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AITiN and AITiON-coated hot work tool steels for tooling in steel thixoforming
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Abstract: X32CrMoV33 hot work tool steel samples coated with AITiN and AITiON were submitted to thermal cycling under
conditions that approximate thixoforming of steels and to sliding wear tests at 750 ‘C, measured to be the cavity surface temperature
shortly after the steel slurry is forced into the thixoforming die. AITiN and AITiON coatings provide adequate protection against
oxidation of the tool steel substrate, but fail to avoid thermal fatigue cracking. This is attributed to the extensive softening of the
substrate, the thermal expansion mismatch between the hot work tool steel and the coatings and residual compressive stresses
inherited from the deposition process. The impact of AITiN and AITiON coatings on the high temperature wear resistance, on the

other hand, is favourable. The improved wear resistance is attributed to the stable, protective surface oxide films.
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1 Introduction

Thermal fatigue, wear and oxidation at elevated
temperatures produce a very hostile environment which
disapproves conventional hot work tool steels for tooling
applications in semi-solid processing of steels[1—6].
Tooling materials superior to those available today are
thus needed. Several replacements for conventional tool
steels with superior performance have been identified in
recent years[7—15]. However, cost considerations favour
coating hot work tool steels over employing high
temperature alloys for tooling applications. Such
coatings must offer thermal and chemical stability as
well as adequate resistance to thermal fatigue, oxidation
and abrasion by the slurries. Thin hard coatings
employed to reduce friction and wear of tools for cutting,
forming and die casting processes deserve attention
[16—21]. Physical vapor deposition (PVD) is employed
to extend die life in metal processing since it is capable
of depositing such coatings below the temper softening
temperature of most common tool steels[22—25]. PVD
coatings offer an attractive combination of high hardness,
good wear resistance and chemical stability and have
thus been widely employed on forming and cutting tools
and to a relatively less extent in thixoforming tools for
high temperature alloys in recent years[26—30]. AITiN
type PVD coatings are particularly identified for high

temperature use owing to an excellent oxidation
resistance[31—39]. The potential of AITiN and AITiON
coatings deposited on X32CrMoV33 hot work tool steel
via cathodic arc physical vapour deposition (CAPVD)
process under steel thixoforming conditions was
investigated in the present work.

2 Experimental

CAPVD process was employed to deposit AITiN
and AITiON coatings on X32CrMoV33 hot work tool
steel (Table 1), which was austenized at 1 025 °C for 30
min, quenched in circulating air and finally tempered
twice at 625 °C for 2 h, yielding a hardness of HRC 45.
The coating process parameters are listed in Table 2.

Table 1 Chemical composition of X32CrMoV33 hot work tool
steel used as substrate (mass fraction, %)
C Si Mn Cr Mo Ni Cu V  Fe
0.28 0.19 020 3.00 2.79 022 0.17 041 Bal

The thermal fatigue test involved cyclic heating and
cooling of coated prismatic tool steel samples (25 mm X
25 mmx20 mm) between 750 °C and 450 °C (Fig.1).
These temperatures are the maximum and the minimum
temperatures that the die cavity surface has to endure in
steel thixoforming experiments. Only the front coated
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Table 2 Parameters employed in CAPVD deposition of AITiN
and AITiON coatings (CrN is bond coat)

Coating Arc Bias  p(N,) P(O,) Coating
process  current/A voltage/V_ /Pa  /Pa time/min
Heating" 0 —600—» 5
Etching —1000
AITIN e 70 =150 1 — 10
oo 50 —150 1 0 50
Coat
Heating" 0 —600> 5
Etching — 1000
AITiON  CrN 70 —150 1 — 10
Top _ —
Coat 70 150 1 45
70 —150 — 1 15

face of the samples was heated to establish the thermal
gradients that prevail across the section of the die
during steel thixoforming. The thermal fatigue tests
are described in detail elsewhere [3].

Wear properties of the coatings were evaluated with
a commercial ball-on-disc type sliding wear tribometer. A
9.5mm diameter 440C stainless steel ball was used as the
counterface, considering that the die material is worn out
by solid o-Fe globules during the thixoforming of steel
parts. Wear tests were carried out at 750 °C with a sliding
speed of 0.1 m/s, under 5 N load for 60 min. The disc
surfaces were ground with 1000 grit sandpaper and were
ultrasonically cleaned in acetone and dried before each
test. Morphology of the wear track after each sliding
experiment was investigated with a 3D profiling system,
an optical and a scanning electron microscope. Both

(a) Heating cycle
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Fig.1 Thermal fatigue test set-up: (a) heating; (b) Cooling cycle
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thermal fatigue and wear tests were repeated in exactly
the same fashion with uncoated tool steel samples to
identify the impact of AITiN and AITiON coatings on the
thermal fatigue performance of X32CrMoV33 tool steel.

