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Table 1 Compositions of ingot alloys

WORRLFHEPEAR I B, 45 &3 50 (L b 3 T2,
FIANKA Aly(SeiZr) UK RL T, FERLEEA F, Xt
LA ST & S R MERE, BFFT Als(Sci—Zr) 4K
AL T X Al-Zn-Mg-Cu & & H M R . S id
PEREAORH R e EEH, BEAREIRSEE
SRR AR R PR (PP TV, MRS
FREF B B 4o R AN TR ) OUL2H 2 IE e AR A
T R T v i e T AR S PR AR A BRI S A

1 SEIg

SEIGJEMR AR 4Bk, 4lidE. Al-50%Cu.
Al-11%Mn. Al-2%Sc. Al-5%Ti 1 Al-5%Zr(J5i &4
BOHE A 4o NBEAT O LU 7T, B AR A AR N
K& EHE I Al-Zn-Mg-Cu &4 . RN, dT&Es
BN S EREERG, B 50858 W
UL wSSEAERE. W TR, B, K
WOCHN I A& &, (RS 2 1 2 DA 1
R T AT . B 92m IRk B8 o 15
THAC LL B T S8, 78 760~770 CHEATIE 1,
SR BRAYVEJSTE 720~730 C R HEEHFIA
KB, 19344 EE, ICP-OES Sl & 44
BEMI Rk 1 fR.

BEEELL 470 °C. 24 W 25140 )E, 7E 400 C TR
B4 h, )3T RS E, BRI R iR ) 1E
350~380 ‘C, HrIELL A 22, HIE/EEAEN 13 mm,
ZJaHEEMAE 470 'C RV 1 h JGKE, &IGTE
120 ‘C FIFRCALFE 12 hy 24 h A1 36 ho ZJEXTHFE
A ST S G b A7 1 5ot A SO 45 74
FAIE

W 1 PERE DR E MTS—858 ZU i {36 ML
kAT, Ry 2 mm/min, AR PATRE M
N3 A, WHEAFIE KRR 2 AR T R
GB/T 7998—2005 £l HB 5255—83 #4447, HU&#ukb
HURES N A& PAT THE 7 M B AT 5858, 6

Mass fraction/%

Alloy
Zn Mg Cu Mn Fe Si Ti Sc Zr Al
Sc-free 5.98 1.88 0.41 0.31 0.25 0.08 0.05 0 0 Bal.
Sc-enriched 5.88 1.90 0.45 0.32 0.19 0.09 0.04 0.10 0.09 Bal.
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A F A 0.1 mol/L HCL+0.5 mol/L NaCl, J&/hys
WA 50RO A 2 HoA 25 mL/em?, {HIE
((35+1) "C)/K¥# 24 ho #K#E GB/T 22639—2008 4T
FITE I hsLs, SRS A& AT ER
FH 7 A AR AT 5258, B A5 0.5 mol/L
KNO;5+4 mol/L NaCl+0.1 mol/L HNO;, pH=0.4, &
BRI SR R 2 LE A 18 mL/em?,
THIE((25+2) ‘C)/KIB 72 h.
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HLBE - 5E I HL A 300 kV; EBSD MZETE A

ZEISS EVO10-3412 kSR e e, Bl
A EBSD 83k, WEHEN 20 kV; HFRE
fH7E JEOL JXA-8230 L5E/, L&A ERE X Mk
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Fig. 1
element scanning distribution maps of
extruded Al-Zn-Mg-Cu alloy: (a) Back-
scattered electron image; (b) Mg; (c) Al;
(d) Mn; (e) Cu; () Zn; (g) Fe

EPMA microstructure and
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2 BEL Al-Zn-Mg-Cu-Sc-Zr &4
HL T IRE A U T R IR A
Fig. 2 EPMA microstructure and
element scanning distribution maps of
extruded Al-Zn-Mg-Cu-Sc-Zr alloy: (a)
Backscattered electron image; (b) Mg;
(¢) Sc; (d) ALy (e) Zn; (f) Cu; (g) Mn;
(h) Fe; (i) Zr

