance of the ANN model trained with 
BP algorithm is further investigated by analysis of the 
absolute relative error of neural network predictions for 
testing data at strain of 0.4. The results are presented 
graphically as error bars (Fig.4). It can be found that all 
the relative errors between predicted and experimental 
values are within 5%, which suggests that the 
satisfactory predicted results of ANN model can be used 
 

 
Fig.4 Absolute relative error of neural network predictions 
compared with experimental values using testing data (ε=0.4) 
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rather than measured and hence reduce testing time and 
cost. 

Fig.5 shows the processing map drawn according to 
the predicted results at strain of 0.4 using trained ANN 
model. The processing map is superimposed by the 
instability map on the power dissipation map, the contour 
numbers represent percentage efficiency of power 
dissipation and shaded region shows the instability 
region. It is similar to that reported in Ref.[25]. From 
Fig.5, the map indicates the variation of the efficiency as 
a function of temperature and log strain rate. At a 
relatively low temperature (below 950 °C) and high 
strain rate (above 3 s−1) regime, the dissipation efficiency 
is less than 15%. However, one domain appears in the 
temperature range of 990−1 100 °C and at a strain rate 
lower than 0.01 s−1, with a power efficiency of 60% (at  
1 100 °C and 0.01 s−1). The domain appears to extend to 
lower strain rates and may reach an even higher 
efficiency. These features suggest that some 
microstructural changes may happen during the 
deformation. The contours in the stable domain are 
generally widely spaced, thus the power dissipation map 
may provide an initial suggestion of the domain area of 
dynamic recrystallization. Microstructure analysis 
reveals that the initial microstructures have been replaced 
by recrystallized structure (Fig.6). Because dynamic 
recrystallization (DRX) not only gives good intrinsic 
workability by simultaneous softening, but also 
optimizes the microstructure, so the domain corresponds 
to the optimum hot working conditions. Hence, the 
optimum processing conditions are in the strain rate 
range of 0.01−0.05 s−1 and temperature range of 975−  
1 100 °C, where the efficiencies are much higher 
compared with other stable region. The material exhibits 
flow instabilities at strain rates higher than 3 s−1 and in 
the temperature range of 900−1 000 °C. Microstructural 
examination of the specimens deformed at 950 °C and 
the strain rate of 10 s−1 is shown in Fig.7. 
 

 
Fig.5 Processing map obtained by ANN model for Ti40 alloy 
(ε=0.4) 

 

 
Fig.6 Dynamic recrystallization observed at 1 000 °C and 1 s−1 
 

 
Fig.7 Microstructure obtained on Ti40 alloy specimens 
deformed in instability regime showing manifestations in form 
of shear bands on deformation at 950 °C and 10 s−1 

 
The microstructures exhibit adiabatic shear bands 

oriented at about 45º with respect to the compression 
axis. The flow localization is due to the adiabatic shear 
band present in the metal matrix. Therefore, the 
instability regime has to be avoided during processing 
Ti40 alloy. 
 
6 Conclusions 
 

1) Artificial neural network (ANN) modeling has 
been successfully employed in the present work to model 
the flow stress of Ti40 alloy as an implicit function of 
strain, lg strain rate and deformation temperature. The 
multilayer perceptron (MLP) architecture with back- 
propagation algorithm was utilized and the network with 
12 hidden-layer neurons is suggested to be used in 
present application as minimum mean square error was 
obtained. The performance of the neural network model 
is found to be better as the flow stress can be predicted 
within an accuracy of ±5%. 

2) Based on the theory of Dynamic Materials Model 
(DMM) and the flow stress predicted by the trained 
network, a processing map was generated at a strain of 
0.4 for Ti40 alloy. The domain at about 1 100 °C and 
0.01 s−1 with a peak efficiency of 60% can be considered 
the optimum domain for hot working, while the domain 
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in 900−1 000 °C and 3−10 s−1 is unsuitable for hot 
working operation, and the process conditions must be 
avoided during the processing of Ti40 alloy. 
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应用人工神经网络构造 Ti40 合金加工图 
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摘 要：以 Gleeble−1500 热模拟试验机获得的 Ti40 钛合金压缩试验数据为基础，应用人工神经网络对数据进行训

练和预测，建立该合金的高温流动应力与应变、应变速率和温度对应关系的预测模型，其中，应变、应变速率（对

数形式）和变形温度作为模型的输入参数，流动应力作为模型的输出参数。结果发现，运用 BP 反向传播算法进

行训练的神经网络模型具有良好的预测功能，其预测值与实验测量值基本吻合。同时，采用神经网络模型预测的

数据构造 Ti40 合金的加工图，其安全区和失稳区的范围与实测数据获得的加工图基本相符，并对各自区域的相应

组织状态进行金相观察。 
关键词：Ti40 合金；加工图；人工神经网络 
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