

Trans. Nonferrous Met. Soc. China 31(2021) 2165-2173

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Enhanced lithium leaching from lepidolite in continuous tubular reactor using H₂SO₄+H₂SiF₆ as lixiviant

Hui GUO^{1,2,3}, Ge KUANG², Huan LI^{2,4}, Wen-tao PEI², Hai-dong WANG³

- 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
- 2. Institute of Chemical Technologies, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China;
 - 3. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;
 - 4. Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia

Received 22 April 2020; accepted 28 April 2021

Abstract: An acidic mixture of sulfuric and fluosilicic acid (H₂SO₄+H₂SiF₆) was employed as lixiviant to enhance leaching of lithium from lepidolite. The H₂SiF₆ was obtained as a byproduct of anhydrous hydrofluoric acid production, aiming to provide HF molecules. It was found that the HF molecules were the main reaction component and played a key role in strengthening the dissolution of lepidolite. Different factors, including mass ratio of ore/H₂SO₄/H₂SiF₆, concentrations of H₂SO₄ and H₂SiF₆, leaching temperatures (40–80 °C) and time (15–75 min), were investigated. Moreover, an efficient tubular reactor was employed to improve this acid leaching system. Under the optimal conditions (ore/H₂SO₄/H₂SiF₆ mass ratio of 1:0.8:1.6, 80 wt.% H₂SO₄, 15 wt.% H₂SiF₆, 80 °C, 15 min), 97.9% of Li, 96.4% of K, 97.6% of Rb, 96.7% of Cs and 81.4% of Al (mass fraction) were leached. Additionally, a two-step thermal process was proposed to remove fluorine of leaching slurry. This acid treatment using an acidic mixture of H₂SO₄ and H₂SiF₆ in a continuous tubular reactor shows potential as an alternative process to extract lithium from lepidolite.

Key words: lepidolite; lithium extraction; continuous tubular reactor; fluosilicic acid; fluorine chemical method

1 Introduction

With the rapid development of electric vehicles and novel energy storage devices, the demand for lithium (Li) has increased significantly, especially related to wide application on lithium-ion batteries (LIBs) [1–3]. Currently, lithium is mostly extracted from lithium-containing brines due to its low production cost. However, these brines are predominantly located in South America, such as Argentina, Bolivia and Chile [4,5]. To diversify the lithium source is important for lithium production, especially for high purity Li₂CO₃ products. Therefore, Li-bearing minerals, including spodumene (which has realized commercial production) [6,7], lepidolite [8–12], and zinnwaldite [13], have been treated as important Li resources owing to their relatively wide global distribution.

Lepidolite (KLi_{1.5}Al_{1.5}[AlSi₃O₁₀]F₂) has received increasing attention due to its large reservation, especially in China. Different processes have been proposed to extract Li from lepidolite, which can be divided into acid [8–10], alkaline [11] or sulfates methods [12]. The sulfuric acid method has been reported as an efficient process to treat lepidolite. However, the industrial process has not yet been economically feasible due to its typically low lithium content. The lepidolite employed in this

study is obtained as flotation tailing of Ta and Nb ores from Yichun, Jiangxi province of China, resulting in a much more difficult process to extract lithium. Therefore, more effective methods need to be investigated to extract lithium from this typically low-grade lithium ore. Considering that 2-8 wt.% fluorine (F) is contained in lepidolite, an improved sulfuric acid process with the introduction of fluorine has been proposed to enhance the lithium extraction from lepidolite [14-16]. ROSALES et al [17] also reported an acid leaching using hydrofluoric acid (HF) to treat lepidolite. However, the lithium and other valuable elements were converted into insoluble fluorides, resulting in a much more difficult separation and purification process of Li products.

Previous investigation [18] shows that the HF molecules rather than F⁻ were the main reaction component involved in the acid treatment with introduction of F. The H⁺ can accelerate the leaching via the protonation of the crystal lattices and convert the fluorides into soluble sulfates.

