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Abstract: There exist many problems in producing four-way valve of HPb59-1 alloy for an air-conditioner by traditional solid state hot
forging, i.e. larger forming loads, lower material utilization, larger subsequent machining allowance and nonuniform microstructure. For
this reason, based on the orthogonal test, the semisolid diecasting process of a certain type of four-way valve was simulated with
FLOW-3D. The simulation results show that the optimized process parameters are: the pouring temperature of 897.25 °C, the shot
velocity of 2.0 m/s and the preheated die temperature of 260 °C. The simulation results demonstrate that the cavity can be filled
smoothly and completely, the surface defects are small, the temperature field and the pressure field are uniform, and the casting quality is
satisfactory. The effectiveness and availability of applying this technology are well verified by the numerical simulation.
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1 Introduction

The four-way valve of HPb59-1 alloy for
air-conditioner is mainly processed by traditional solid
state hot forging. But it has many problems, such as
larger forming loads, lower material utilization, larger
subsequent machining allowance and nonuniform
microstructure, which hinders the application of the
valve. So the semisolid metal processing becomes the
most promising technology for metal forming in the 21th
century[1-2]. It excels at near-net shape and low cost of
energy and materials. The semisolid diecasting process
presents a good growth momentum[3], which comprises
the advantages of both traditional casting and forging
technologies. With the progress of the semisolid
diecasting process, its simulation technology which
analyzes the temperature and pressure field in the filling
process and then predicts the product defects is also paid
a lot of attention.

Both the semisolid metal research and its simulation
technology target at nonferrous metal, its alloy and steel.
ATKINSON[4] reviewed the rheology background,
mathematical theories of thixotropy and the simulation
technologies for semisolid metal processing. HIRT and
KOPP[5] summarized the latest research of semisolid
metal processing technology concerning the material

fundamentals, process technology, material and process
modeling for aluminium alloys and steel. Semisolid
forming of copper alloy mainly focuses on the
thixoforming of rotor by numerical simulation and
experiments[6]. The filling process of the key-shaped
component was simulated based on the apparent
viscosity model of semi-solid A356 aluminum alloy
slurry[7]. ZHANG et al[8] did numerical simulation of
thixomolding on the mobile phone housing in
magnesium alloy using the governing equations and
numerical models. Based on rigid visco-plastic
constitutive model of semi-solid AZ91D alloy at
different strain rates, the thixoforming process of
semi-solid AZ91D alloy was simulated using finite
element software DEFORM-3D™[9]. JIANG[10]
simulated the thixoforging process of magazine plates of
AZ91D magnesium alloy and achieved the effects of the
parameters on this process. At present, the simulation
research concerning semisolid metal forming is mainly
involved with aluminium alloys, magnesium alloys and
steel. The research with respect to semisolid copper
alloys is less presented.

In this work, the process of semisolid diecasting for
a certain type of four-way valve was simulated by
FLOW-3D based on the orthogonal test. The optimized
values of three chosen parameters, i.e. the pouring
temperature, the shot velocity and the preheated temperature
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of the die, were achieved. The excellent casting quality
was well demonstrated.

2 Governing equations and rheology model

2.1 Governing equations

The semi-solid slurry of HPb59-1 is regarded as a
homogeneous, continual, incompressible fluid. The
filling flow of semisolid slurry behaves as a continuum
and abides laws of mass, momentum and energy
conservation. The governing equations describing the
filling flow of semisolid slurry consist of continuity
equation, momentum equation, energy equation and fluid
volume equation.

1) The continuity equation is expressed as:
ou ov ow
ox oy oz
where u, v, and w are the velocity vector components
inx, y, and z direction, respectively.

2) The momentum equation is expressed as:
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where p is the fluid density; p is the pressure; u is the
apparent viscosity; G is the acceleration of gravity; and
V? is Laplacian operator.

3) The energy equation is expressed as:
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where T is the thermodynamic temperature; c is the
specific heat; and k is the thermal conductivity.
4) The fluid volume equation can be expressed as:
%+u%+v%+w%:0 4
ot OX oy oz

where VE is the fraction of opening volume in elements.

2.2 Rheology model

The semisolid materials take advantage of the
laminar flow of the materials into the die cavity[11-13].
The semisolid materials are non-Newtonian fluid, the

rheological behavior of which governs the way they flow.

Viscosity is the most important property that governs the
rheological behavior. Here the Carreau model is used to
describe the variation of the apparent viscosity, which
can be expressed as:

n=n,+@m—n,)1+(Ay)")""? (5)

where 77 is the apparent viscosity of the slurry; #, is the
zero shear viscosity; n, is the infinite shear
viscosity; 4 is a time constant, which reflects the
influence of time on viscosity; j/is the shear rate; and
n is the power law index.

