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Abstract: P2-type Nay;Fe;n,Mn;,0, was synthesized by a facile sol-gel method, and the effect of calcination
temperature on the structure, morphology and electrochemical performance of samples was investigated. The results
show that the sample obtained at 900 °C is pure P2-type Na,;sFe;,Mn;,0, phase with good crystallization, which
consists of hexagon plate-shaped particles with the size and thickness of 2—4 um and 200—400 nm, respectively. The
sample exhibits an initial specific discharge capacity of 243 mA-h/g at a current density of 26 mA/g with good cycling
stability. The high specific capacity indicates that P2-type Na,;Fe;,Mn;,,0; is a promising cathode material for sodium-
ion batteries.
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1 Introduction

Sodium-ion batteries (SIBs) are promising
alternatives to lithium ion batteries for large-scale
energy storage due to the abundant reserves and low
cost of sodium [1—4]. Many materials have been
reported as cathode materials for SIBs, such as
layered transition metal oxides, hexacyanoferrate
analogues and phosphate-based materials [5—8]. In
particular, layered transition metal oxides with
general composition of Na,MeO, (Me is transition
metal) have attracted considerable attention [9—12].
Sodium-based layered materials can be categorized
into two main groups according to Delmas’
classification: O3-type and P2-type, in which the
sodium ions are accommodated at the octahedral
and prismatic sites, respectively [13]. It has been
recognized that the P2-type materials are more
suitable as cathode for SIBs compared with O3-type
materials because of their large interlayer spacing

and high structural stability [14]. In these materials,
the layered P2-type Nay;Fe;»,Mn;,0, (hexagonal,
P6;/mmc) is regarded as one of the most promising
cathode candidates. Its high theoretical specific
capacity (260 mA-h/g) is of great potential for
large-scale storage of electrical energy. In
addition, all of the constituent elements (Na, Fe and
Mn) are abundantly available and environment-
friendly [15,16].

Layered P2-type NaysFe;,Mn;,0, as a
cathode material for SIBs was first reported
by YABUUCHI et al [17] with a specific
discharge capacity of 190 mA-h/g, which now
has been successfully prepared by solid state
reaction [16,18,19], co-precipitation [20], electro-
spinning [21,22], sol—gel method [23-27], etc.
However, the practical specific capacity, rate
capability and cycle stability of P2-type
Na,;sFe nMn;,0, are still unsatisfied, and most of
the reported reversible capacities are less than
210 mA-h/g. Thus, further studies are necessary to
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improve its electrochemical performances. In
this work, the hexagon plate-shaped P2-type
Na,;Fe ,Mn;,0, was synthesized, and its electro-
chemical performance was evaluated.

2 Experimental

2.1 Synthesis of P2-type Na2/3Fe1/2Mn1/202

All the reagents were of analytical grade and
used as received. The hexagon plate-shaped P2-type
Nay;sFe;nMn;,0, was synthesized by a facile
sol—gel method. In a typical process, stoichiometric
quantities of NaNO;, Fe(NOs3);-9H,0 and
Mn(CH;COOQO),; 4H,0 were dissolved in de-ionized
water. Then, a citric acid solution was added into
the obtained solution under continuous stirring with
the molar ratio of total metal ions to citric acid kept
as 1:1. The resulting solution was heated at 60 °C to
remove the excess water and then further dried at
80°C for 12h to obtain a gel precursor. The
precursor was ground finely and pre-calcined at
450 °C for 4 h in air, which was then calcined at
850, 900 and 950 °C for 10 h, respectively. After
cooling to room temperature, the sample was
collected immediately.

2.2 Characterization

The thermal decomposition process of the
precursor was investigated by thermogravimetry
(TG) and differential scanning calorimetry (DSC)
using a simultaneous TG—DSC thermal analyzer
(NETZSCH STA 449C) at a heating rate of
10 °C/min in air atmosphere. The X-ray power
diffraction (XRD, Rigaku D/max 2500 with Cu K,
radiation) and scanning electron microscopy (SEM,
SU 3500) were applied to characterizing the
structure and morphology of obtained products,
respectively.