In our previous work, a fluorite (CaF_2) –sulfuric acid system has been employed to extract Li from α -spodumene [19]. Moreover, a mixture of sulfuric acid and hydrofluoric acid (H_2SO_4+HF) has been employed as lixiviant to leach Li from α -spodumene at 100 °C [20,21] and from lepidolite at 85 °C [14,15]. The leaching reaction between lepidolite and H_2SO_4+HF can be summarized as Reaction (1):

$$KLi_{1.5}Al_{1.5}AlSi_3O_{10}F_2 + 16HF + 5H_2SO_4 \rightarrow 0.75Li_2SO_4 + 1.25Al_2(SO_4)_3 + 3H_2SiF_6 + 0.5K_2SO_4 + 10H_2O$$
 (1)

To diversify the fluorine source, H₂SiF₆, a byproduct of anhydrous hydrofluoric production [22-24], was employed in this study to provide HF. The H₂SO₄ was introduced to convert the insoluble fluorides into soluble sulfates. The thermodynamic feasibility was first investigated that whether H₂SiF₆ can provide HF with H₂SO₄. Preliminary experiments using only H₂SiF₆ as lixiviant were also performed to reveal reaction between lepidolite and H₂SiF₆. Moreover, an efficient tubular reactor was employed to enhance the leaching of lithium from lepidolite. Subsequent heat treatment was then carried out for fluorine removal, which is important for further separation and purification process.

2 Experimental

2.1 Materials

The lepidolite concentrate was obtained from Yichun, Jiangxi province of China. The ore sample was first ground using a jet mill and sieved to $<75 \mu m$ (D_{50} =20.44 μm , D_{90} =55.86 μm). The X-ray diffraction (XRD, MiniFlex II, Rigaku Co., Ltd.) analysis in Fig. 1 indicates that the ore sample mainly consists of lepidolite with some quartz and albite. The elemental analysis of the ore is given in Table 1.

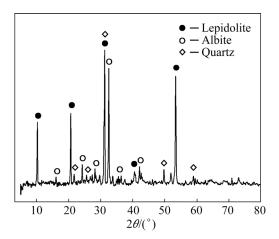


Fig. 1 XRD analysis of lepidolite ore

Table 1 Chemical analysis of lepidolite ore (wt.%)

Li ₂ O	K_2O	Al_2O_3	SiO_2	Rb_2O	Cs_2O	Na_2O	Fe_2O_3	F
3.43	8.75	23.12	56.35	1.70	0.29	1.26	0.24	1.8

All chemicals used in this work were of analytical grade without further treatment. The hexafluorosilicic acid (H₂SiF₆, 30 wt.%) was supplied by Xilong Scientific Co., Ltd., China. The concentrated sulfuric acid (H₂SO₄, 98 wt.%) was supplied by Sinopharm Chemical Reagent Co., Ltd., China. Different concentrations of H₂SiF₆ and H₂SO₄ were prepared by diluting with predetermined amounts of deionized water.

2.2 Leaching process

The preliminary leaching experiments were firstly carried out in a closed polytetrafluoroethylene (PTFE) beaker. Different factors on leaching lithium were conducted: concentration of H₂SiF₆ (7.5–15 wt.%), H₂SiF₆/ore mass ratio

(1.2-2.4), concentration of H_2SO_4 (50–90 wt.%), ratio (0.6-1.0),H₂SO₄/ore mass temperature $(40-80 \, ^{\circ}\text{C})$ and leaching (15–75 min). Blank experiments using only H₂SiF₆ as lixiviant were also conducted. A tubular reactor (PTFE TR, inner diameter 8 mm, outer diameter 10 mm) was then employed to enhance this acid leaching system. The ore was first mixed with H₂SiF₆ and kept stirring continuously in a 1000 mL PTFE beaker. Then, the slurry of ore/H₂SiF₆ and H₂SO₄ were simultaneously pumped into the tubular reactor with different mass ratios using two metering pumps (JLM1/10, Shanghai AQ Pump Co., Ltd., China). The resulted slurry was subsequently treated with the two-step heat treatment for fluorine removal as shown in Fig. 2. Then, the resulted slurry was washed using water/slurry ratio of 3:1 at 95 °C and stirred for 30 min. The obtained solution and residues were separated and analyzed, respectively.

2.3 Analytical methods

The leaching efficiency of lithium (*L*) was introduced to evaluate this enhanced acid leaching system as Eq. (2). Selective leaching of Li and leaching efficiency of valuable elements such as K, Al, Rb and Cs should also be considered for optimal conditions.

$$L = \frac{Q_{\rm L}V}{m_{\rm ore}w_{\rm Li,ore}} \times 100\% \tag{2}$$

where Q_L is the lithium concentration in lixivium, g/L; V is the volume of lixivium, L; m_{ore} is the mass of ore sample, g; $w_{Li,ore}$ is the mass fraction of lithium in ore sample, %.

