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Abstract: Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl (Ti-46.5A1-2Nb-2Cr) alloys
with near gamma (NG) equiaxed and near lamellar (NL) microstructures over a temperature range from room temperature to 840 °C

and a strain rate range of 0.001-1 350 s

. The results indicate that the alloys are both temperature and strain rate dependent and they

have a similar dependence. The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate
range of 320—1 350 s . The brittle-to-ductile transition temperature (BDTT) increases with increasing strain rates. NG TiAl yields
obviously, while NL TiAl does not. Below BDTT, as the temperature increases, the fracture modes of the two alloys change from
planar cleavage fracture to a mixture of transgranular and intergranular fractures, and finally to totally intergranular fracture.
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1 Introduction

With high specific strength, y-TiAl intermetallic
compound is a potential attraction for structural
applications at elevated temperatures. However, the poor
ductility of TiAl alloy at room temperature (RT) limits its
applications[1-3]. Over the past few decades, the effects
of the composition, preparing method and microstructure
on the mechanical behavior of TiAl alloys have been
investigated[4—5], while studies on its dynamic tensile

impact behavior at different temperatures are insufficient.

SUN et al[6] studied the tensile impact behavior of
duplex Ti-45Al1-1.6Mn alloy at RT and a strain rate of
300 s, and found that the strength increased with
increasing strain rate but was not sensitive to high strain
rates. WANG et al[7] and ZHOU and XIA[S8]
investigated the RT tensile properties of two TiAl alloys
with lamellar microstructures at high strain rates and the
results indicated that the lamellar TiAl broke under
impact loadings, exhibiting no plasticity and the fracture
strain increased with increasing strain rate. SHAZLY et
al[9—-10] firstly investigate the tensile mechanical
properties of Gamma-Met PX (Ti-45A1-X alloy made by

GKSS, in which X refers to Nb, B or C) using the split
Hopkinson tensile bar (SHTB) at different temperatures.
Unfortunately, there was too much non-constitutive
vibration in the stress—strain curves and yet, no further
investigations reported the effects of the temperature,
strain rate and microstructure on the mechanical behavior
of TiAl alloy. ZAN et al[11] made investigations on the
tensile impact behavior of duplex Ti-46.5A1-2Nb-2Cr
alloy at elevated temperatures under high strain rate
loadings and found that the retainable temperature range
of strength and the brittle-to-ductile transition
temperature (BDTT) were higher than those under
quasi-static loadings.

The aim of the present work is to investigate the
overall effects of microstructures on the tensile impact
behavior and fracture modes of Ti-46.5A1-2Nb-2Cr alloy
with near gamma (NG) and near lamellar (NL)
microstructures over a temperature range from RT to 840
°C and a strain rate range of 0.001-1 350 s .

2 Experimental

The Ti-46.5A1-2Nb-2Cr alloy was produced by
casting and then hot isostatically pressed (HIP) at 1 250
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°C and 125 MPa for 3 h to eliminate casting porosity.
The ingot was subsequently heat treated at 1 250 °C for 8
h. Finally, the TiAl alloys with NG and NL
microstructures were obtained through the process as
shown in Fig.1. The optical photographs of the NG and
NL microstructures are shown in Fig.2.
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Fig.1 Tllustration of canned forging heat treatment for two

I'st canned forging at

typical microstructures: (a) NG; (b) NL

Fig.2 Optical photos of Ti-46.5A1-2Nb-2Cr alloy with two
typical microstructures: (a) NG; (b) NL

Tensile impact tests at strain rates of 320, 800 and
1 350 s™' and temperatures ranging from RT to 840 °C
were conducted on a rotating disk indirect bar-bar tensile
impact apparatus, with a rapid contact heating
technique[12—13]. Quasi-static tensile tests were
performed on an MTS 809 servo-hydraulic materials
tester at a strain rate of 0.001 s™'. The fractures were

observed using a Philips XL 30 ESEM at an accelerating
voltage of 15 or 20 kV. Detailed experimental process
can be found in Refs.[11-12, 14].

3 Results and discussion

3.1 Near gamma microstructure

The true stress—true strain curves of NG TiAl are
given in Fig.3, exhibiting obvious yielding. The strength
of NG TiAl drops a little after being yielded and then
goes into a constant work-hardening stage till the alloy is
broken. The effects of temperature and strain rate on the
dynamic behavior of NG TiAl are shown in Fig.4. From
Figs.3 and 4, it can be concluded that: 1) The dynamic
strengths, including yield strength oy,, flowing stress
under the same strain and ultimate tensile strength (UTS)
are obviously higher than those under quasi-static
loadings (owing to page limitation, only data of g, are
given); 2) Anomaly yield, though discovered in the high
temperature compression of TiAl alloy at a high strain
rate[15—17], is not found in the tensile tests; 3) Under
quasi-static loadings, the strength value remains stable
between 650 and 750 °C, while under dynamic loadings,
the temperature range of stable strength extends to 840
°C; 4) Under quasi-static loadings, the BDTT is between
750 and 840 °C (according to the definition, BDTT is the
temperature at which the plastic strain attains
7.5%[18-19]) and brittle-to-ductile transition takes place
obviously at 840 °C. However, under dynamic loadings,
the plastic strain is always less than 4% over the whole
testing temperature range (RT —840 °C), which reveals
that BDTT under dynamic loadings is higher than that
under quasi-static loadings. That is to say, the BDTT
increases with increasing strain rate; 5) Below BDTT, the
unstable strain &, (the strain corresponding to UTS)
under dynamic loadings is slightly higher than that under
quasi-static loadings, probably due to the deformation
twinning which predominately affects deformation under
tensile dynamic loadings[6, 20]; 6) Under dynamic
loadings, the work-hardening rate is not sensitive to
temperature and strain rate, remaining at about 6 000
MPa. Generally, the comprehensive properties of TiAl
alloy under dynamic loadings are better.

