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Influence of magnetization effect on
aeronautical electromagnetic data in 3D time domain

LIU Hui"?, YUE Ming-xin"*>, YANG Xiao-dong"*, LI Yong"*

(1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
2. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources,
Institute of Geophysical and Geochemical Exploration,

Chinese Academy of Geological Science, Langfang 065000, China;

3. Mengcheng Geophysical Field Observation and Experiment Station, Mengcheng 233500, China))

Abstract: Magnetic anomalies have a significant impact on the time-domain airborne electromagnetic observation
data, while the work of 3D forward modeling of time domain airborne electromagnetic with conductivity and
permeability anomalies has not been reported. In this paper, the three-dimensional vector finite element numerical
simulation technology in the frequency domain considering the magnetization effect was developed. On this basis,
the three-dimensional airborne electromagnetic forward calculation in time domain considering both the
underground conductivity and the permeability anomaly was realized by using the time-frequency conversion. The
theoretical model verified the accuracy and stability of the algorithm. Further three-dimensional numerical
simulation results show that the magnetization anomaly significantly enhances the time-domain airborne
electromagnetic response strength, especially in the strong magnetic environment, the response value of
time-domain airborne electromagnetic is smaller in the good conductor than in the high resistance body. This new
phenomenon has an important impact on the interpretation and application of time-domain airborne
electromagnetic data in areas with potential abnormal permeability.

Key words: time-domain airborne electromagnetic method; permeability; vector finite element; numerical

simulation
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