The lithium content was analyzed by atomic

absorption (AAS, AA-6800, spectroscopy Shimadzu). Other major elemental analyses of the liquid phase were analyzed by inductively-coupled plasma atomic emission spectrometry (ICP-AES, PS-6, Baird). Elemental content of solid samples was determined by X-ray fluorescence (XRF, model ZSX Primus II, Rigaku). The fluorine content was determined using a fluorine ion selective electrode (FISE, PF-1, LEICI). The utilization efficiency of fluorine $(F_u, \%)$ was calculated as Eq. (3) to determine the content of fluorine remained in residue out of that in original lepidolite sample. The removal efficiency of fluorine $(F_r, \%)$ during the heat treatment was calculated as Eq. (4):

$$F_{\rm u} = \frac{F_{\rm ore} - F_{\rm ins}}{F_{\rm ore}} \times 100\% \tag{3}$$

$$F_{\rm r} = \frac{F_{\rm tot} - F_{\rm ins}}{F_{\rm H_2SiF_6}} \times 100\% \tag{4}$$

where F_{ore} and F_{ins} are the masses of fluorine in ore and insoluble residue, respectively, g; F_{tot} is the total mass of fluorine in both ore and $H_2\text{SiF}_6$ added, g; $F_{\text{H},\text{SiF}_6}$ is the mass of fluorine in $H_2\text{SiF}_6$ added, g.

3 Results and discussion

3.1 Theoretical analysis

In our previous work, the feasibility using H_2SO_4 +HF to extract lithium from lepidolite was discussed [14,15]. The introduced H^+ was mainly used to convert the fluorides into soluble sulfates. Here, H_2SiF_6 was employed as the substitute for hydrofluoric acid to provide more controllable HF molecules. Since HF is the main reaction

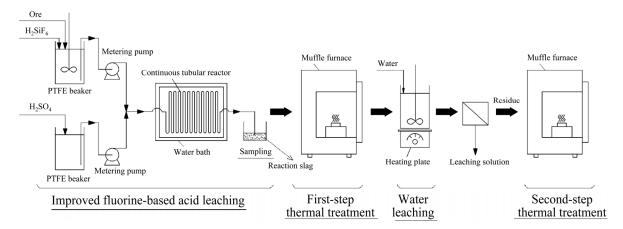


Fig. 2 Schematic diagram of leaching lithium from lepidolite using tubular reactor with H₂SO₄+H₂SiF₆ as lixiviant

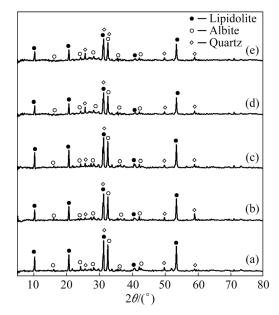
component involved in the leaching, the theoretical analysis that whether H_2SiF_6 can be used as the source of HF molecules was firstly carried out. The reaction of H_2SiF_6 to provide molecular HF occurred as

$$H_2SiF_6(aq) \xrightarrow{\Delta} 2HF(g) + SiF_4(g)$$
 (5)

The thermodynamic analysis was calculated using HSC Chemistry software, 2006 version. Table 2 showed that the decomposition of H₂SiF₆ occurred spontaneously above 200 °C (473.15 K). Therefore, concentrated H₂SO₄ rather than diluted one was employed in this acid treatment, aiming to provide diluting energy for decomposition of H₂SiF₆. This reaction also occurred in the manufacturing of HF [22–24].

Table 2 Thermodynamic analysis of decomposition of H₂SiF₆

112511 6			
T/K	ΔH /	ΔS /	ΔG /
1/K	$(kJ \cdot mol^{-1})$	$(J \cdot mol^{-1} \cdot K^{-1})$	$(kJ \cdot mol^{-1})$
273.150	231.789	492.251	97.331
298.150	235.052	503.680	84.880
323.150	238.385	514.415	72.152
348.150	241.785	524.548	59.164
373.150	245.244	534.140	45.929
398.150	248.754	543.245	32.461
423.150	252.312	551.911	18.771
448.150	255.912	560.177	4.869
473.150	259.552	568.080	-9.235
498.150	263.228	575.650	-23.532
523.150	266.938	582.916	-38.015
548.150	270.678	589.901	-52.676
573.150	274.448	596.626	-67.508


3.2 Leaching with H₂SiF₆

The leaching results in Table 3 showed that the leaching temperature and leaching time slightly affected the leaching process under the investigated conditions. The XRD analyses of the insoluble residues in Fig. 3 showed that the diffraction peaks were basically same, indicating that no obvious reaction occurred between lepidolite and H₂SiF₆ at the leaching temperatures of 25–80 °C. Therefore, the lepidolite and H₂SiF₆ could be mixed and then pumped into the tubular reactor in future experiments.