3 Results and discussion

AITIN and AITiON coatings revealed two- and
three-layer architectures, respectively, with an inner CrN
layer which serves to improve adhesion of the coatings to
the substrate. The thickness and hardness of the coatings are
listed in Table 3. Oxygen in the AITiON coating evidently
played a softening role as reported for other transition metal
oxy-nitride coatings[40—42]. Both coatings maintain the
same NaCl structure with a fraction of the Ti atoms
substituted by Al atoms[43].

Table 3 Thickness and hardness values of AITiN and AITiON
coatings

Coating Hardness(HV) Thickness/um
AITIN 2080 6.3
AITiON 1976 7.8

The typical temperature vs time curves for AITIN
and AlTiON-coated and uncoated X32CrMoV33 samples
are shown in Fig.2. The rear face temperature in the coated
samples seems to have been slightly reduced, implying a
barrier effect of the AITiN and AITiON coatings on heat
transfer. This effect is believed to be due to the relatively
lower thermal conductivity of the PVD coatings and is
very small as both AITiN and AITiON coatings are very
thin.

® Front face, uncoated

750+ ® Rear face, uncoated
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©700 F w © Rear face, coated o
~
2
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Fig.2 Change in temperature with time at front and rear faces of
AITiN-coated and uncoated hot work tool steel samples

The surface of the hot work tool steel deteriorated
very rapidly as soon as thermal cycling started. Thick
oxide scales were produced at the front face of the
X32CrMoV33 hot work tool steel, which eventually
started to spall off upon continued thermal cycling, due to
a thermal expansion mismatch (Fig.3). The surface
damage thus introduced facilitated crack initiation. The



s1024

Y. BIROL et al/Trans. Nonferrous Met. Soc. China (20)2010 s1022—s1028

Fig.3 General view of front faces (a, ¢, ¢) and thermal fatigue cracks on front faces (b, d, f) of X32CrMoV33 steel (a, b), AITiN- (c, d)
and AITiON-coated (e, f) samples after 1500, 425 and 768 cycles, respectively (Fig.3(b) shows a metallo-graphically polished section

approximately 1 mm from front face)

damage features noted in the X32CrMoV33 tool steel
sample were clearly absent in the AITiN and AITiON
coatings. Both coatings retained their integrity for at least
300 cycles. The contrast change after 300 cycles was
taken to imply Al,O; formation. Blisters and small
scores-streaks, running more or less parallel to each other,
were noted upon further thermal cycling. Finally, small
cracks were noted after 425 and 768 cycles in AITiN and
AITiON coatings, respectively (Fig.3). The thermal

fatigue tests of the coated samples were terminated at
this point in spite of a superior surface quality with
respect to the uncoated tool steel samples. It is hard, in
view of the foregoing, to claim an improvement in the
thermal fatigue performance of tool steel when coated
with AITiN and AITiON.

The poor thermal fatigue performance of AITiN and
AITiON coatings under steel thixoforming conditions
can be attributed to a number of factors. The stresses
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produced by the thermal expansion mismatch between
the hot work tool steel and the nitride and oxy-nitride
coatings are believed to play a key role. The CAPVD
process is known to cause high compressive stresses in
coatings due to its high ionisation rate and bias voltage
applied to the substrate. High compressive stresses
reduced the adhesive strength of the coating on the
substrate, produced blistering and eventually led to
spalling[29]. Micro-cracking was thus inevitable with
increasing number of thermal cycles. The integrity of the
coatings might have also been impaired due to a lack of
sufficient substrate support as suggested in Refs.[16,
44-46]. The hardness of the front face of the uncoated
steel sample, which was HV 442 before the thermal
fatigue test, dropped to approximately HV 275 after only
400 cycles[3]. This situation was aggravated further
when the tool steel substrate underwent further softening
with increasing number of thermal cycles.