2.3 Electrochemical measurements

The electrochemical properties of synthesized
P2-type Na,sFe;n,Mn;,0, were evaluated via
the coin cells (CR2025). Typically, P2-type
NaysFe1nMn;,0, active material, acetylene black
and polyvinylidene fluoride (PVDF) binder were
dispersed in  N-methyl-2-pyrrolidone (NMP)
solution in a mass ratio of 8:1:1 to make a slurry
which was then coated on an Al foil and vacuum
dried in an oven at 120 °C for 10 h to obtain the
cathode. The assembly was performed in a glove

box using metallic Na as the anode, glass fiber
(Whatman GF/D) as the separator and 1.0 mol/L
NaClO, dissolved in ethylene carbonate (EC)-
diethyl carbonate (DEC) (1:1 in volume) as the
electrolyte. Cyclic voltammetry (CV) measurement
was performed on a CHI660C electrochemical
workstation at a scan rate of 0.1 mV/s. The
galvanostatic charge—discharge characteristics of
the cells were recorded with a Land battery tester
(Land CT 2001A) and the specific capacity is based
on the mass of active material only.

3 Results and discussion

3.1 Structure and morphology characteristics
The TG and DSC measurements were carried
out to determine the thermal decomposition process
and calcination temperature of the precursor, and
the TG and DSC curves are shown in Fig. 1. On the
TG curve, the mass loss of 18% before 130 °C is
due to the removal of water molecule present in the
precursor. The decomposition process mainly
occurs in the temperature range of 130—450 °C.
The mass loss of about 52% in temperature
range of 130—450 °C is attributed to the complex
decomposition of nitrates, citrates and acetates [28],
and the DSC curve shows three distinguishable
exothermic peaks at 132, 269 and 401 °C,
respectively. There is no obvious mass loss at
temperature higher than 600 °C, indicating that the
decomposition of precursor is completed at 600 °C.
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Fig. 1 TG and DSC curves of precursor
The phase structures of samples obtained at

different temperatures were characterized by XRD.
Figure 2 shows the XRD patterns of samples
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synthesized at 850, 900 and 950 °C. It can be seen
that all peaks of samples exhibit the characteristic
diffraction peaks of P2-type Na,sFe;,Mn;,0,
without any miscellaneous phase, which are
indexed to the hexagonal lattice with space group
P63/mmc [17,23,24]. In addition, By increasing the
calcination temperature, the crystallinity of the
samples increases and the main diffraction peaks
become sharper.
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Fig. 2 XRD patterns of samples obtained at different
temperatures

Figure 3 presents the SEM images of samples
obtained at 850, 900 and 950 °C. It can be clearly
seen that the particle size becomes larger as the
calcination temperature increases. The sample
obtained at 850 °C is composed of nanoparticles
with a maldistribution of particle size, as shown
in Fig.3(a). With increasing the calcination
temperature, the samples have a more uniform
particle distribution and are composed of hexagon
plate-shaped particles, as shown in Figs. 3(b, ¢).
The size and thickness of sample calcined at 900 °C
are in the range of 2—4 um and 200—400 nm,
respectively, and the thickness increases to
400-800 nm when calcining at 950 °C. The
morphology of P2-type NaysFe;»Mn;,0, particles
synthesized at 900 °C is closely similar to its crystal
framework, indicating that the material is well
crystallized, and the structure is stable in the
charging and discharging process [16]. Moreover,
the plates with sub-micro size are beneficial to
shortening the ion diffusion distance and providing
large contact area for electrochemical reactions,
which can contribute to its good electrochemical
performance.