Table 3 Factors and level of preliminary leaching experiment

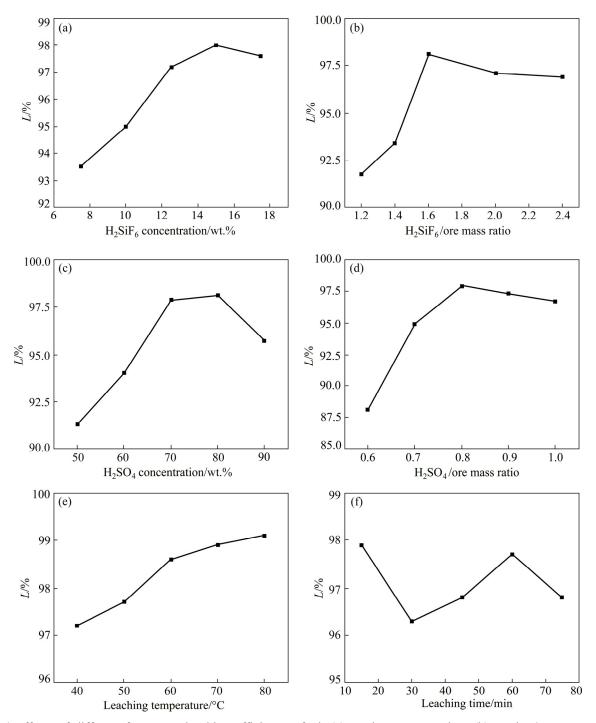
No.	$w(H_2SiF_6)/\%$	T/°C	t/min
1	20	25	15
2	20	25	90
3	20	80	15
4	20	80	90

H₂SiF₆ (aq)/ore mass ratio=1.5

Fig. 3 XRD patterns of residues obtained from preliminary experiments: (a) Ore sample; (b) 25 °C, 15 min; (c) 25 °C, 90 min; (d) 80 °C, 15 min; (e) 80 °C, 90 min

3.3 Leaching with H₂SO₄+H₂SiF₆

Our previous investigation using H₂SO₄+HF as lixiviant indicates that introducing fluorine showed a promising potential to extract lithium from lepidolite at a relative low temperature (85 °C) [14-16]. Here, H₂SiF₆ was used to provide HF. However, previous experiments showed that no obvious reaction occurred between lepidolite and H₂SiF₆. Then, a mixture of concentrated H₂SO₄ and H₂SiF₆ was employed to leach lithium from lepidolite. Moreover, a tubular reactor was attempted to enhance this acid leaching of lithium. Effects of different factors on lithium leaching using H₂SO₄+H₂SiF₆ as lixiviant were investigated. Unless specifically explained, the experiments were performed under the following conditions: ore/H₂SO₄/H₂SiF₆ mass ratio of 1:0.8:1.6, H₂SiF₆ concentration of 15 wt.% and H₂SO₄ concentration of 70 wt.% at 50 °C for 15 min.


3.3.1 Effect of H₂SiF₆ concentration

The preliminary experiments showed that no obvious reaction occurred between lepidolite and H_2SiF_6 . However, the effect of H_2SiF_6 with the presence of concentrated H_2SO_4 needs to be investigated. Figure 4(a) showed that the lithium leaching efficiency increased from 93.5% to 98.0% with increasing the H_2SiF_6 concentration from 7.5 to 15 wt.%. The leaching efficiency decreased with

H₂SiF₆ concentration further increasing to 17.5 wt.%, which was caused by side reaction of more insoluble products like Li–F generated. To maximize the leaching efficiency of lithium, 15 wt.% H₂SiF₆ was chosen for further leaching experiments.