SEM images of NG TiAl under quasi-static and
dynamic loadings are shown in Figs.5 and 6, respectively.
At RT, cleavage planes are found in both loading
conditions as shown in Fig.5(a) and Fig.6(a). As the
temperature increases, cracks appear between crystalline
grains and some planar crystal boundaries also emerge.
Here, the fracture mode is a mixture of transgranular and
intergranular fracture over the whole strain rate range
(Fig.5(b) and Figs.6(b)—(c)). At 840 °C, under
quasi-static loading, a small number of dimples appear in
addition to planer crystal boundaries (Fig.5(c)), while
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Fig.3 True stress—true strain curves of NG TiAl at different strain rates: (a) 10> s™; (b) 320 s™"; (¢) 800 s'; (d) 1 350 5!
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under dynamic loadings, the fracture mode is totally
intergranular fracture (Fig.6(d)). However, at 950 °C,
which is above BDTT, plastic fracture occurs and large
number of dimples are found under quasi-static loading

(Fig.5(d)).

Fig.6 Fractographs of NG TiAl alloy under different dynamic loading conditions: (a) RT, 320 s™'; (b) 350 °C, 1 350 s ; (¢) 650 °C,
800s'; (d) 840 °C, 1350 s

3.2 Near lamellar microstructure

The stress—strain curves of NL TiAl dependent on
temperature and strain rate are similar to those of NG
TiAl Curves at strain rates of 0.001 and 320 s ' are
given in Fig.7 for comparison. No clear yield point can
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be found and the work-hardening stage is nonlinear. Its
BDTT is between 950 and 1 050 °C under quasi-static
loadings and the work-hardening rate remains about
6 300 MPa under dynamic loadings.

Also, the fracture mode of NL TiAl is similar to that
of NG TiAl (Fig.8). However, intergranular fracture is
more common at elevated temperatures. Because of the
larger specific surface area of NL TiAl, the effects of
crystal boundary movement on its mechanical behavior
are greater than those on NG TiAl In Fig. 8, the fracture
surfaces are nearly on the same plane and the fractures
are even and flat. At elevated temperatures below BDTT,
however, not only planar crystal boundaries but also
delamination appear. The higher the temperature is, the
more obvious the delamination is. These may probably
account for the nonlinearity of the work-hardening stage,
but further investigations are needed. At 1 050 °C, plastic
fracture also occurs and large number of dimples are
found (Fig.8(f)).

3.3 Microstructural effects

From the results in sections 3.1 and 3.2, it is known
that the two alloys have similar temperature and strain
rate effects on mechanical behaviors. The strength of NL
TiAl is less than that of NG TiAl, while the BDTT of the
former under quasi-static loadings is higher than that of
the latter. No clear yielding point can be found and the
work-hardening stage is nonlinear in the true stress—

Fig.8 SEM images of NL TiAl at different

strain rates and temperatures: (a) RT,
0.001 s°'; (b) 350 °C, 1 350 s '; (c) 700
°C, 3205 '; (d) 840 °C, 320 s '; (e) 1 050
°C,0.001 s
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true strain curves of NL TiAl (Fig.9). Additionally, the
work- hardening rate of NL TiAl is higher than that of
NG TiAl under dynamic loadings. But no obvious
patterns can be found in the plastic strains of the two
TiAl alloys under the same loading conditions. The two
alloys also have similar fracture modes but NL TiAl
tends to experience intergranular fracture at elevated
temperatures.
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Fig.9 True stress—true strain curves of two TiAl alloys at
350 °C and 320 s

4 Conclusions

1) NG TiAl and NL TiAl alloys have similar
temperature and strain rate dependences. The dynamic
strength is higher than quasi-static strength but almost
insensitive to strain rates over the high strain rate range
(320-1 350 s'). Below BDTT, the unstable strain &,
under dynamic loadings is slightly higher than that under
quasi-static loadings. BDTT increases with increasing
strain rate and the work-hardening rates are temperature
and strain rate independent under dynamic loadings at
elevated temperatures.

2) The strength of NL TiAl alloy is lower than that
of NG TiAl alloy, while the BDTT of the former under
quasi-static loadings and its work-hardening rate under
dynamic loadings are higher than those of the latter. NG
TiAl alloy yields obviously, while NL TiAl alloy does
not and exhibits nonlinear work-hardening stages in true
stress—true strain curves. No patterns can be found in
the plastic strains of the two alloys under the same
loading conditions.

3) The two alloys experience similar fracture modes.

Below BDTT, as the temperature increases, the fracture
modes of the two alloys change from planar cleavage
fracture to a mixture of transgranular and intergranular
fracture, and finally to a totally intergranular fracture.
Intergranular fracture tends to occur in NL TiAl at

elevated temperatures.
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