Fig. 3 SEM images of samples obtained at 850 °C (a),
900 °C (b) and 950 °C (c)

3.2 Electrochemical performance

The electrochemical performance of the
cathode materials was evaluated using 2025-type
coin cells. Figure 4 shows the CV curves of P2-type
N32/3F61/2Mn1/202 obtained at 900 °C in the Voltage
range of 1.5-4.2 V at a sweep rate of 0.1 mV/s.
The CV curves are characterized by two pairs of
redox current peaks. One at around 4.1/3.3V
corresponds to Fe*'/Fe*" redox reaction and the
other at 2.6/1.8 V is attributed to Mn*"/Mn*" redox
reaction [24,25,29]. There is a phase transition from
P2-type (P63/mmc) to OP4-type (P63) after charging
above 4.0V, with the reverse phase transition
from OP4-type to P2-type during the discharge
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Fig. 4 CV curves of sample obtained at 900 °C

process [25,29]. When the coin cell is discharged
below 2.0V, the P2-type hexagonal phase
transforms into a P2-type orthorhombic phase
with Cmcm space group [24,30]. This complex
phase/structure evolution can negatively affect the
rate capability and cycling stability [19,24].
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The first three charge-discharge curves of
samples tested at a current density of 26 mA/g
are shown in Figs. 5(a—c). On all curves, there are
two charge plateaus at around 2.6 and 4.1V, and
two distinct discharge plateaus at around 3.3 and
1.8V, which correspond well with the peak
positions shown on the CV curves (Fig.4). The
initial specific discharge capacities of P2-type
Na,;sFe;nMn;,0, obtained at 850, 900 and 950 °C
are 245, 243 and 155mA-h/g, respectively.
Figure 5(d) shows the cycling performance of
samples obtained at different temperatures. The
specific  discharge  capacities of  P2-type
Naz/3F€1/2Mn1/202 obtained at 850, 900 and 950 °C
decrease to 106, 140 and 86 mA-h/g after 50 cycles
with the capacity retention of 43%, 58% and 55%,
respectively. The sample obtained at 850 °C shows
the highest initial specific discharge capacity as it is
composed of nanoparticles with large surface area
and short diffusion distance of sodium ion, but its
capacity fades rapidly due to the poor crystallinity
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Fig. 5 First three charge—discharge curves of samples obtained at 850 °C (a), 900 °C (b) and 950 °C (c), and cycling

performance of samples (d)
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Fig. 6 Charge/discharge curves of samples obtained at 850 °C (a), 900 °C (b) and 950 °C (c) at various C-rates and rate

performance of samples (d)

and the agglomeration of the nanoparticles. With
increasing the temperature to 900 °C, the sample
has better crystallinity and more uniform size
distribution, resulting in better cycling performance.
When the temperature increases to 950 °C further,
the contact area between the active electrode
material and electrolyte decreases and the diffusion
distance of sodium ion increases as the average size
of particles increases, which results in lower
capacity. In addition, the P2-type Nay;Fe;,Mn;,,0,
reported in this work [16—26,29,31] shows the
highest initial specific discharge capacity up to now,
and the capacity fading is considerably smaller in
comparison with other studies [20,21,23,25,29].
This should be attributed to the fact that the
materials synthesized in this work are of hexagon
plate-shape with the particle size of sub-micron.
Figure 6 plots the charge/discharge curves
at various C-rates (1C=260 mA/g) and the rate
performance of samples obtained at different
temperatures. The capacities of all samples
gradually decay with increasing the current

densities. The sample obtained at 900 °C shows
the highest specific capacities at various C-rates,
which delivers the specific discharge capacities of
212, 162, 115 and 41 mA-h/g at 0.1C, 0.25C, 0.5C
and 1C, respectively. When it is reversed back to
0.1C after 20 cycles, the sample still delivers a
specific  discharge capacity of 195 mA-h/g,
indicating the good stability and structure
reversibility of sample. However, the high rate
performance of P2-type Nay;Fe;2Mn;,0, needs to
be improved in our further study.

4 Conclusions

(1) P2-type NaysFe;n,Mn;,0, is successfully
synthesized by a facile sol—gel method, and the
calcination temperature has a significant effect on
the morphology and electrochemical performance
of the samples.

(2) P2-type Na2/3Fel/2Mn1/202 obtained at
900 °C is composed of hexagon plate-shaped
particles with the size and thickness of 2—4 pm and
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200—400 nm, respectively. It shows a high initial
specific discharge capacity of 243 mA-h/g at a
current density of 26 mA/g with good cycling
stability.
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