3.3.2 Effect of H₂SiF₆/ore mass ratio

Along with the H_2SiF_6 concentration, the effect of H_2SiF_6 /ore mass ratio is also important for

Fig. 4 Effects of different factors on leaching efficiency of Li: (a) H₂SiF₆ concentration; (b) H₂SiF₆/ore mass ratio; (c) H₂SO₄ concentration; (d) H₂SO₄/ore mass ratio; (e) Leaching temperature; (f) Leaching time

process optimization and utilization of fluorine. The results (Fig. 4(b)) indicated that leaching efficiency increased from 91.8% to 98.1% when the mass ratio of H₂SiF₆ (aq)/ore increased from 1.2 to 1.6. The leaching efficiency slightly decreased when the mass ratio of H₂SiF₆ (aq)/ore over 1.6. To avoid the formation of insoluble fluorides like Li–F, the mass ratio of H₂SiF₆ (aq)/ore of 1.6 was recommended for further experiments.

3.3.3 Effect of H₂SO₄ concentration

The extra energy supplied by diluting the concentrated H₂SO₄ could accelerate the reaction of H₂SiF₆ to release the HF molecules. However, the viscosity of concentrated H₂SO₄ is not beneficial for H⁺ transport. Thus, effects of H₂SO₄ concentration (50-90 wt.%) were carried out. Figure 4(c) showed that the H₂SO₄ concentration had an obvious effect on leaching efficiency. The leaching efficiency increased by 7% when the H₂SO₄ concentration increased from 50 to 80 wt.%. While the leaching efficiency decreased with further increasing concentration over 80 wt.%. This attributed to the concentrated H₂SO₄ becoming too viscous for H⁺ transport. To provide more input energy by diluting concentrated H₂SO₄, the leaching experiments were performed with 80 wt.% H₂SO₄. 3.3.4 Effect of H₂SO₄/ore mass ratio

Figure 4(d) showed that the leaching efficiency increased considerably with increasing mass ratio of H_2SO_4 /ore, which reached a peak value of 97.9% at a ratio of 0.8. One reasonable explanation was that the concentrated H_2SO_4 released more heat to accelerate the decomposition of H_2SiF_6 to generate HF molecules, which is the main reaction component involved in the leaching. More importantly, the introduced H^+ converted insoluble fluorides like LiF ($K_{\rm sp}$ =1.84×10⁻³) into soluble sulfates like Li₂SO₄. Thus, the H_2SO_4 /ore mass ratio of 0.8 was considered as the optimal condition for further leaching experiments.

3.3.5 Effect of leaching temperature

Figure 4(e) indicated that the leaching temperature had a slight influence on the leaching of Li. The leaching efficiency increased from 97.2% to 99.1% with the temperature increasing from 40 to 80 °C. Thus, 80 °C was chosen for further leaching experiments, which was much lower than reported methods [8–12].

3.3.6 Effect of leaching time

The effect of leaching time using the tubular

reactor in Fig. 4(f) showed that the *L* reached 97.9% in 15 min, indicating a much shorter production cycle than reported methods. The traditional one usually consumed hours or even several days to achieve equivalent leaching efficiency [8–12,14]. This high efficiency could be owed to the negligible effect of back mixing using tubular reactor.

In summary, optimal conditions using the tubular reactor to enhance the leaching of Li from lepidolite are recommended as follows: ore/H₂SO₄/H₂SiF₆ mass ratio of 1:0.8:1.6, H₂SiF₆ concentration of 15 wt.%, H₂SO₄ concentration of 80 wt.% and leaching at 80 °C for 15 min.

3.4 Comparison among different reported acid methods

The sulfuric acid method has been considered as one of the most efficient processes to treat minerals. However, more efficient methods still need to be proposed due to the complex components and low Li₂O grade of lepidolite. Considering that 2–8 wt.% F in lepidolite and HF molecules can destroy silicate structure at much low temperature, and the fluorine additives were introduced to enhance the leaching of lithium from lepidolite recently. Comparison among reported acid methods is shown in Table 4.

The fine airtightness of the tubular reactor makes it more efficient to dissolve lepidolite. The efficient leaching of K, Al, Rb and Cs was also achieved as shown in Table 5, which was important for future utilization of lepidolite. The SEM images of the resulted residues in Fig. 5 showed that the crystal structure of lepidolite was destroyed. The results indicated that the introduction of F was a promising alternative process to accelerate the leaching of Li from lepidolite.

3.5 Heat treatment for fluorine removal

Based on the previous experiments, the leaching lithium from lepidolite was enhanced using H₂SO₄+H₂SiF₆ as lixiviant. However, the F remained in the acid leaching slurry should be removed for recycle use. Here, a two-step thermal process was proposed to remove fluorine of the resulted slurry.