3 Simulation

3.1 Model

The object of the research is an four-way valve of
HPb59-1 alloy whose three-dimensional solid model and
gating system are shown in Fig.l. Fig.2 shows the
generation mesh, which is divided into three blocks using
the multi-block technique. The total number of elements
is 1 845 208. The chemical composition of HPb59-1
alloy is shown in Table 1.

i -l

Fig.1 Solid model of four-way valve with gating system

Fig.2 Multi-blocks based on generated mesh

Table 1 Chemical composition of HPb59-1 alloy(mass fraction, %)
Cu Fe Pb Ni Zn Impurity

57.0-600 05 0.8-1.9 1.0 Bal. 1.0

3.2 Selection of simulation parameters

Here three important parameters such as pouring
temperature, shot velocity and preheated temperature of
the die which have significant influence on filling ability
of semisolid slurry and casting quality were chosen. In
order to seek the optimal process parameters, based on
the orthogonal test, simulations were carried out.

The three pouring temperatures were 895.60 °C
(f:=0.6), 897.25 °C(f;=0.5) and 898.60 °C(f;=0.4); the
three shot velocities were 1.2, 1.6 and 2.0 m/s, and their
corresponding ingate velocities were 11.76, 15.68 and
19.60 m/s, respectively[14-16]; the three preheated
temperatures of the die were 260, 280 and 300 °C. The
factor-level table for orthogonal test is summarized in
Table 2.



YAN Guan-hai, et al/Trans. Nonferrous Met. Soc. China 20(2010) s931-s936

Table 2 Factor-level table for orthogonal test

Level terﬁgtteJ :;rt]t? re/ ShOt(ﬁ Isc_)f)'ty/ t:r:wepheeritti?e
°C of die/°’C
1 895.60 1.2 260
2 897.25 16 280
3 898.60 2.0 300

4 Results and discussion

4.1 Results of temperature field

Fig.3 shows simulation results of temperature field
on the nine groups from which it can be gained that the
lowest temperature of the semisolid slurry occurs on the
farther surface of casting, the last filling areas, and the
outside of the ingate; while the highest temperature
exists in the center of the ingate.

According to the simulation results, the slurry
temperature varies with the process parameters. A great
variation happens when the pouring temperature is low,
the shot velocity is small, and the preheated temperature
of the die is low. Generally speaking, the slurry
temperature varies among 10 °C, and its values are
within the range from solidus temperature to liquidus
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temperature. The main reasons for phenomenon are as
follows: The filling process is a transient nonisothermal
process, and the filling time is 0.05 s, which leads to that
the heat transfer process between semisolid copper alloy
and die is inadequate. On the other hand, the smaller the
variation of the temperature field, the closer the
solidification rate of the slurry. This can avoid the
shrinkage and the hot deformation caused by different
cooling rates and big temperature difference. However,
the bigger the variation of the temperature field, the more
apparent the difference of the cooling rate with the
increase of the solidification time. Given the temperature
field, L3, L5, L6, L8, L9 should be considered in priority.

4.2 Results of pressure field

Fig.4 shows the results of pressure field for
four-way valve when the filling is complete. According
to the simulation results, pressure distribution changes in
the casting and its gating system. In the runner and
casting the pressure is higher, while it is lower at where
is filled in the end. The pressure distribution is uniform
in the casting under the nine groups of orthogonal
parameters. There seems no local concentration of high
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Fig.3 Results of temperature field on nine groups orthogonal parameters: (a) Group L1, time frame: 0.043 601; (b) Group L2, time
frame: 0.032 736; (c) Group L3, time frame: 0.026 193; (d) Group L4, time frame: 0.043 636; (e) Group L5, time frame: 0.032 724;
(f) Group L6, time frame: 0.026 277; (g) Group L7, time frame: 0.043 704; (h) Group L8, time frame: 0.032 769; (i) Group L9, time

frame: 0.026 091
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Fig.4 Results of pressure field on nine groups orthogonal parameters: (a) Group L1, time frame: 0.043 601; (b) Group L2, time frame:
0.032 736; (c) Group L3, time frame: 0.026 193; (d) Group L4, time frame: 0.043 636; (e) Group L5, time frame: 0.032 724; (f)
Group L6, time frame: 0.026 277; (g) Group L7, time frame: 0.043 704; (h) Group L8, time frame: 0.032 769; (i) Group L9, time

frame: 0.026 091

pressure in the whole pressure field. The faster the shot
velocity, the higher the pressure in the cavity. So
decreasing the shot velocity can relieve the pressure of
the cavity. From the pressure field aspect, the lower
pressure can result in the profile of the casting surface
rough, and even cannot make cavity filled up. However,
the higher pressure causes the big impact of the slurry on
the die and the turbulence in the filling process. Thus the
shot velocity should be chosen in a compromise. In this
work, the shot velocity is ideally 1.6 and 2.0 m/s.