Two- and three-dimensional topographies of the
tested surfaces are illustrated in Fig.4. Abrasive wear
with deep grooves along the sliding direction, a very
thick oxide layer and an appreciable quantity of debris
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accumulated at the edges of the track are the typical
features of the hot work tool steel submitted to wear test
at 750 ‘C. A nearly 40 Hm deep wear track and a volume
loss of 5.8x 107> m®, occurred in the hot work tool steel.
Oxide build up on the disc surface was confirmed by
EDS analysis which showed a high and uniform level of
oxygen across the wear track(Fig.5). The surface oxides
were shown by XRD to be Fe,O; and Fe;04. Oxidation,
fresh surface generation via fracture and removal of the
surface oxides inside the wear track and re-oxidation of
the fresh surface are responsible for the substantial wear
loss suffered by the hot work tool steel. Wear resistance
of the X32CrMoV33 tool steel is impaired at high
temperatures also via loss of mechanical strength.
X32CrMoV33 tool steel disc sample responded to
thermal exposure at 750 °C with a sharp hardness drop,
from over HV 450 to below HV 250 within 1 h.

The sliding wear conditions which produced a deep
wear scar on the surface of the tool steel, hardly made an
impression on the AITiN and AITiON coatings (Figs.
4—6). The wear track features of the AITiN and AITiON
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Fig.4 2- and 3-D topographies of tested surfaces of hot work tool steel (a, b), AITiN (c, d) and AITiON-coated (e, f) disc samples

submitted to sliding wear test at 750°C
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Element Tool M
steel 1 2
(0] 3226 31.07
Cr 3.05 0.85 0.80
Mn 0.20 0.30 0.39
Fe 92.63 66.01 67.09
Ni 0.22 0.17 0.16
Mo 2.79 0.41 0.49
i Element AITIN —Aﬂ?. wear tc25t
0] 4536 30.58
N 24.74 17.01 27.08
Al 53.14 2335 27.55
Ti 22,11 1249 14.59
Fe 1.79
Element AlTiONW
8] 40.89 60.01 56.60
N 6.70 461 7.33
Al 39.31 2345 2463
Ti 13.10 1099 11.25
Fe 0.94

Fig.5 SEM micrographs and EDS analysis (mass fraction) inside (1) and outside (2) of wear tracks of hot work tool steel (a), AITiN-

(b) and AITiON-coated (c) wear test samples

(a)

Fig.6 Hot work tool steel (a), AITiN-(b) and AITiON-coated (c) disc samples submitted to wear test at 750 C

coatings suggest that the steel ball was smeared onto the
PVD coatings rather than digging them as evidenced by
the EDS analysis of the wear tracks which were found to
contain as much as 1.79% and 0.94% Fe(mass fraction)
for the AITiN and AITiON coatings, respectively (Fig.5).
This is typical of adhesive wear and is likely to occur
when a relatively soft ball is rubbed against a much
harder surface[47]. AITiN and AITiON coatings are
indeed much harder than the steel ball which softens
further upon thermal exposure during the test, promoting
the adhesive wear conditions.

The EDS analysis of the AITiN- and AITiON-coated
samples revealed an increase in the oxygen content inside
the wear track (Fig.5). Al- and Ti-based oxides are believed

to have formed at the test temperature owing to the high
affinity of Al and Ti to oxygen, as reported in Refs.[48—49].
The debris originating from the steel ball is also believed to
have oxidized under the present conditions. The oxy-nitride
coating is more resistant to oxidation as it was obtained by
the intentional oxidation of an AITiN coating and is thus
somewhat saturated with oxygen. The higher resistance to
oxidation provided a higher resistance to sliding wear. The
AITIiON coating is thus judged to be the better of the two
highly wear-resistant coatings. The smooth wear track
features suggest high debris removal efficiency for both
coatings with the debris easily being removed from the
contact surface.
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4 Conclusions

AITiN and AITiON coatings provide adequate
protection against oxidation of the hot work tool steel
samples, but fail to avoid thermal fatigue cracking.
Extensive softening of the substrate, thermal expansion
mismatch between the hot work tool steel and the nitride
and oxy-nitride coatings, compressive residual stresses
inherited from the CAPVD process are held responsible.
The stable and protective oxide surface layer on AITIN
and AITiON coatings provide an enhanced resistance to
high temperature wear. The latter is relatively more
resistant to oxidation and is thus the better of the two
coatings tested in the present work. It is fair to conclude
that coating solutions for steel thixoforming tools must
involve duplex coatings via plasma nitriding followed by
physical vapour deposition. The plasma nitride of
sufficient thickness is expected to provide the required
substrate hardness and thus the substrate support which
is clearly absent when thin hard coatings are applied
directly on tool steel samples. The tool steel substrate is
relatively softer and softens further upon thermal cycling
at steel thixoforming temperatures and risks the integrity
of the PVD coating.
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