3.5.1 First-step heat treatment of reaction slurry

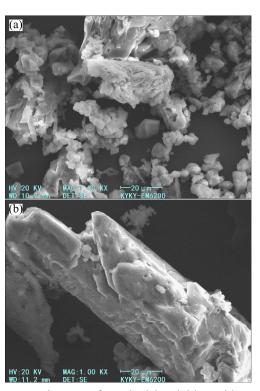

The first-step heat treatment was conducted at 250 $^{\circ}$ C for 1 h using a PTFE reactor to remove the unreacted H_2SiF_6 . The leaching solution and

Table 4 Comparison among reported acid methods to extract lithium from lepidolite

Method	Condition	Efficiency	
Sulfuric acid (H ₂ SO ₄)	Digested with concentrated H ₂ SO ₄ at ~300 °C, 4 h	> 90% of Li recovered [5]	
Hydrofluoric acid (HF)	123 °C, 7 vol.% HF, 120 min	92% of Li recovered as LiF [17]	
Hydrofluoric acid + sulfuric acid (HF+H ₂ SO ₄) using stirred tank reactor	85 °C, analytical pure HF, 3 h	98.6% of Li leached [14,15]	
Fluorosilicic acid + sulfuric acid (H ₂ SiF ₆ +H ₂ SO ₄) using stirred tank reactor	15 wt.% H ₂ SiF ₆ , 80 °C, 15 min	75.3% of Li leached	
Fluorosilicic acid + sulfuric acid (H ₂ SiF ₆ +H ₂ SO ₄) using tubular reactor	15 wt.% H ₂ SiF ₆ , 80 °C, 15 min	97.9% of Li leached	

Table 5 Leaching efficiency with $H_2SiF_6 + H_2SO_4$ using tubular reactor (%)

Li	K	Rb	Cs	Al
97.9	96.4	97.6	96.7	81.4

Fig. 5 SEM images of resulted insoluble residues after acid leaching using $H_2SO_4+H_2SiF_6$: (a) Generated insoluble substance; (b) Unreacted ore

corresponding insoluble residues were analyzed. The chemical analysis in Table 6 showed that there was still 4.72 wt.% fluorine in insoluble residues. Then, the second-step heat treatment was introduced for further fluorine removal of residues.

The XRD analysis (Fig. 6) indicated that the fluorine in residues mainly existed as Na₂SiF₆. Combined with elemental analysis in Table 6, the insoluble residues were mainly Na₂SiF₆ and SiO₂,

Table 6 Elemental analyses of insoluble residues after first-step heat treatment (wt.%)

Li	O	F	Na	K	S	Si	Al
0.079	45.53	4.72	0.96	0.52	7.32	31.23	4.12

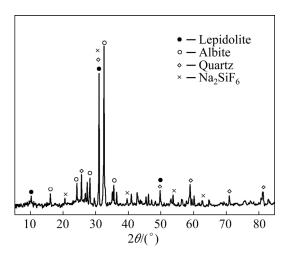


Fig. 6 XRD pattern of insoluble residue obtained after water leaching

which can be further utilized as white carbon black. Moreover, the quartz (SiO₂) and albite (NaAlSi₃O₈) were still present in insoluble residues, indicating that a selective leaching of Li was achieved under the optimal conditions.

3.5.2 Second-step heat treatment of insoluble residues

About 4.7 wt.% fluorine still remained in the insoluble residues. Then, the second-step heat treatment for 1 h was conducted for further fluorine removal. Effect of heating temperature on fluorine removal was investigated. Table 7 showed that the F content decreased with increasing temperature, which could be attributed to the decomposition of the generated fluorides like Na₂SiF₆. When the temperature above 400 °C, the F_u > 0 and F_r > 100%,

respectively, indicating that the fluorine in H_2SiF_6 was completely removed and even the fluorine in lepidolite was removed. When the heating temperature reached 500 °C, 68.7 wt.% of fluorine in the ore was removed.

Table 7 Effect of temperature of second-step heat treatment on F removal

Temperature/°C	Fluorine content/%	$F_{ m u}$ /% *	$F_{\rm r}$ /%
100	4.23	-41.0	96.1
200	4.06	-35.4	96.6
300	3.93	-31.0	97.1
400	2.75	8.3	100.8
500	0.94	68.7	106.5

^{*} Negative values mean that the fluorine removal of lepidolite is slower than that of residues, and positive values mean that the fluorine in lepidolite is even removed.