4.3 Results of surface defect concentration

In order to better achieve the goal of optimizing
process parameters, Fig.5 shows the results of surface
defect concentration. From these results, the values of
surface defect concentration vary under the influence of
process parameters of nine groups. It can be seen from
the surface defect distribution that the die temperature
has little influence on the distribution. At the same
pouring temperature, a higher shot velocity brings about
lower surface defect concentration. At different pouring
temperatures, when the pouring temperature is high, the
shot velocity increases, and thus the surface defect

concentration gets its minimum. In addition, the order of
the macro area of surface defect from large to small in
the nine groups process parameters is: L7, L4, L5, L6,
L8, L9, L2, L3, L1. Considering the surface defect
concentration, L3, L5, L6, L8 should be prioritized.

4.4 Determining optimal process parameters

When selecting the optimal process parameters, the
factors, such as the temperature field, the pressure field
and the surface defect concentration, should be taken into
account. If the temperature field is uniform, the
solidification rates of the semisolid slurry in the cavity
are close. The shrinkage and the hot deformation can be
avoided. To prevent from the impact on the cavity caused
by the over pressure and the roughness of the surface
profile caused by the deficient pressure, the pressure
distribution should be uniform and its value should be
appropriate. The simulation results with low surface
defect concentration and small surface defect macro area
are preferred. Under higher pouring temperature, the
fluidity of the slurry and the casting quality are better,
but the gas and the oxidation in the slurry are increased,
the die life is decreased, and the soldering of the copper
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Fig.5 Results of surface defect concentrationon nine groups orthogonal parameters: (a) Group L1, time frame: 0.043 601; (b) Group
L2, time frame: 0.032 736; (c) Group L3, time frame: 0.026 193; (d) Group L4, time frame: 0.043 636; () Group L5, time frame:
0.032 724; (f) Group L6, time frame: 0.026 277; (g) Group L7, time frame: 0.043 704; (h) Group L8, time frame: 0.032 769; (i)

Group L9, time frame: 0.026 091

alloy is generated. Under lower pouring temperature, the
fluidity of the slurry and the casting quality are worse,
but the small shrinkage helps to avoid the shrinkage
cavity and bubble at the thicker part. This also helps to
decrease the die corrosion and increase the die life. In
addition, four-way valve of air-conditioner needs good
air tightness, so a lower pouring temperature should be
selected. The pouring temperature is selected as 897.25
°C. Under lower preheated temperature of the die, the
slurry is easily solidified in advance and the casting is

easily cracked. Under higher preheated temperature of
the die, the soldering will happen on the casting, the
shrinkage is generated on the thicker part, and the
microstructure is coarse. By conclusion, the optimized
process parameters are: pouring temperature 897.25 °C,
shot velocity 2.0 m/s, preheated temperature of the die
260 °C, which are helpful to decrease surface defects and
improve the distribution of temperature field and
pressure field. Fig.6 shows the filling processes and the
variation of the temperature field. The flow of semisolid
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slurry in filling process is the laminar flow. Moreover,
the cavity can be filled smoothly and completely.
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Fig.6 Filling process of semisolid diecasting: (a) Group L6, time
frame: 0.010 002; (b) Group L6, time frame: 0.015 001; (c)
Group L6, time frame: 0.019 999; (d) Group L6, time frame:
0.026 227

5 Conclusions

1) Three process parameters, i.e., pouring temperature,
shot velocity and preheated temperature of the die, are
selected. Based on orthogonal test, the semisolid
diecasting process of a certain type four-way valve is
simulated with FLOW-3D. The simulation results have
achieved for the temperature field, the pressure field, and
the surface defect concentration.

2) According to the simulation results, the optimized
process parameters are obtained as that the pouring
temperature is 897.25 °C, the shot velocity is 2.0 m/s, and
the preheated temperature of the die is 260 °C. Using these
parameters, the flow of semisolid slurry in filling process
is the laminar flow. The cavity can be filled smoothly and
completely, and the casting quality is excellent.
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