The second-step heat treatment at $500\,^{\circ}\text{C}$ resulted in an obvious decrease of the fluorine in residues from $4.72\,$ wt.% to $0.94\,$ wt.%, indicating that the fluorine in the insoluble residues or even in the lepidolite was removed, which was beneficial for downstream fluorine recovery or recycle use. Thus, an effective acid leaching of Li from lepidolite with fluorine additives was preliminarily set up using $H_2SO_4+H_2SiF_6$ as lixiviant.

4 Conclusions

- (1) About 97 wt.% Li and 90 wt.% of K, Rb and Cs were leached using H₂SO₄+H₂SiF₆ as lixiviant at 80 °C for 15 min. Selective leaching of Li was achieved due to the fact that the lepidolite showed dissolving priority over quartz and albite.
- (2) The fluosilicic acid (H₂SiF₆) was used to provide more controllable HF molecules by reacting with H₂SO₄ (80 wt.% in this study) since no obvious reaction occurred between lepidolite and H₂SiF₆.
- (3) The fluorine in insoluble residues, which mainly existed as Na₂SiF₆ was significantly decreased from 4.72 to 0.94 wt.% by stepwise heat treatment. The fluorine in lepidolite was also even removed. The tubular reactor can provide an alternative scheme to enhance the leaching of lithium from lepidolite.

Acknowledgments

The authors are grateful for the financial

supports from Natural Science Foundation of (No. 212300410278), Henan, China Key Research and Development Provincial (No. 212102310371), Program, China Postdoctoral Foundation, China (No. 202002020), and China Postdoctoral Science Foundation (No. 2020M682353). Mr. Devin PECK University of Louisiana at Lafayette, USA was gratefully acknowledged for comments language-editing of this work.

References

- [1] KESLER S E, GRUBER P W, MEDINA P A, KEOLEIAN G A, EVERSON M P, WALLINGTON T J. Global lithium resources: Relative importance of pegmatite, brine and other deposits [J]. Ore Geology Review, 2012, 48: 55–69.
- [2] FRIEDMAN-RUDOVSKY J. Dreams of a lithium empire [J]. Science, 2011, 334(6058): 896–897.
- [3] YANG Jian, JIANG Liang-xing, LIU Fang-yang, JIA Ming, LAI Yan-qing. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2256–2264.
- [4] LI Huan, EKSTEEN J, KUANG Ge. Recovery of lithium from mineral resources: State-of-the-art and perspectives—A review [J]. Hydrometallurgy, 2019, 189: 105129.
- [5] CHOUBEY P K, KIM M S, SRIVASTSVA R R, LEE J C, LEE J Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources [J]. Minerals Engineering, 2016, 89: 119–137.
- [6] KUANG Ge, LIU Yu, LI Huan, XING Sheng-zhou, LI Fu-jie, GUO Hui. Extraction of lithium from β-spodumene using sodium sulfate solution [J]. Hydrometallurgy, 2018, 177: 49–56.
- [7] BARBOSA L I, GONZALEZ J A, RUIZ M C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride [J]. Thermochimica Acta, 2015, 605: 63–67.
- [8] LIU Jin-lian, YIN Zhou-lan, LI Xin-hai, HU Qi-yang, LIU Wei. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 641–649.
- [9] VIECELI N, NOGUEIRA C A, PEREIRA M F C, DIAS A P S, DURAO F O. GUIMARAES C, MARGARIDO F. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate [J]. Minerals Engineering, 2017, 102: 1–14.
- [10] GUO Hui, KUANG Ge, YANG Jing-xi, HU Song. Fundamental research on a new process to remove Al³⁺ as potassium alum during lithium extraction from lepidolite [J]. Metallurgical and Materials Transactions B, 2016, 47(6): 3557–3564.
- [11] YAN Qun-xuan, LI Xin-hai, YIN Zhou-lan, WANG Zhi-xing,

- GUO Hua-jun, PENG Wen-jie, HU Qi-yang. A novel process for extracting lithium from lepidolite [J]. Hydrometallurgy, 2012, 121–124: 54–59.
- [12] LUONG V T, KANG D J, AN J W, DAO D A, KIN M J, TRAN T. Iron sulphate roasting for extraction of lithium from lepidolite [J]. Hydrometallurgy, 2014, 141(2): 8–16.
- [13] MARTIN G, SCHNEIDER A, VOIGT W, BERTAU M. Lithium extraction from the mineral zinnwaldite: Part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate [J]. Minerals Engineering, 2017, 110: 75–81.
- [14] GUO Hui, KUANG Ge, WAN Hao, YANG Yi, YU Hai-zhao, WANG Hai-dong. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method [J]. Hydrometallurgy, 2019, 183: 9–19.
- [15] WANG Hai-dong, ZHOU An-an, GUO Hui, LÜ Meng-hua, YU Hai-zhao. Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid [J]. Journal of Central South University, 2020, 27: 27–36.
- [16] GUO Hui, LV Meng-hua, KUANG Ge, CAO Yi-jun, WANG Hai-dong. Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H₂SO₄ as lixiviant [J]. Separation and Purification Technology, 2021, 259: 118194.
- [17] ROSALES G D, PINNA E G, SUAREZ D S, RODRIGUEZ M H. Recovery process of Li, Al and Si from lepidolite by leaching with HF [J]. Minerals, 2017, 7(3): 36.

- [18] LI Nian-yin, ZENG Fan-hua, LI Jun, ZHANG Qian, FENG Yan-lin, LIU Ping-li. Kinetic mechanics of the reactions between HCl/HF acid mixtures and sandstone minerals [J]. Journal of Natural Gas Science & Engineering, 2016, 34: 792–802.
- [19] KUANG Ge, CHEN Zhi-bin, GUO Hui, LI Ming-hao. Lithium extraction mechanism from α-spodumene by fluorine chemical method [J]. Advanced Materials Research, 2012, 524: 2011–2016.
- [20] GUO Hui, YU Hai-zhao, ZHOU An-an, LÜ Meng-hua, WANG Qiao, KUANG Ge, WANG Hai-dong. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H₂SO₄ as medium [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 407–415.
- [21] GUO Hui, KUANG Ge, WANG Hai-dong, YU Hai-zhao, ZHAO Xiao-kang. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid [J]. Minerals, 2017, 7(11): 205.
- [22] DREVETON A. Manufacture of aluminium fluoride of high density and anhydrous hydrofluoric acid from fluosilicic acid [J]. Procedia Engineering, 2012, 46: 255–265.
- [23] DREVETON A. Economic aspects of utilizing fluosilicic acid as raw material for the manufacture of hydrofluoric acid and aluminium fluoride [J]. Procedia Engineering, 2014, 83: 279–285.
- [24] DAHLKE T, RUFFINER O, CANT R. Production of HF from H₂SiF₆ [J]. Procedia Engineering, 2016, 138: 231–239.

锂云母连续管式反应器中混酸 H₂SO₄+H₂SiF₆体系强化溶出锂

郭 慧 1,2,3, 旷 戈 2, 李 欢 2,4, 裴文涛 2, 王海东 3

- 1. 郑州大学 化工学院, 郑州 450001;
- 2. 福州大学 石油化工学院 化学工程技术研究所,福州 350108;
 - 3. 中南大学 资源加工与生物工程学院,长沙 410083;
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering,
 Curtin University, Perth, WA 6102, Australia

摘 要:采用硫酸(H_2SO_4)和氟硅酸(H_2SiF_6)的混酸浸出剂强化锂云母中锂的浸出。氟硅酸(H_2SiF_6)作为氢氟酸的副产物,可以提供反应所需的氟化氢(HF)分子。而氟化氢是氟硅酸实际参与反应的主要成分,对锂的强化溶出具有关键作用。探究矿石/硫酸/氟硅酸质量比、硫酸和氟硅酸浓度、浸出温度(40~80 °C)、浸出时间(15~75 min)等因素对锂浸出的影响。采用连续管式反应器进一步强化酸浸体系。确定酸浸最优条件为:矿石/ H_2SO_4 / H_2SiF_6 质量比 1:0.8:1.6、 H_2SO_4 浓度 80%(质量分数)、 H_2SiF_6 浓度 15%(质量分数),97.9%的锂、96.4%的钾、97.6%的铷、96.7%的铯和 81.4%的铝(质量分数)在 80 °C 下仅需反应 15 min 即可得到有效浸出。此外,提出两步热处理工艺对反应浆料进行脱氟。研究结果表明,采用管式反应器加含氟混酸浸出剂($H_2SO_4+H_2SiF_6$)可实现锂云母的高效提锂。关键词:锂云母;提锂;连续管式反应器,氟硅酸;氟化学法