Al-Zn-Mg-Cu &4, Al-Zn-Mg-Cu-Sc-Zr &4&ikAF PR EE RS & 4 1 BUR AT S (EBSD) AL 7]
BN ESE, BoMABY, RILHAAE B SRR ZEMASME. ODF B, TEM g%
Aly(Sci-Zr)WCKRL T, YLHIAR T MRBTAMESAS AR AT BE S 3 Fon. B 3 vk, Bk
TSI T W) Als(SeiZr) KR 1 R 1k o A Al-Zn-Mg-Cu & & HEFM S RLE 3(), &
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Fig. 3 EBSD microstructure and TEM images of extruded alloys: (a) Orientation map of Al-Zn-Mg-Cu alloy; (b) Orientation
map of Al-Zn-Mg-Cu-Sc-Zr alloy; (c¢) Grain boundary angle distribution of Al-Zn-Mg-Cu alloy; (d) Grain boundary angle
distribution of Al-Zn-Mg-Cu-Sc-Zr alloy; (e) ODF of Al-Zn-Mg-Cu alloy; (f) ODF of Al-Zn-Mg-Cu-Sc-Zr alloy; (g) TEM
bright-field image of Al-Zn-Mg-Cu alloy; (h) TEM bright-field image of Al-Zn-Mg-Cu-Sc-Zr alloy; (i) SAD in [001]4,

projection of Al-Zn-Mg-Cu-Sc-Zr alloy
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Fig. 4
element scanning distribution maps of

EPMA microstructure and

solution treated Al-Zn-Mg-Cu alloy:
(a) Backscattered electron image;
(b) Mg; (c) AL; (d) Mn; (e) Cu; (f) Zn;
(g) Fe
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5 [E%A Al-Zn-Mg-Cu-Sc-Zr &
SR A T EEE AV b NTEEE i)
Fig. 5 EPMA microstructure and
element scanning distribution maps of
solution treated Al-Zn-Mg-Cu-Sc-Zr
alloy: (a) Backscattered electron image;
(b) Mg; () Sc; (d) AL; (e) Mn; (f) Cu;
(2) Zn; (h) Fe; (i) Zr
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6 [EVESNEGS TEM S

7/
7/

- Aly(Sc_,Zr,) particle
pins dislocation

Fig. 6 TEM microstructures of solution treated alloys: (a) Bright-field image of Al-Zn-Mg-Cu alloy; (b), (c) Bright-field
images of Al-Zn-Mg-Cu-Sc-Zr alloy; (d), (e) (100)isc, .z, superlattice centered dark field images of Al-Zn-Mg-Cu-Sc-Zr

alloy
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Fig. 7 EBSD microstructure of peak-aged alloys: (a) Orientation map of Al-Zn-Mg-Cu alloy; (b) Orientation map of
Al-Zn-Mg-Cu-Sc-Zr alloy; (c) Grain boundary angle distribution of Al-Zn-Mg-Cu alloy; (d) Grain boundary angle distribution
of Al-Zn-Mg-Cu-Sc-Zr alloy; (e) ODF of Al-Zn-Mg-Cu alloy; (f) ODF of Al-Zn-Mg-Cu-Sc-Zr alloy
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AAAAA

8 T6 &raif R A Aly(Sci_ Zr )R FIEA
Fig. 8 Morphologies of aging phase and Al;(Sc,-,Zr,) particles of T6 Al-Zn-Mg-Cu-Sc-Zr alloy: (a) Bright field image; (b)
SAD in [001]4 projection; (¢) (100)asc, zr,) supetlattice centered dark field image; (d) HRTEM image of Aly(Sc;-.Zr,)
particles with its fast Fourier transformation (FFTs) as inset; (¢) HRTEM image of interface between particle and matrix,

location approximately determined by superlattice contrast of L1, structured Al;(Sc,—Zr,) particles and denoted with white

dashed circles; (f) Inverse Fourier-fifiltered image of Fig. 8(e)

TEPL I LT, BENFRAS TR B 7E58 =M B,
T IS, AR, g5’ 9 gL 1]
B, ARBURES RN, AIE SRS Al-Zn-Mg-Cu
&4 i IRTEFE A(319+1) MPa 2 5 2(549+3) MPa,

Ui M (463+3) MPa $2= £1(594+4) MPa, it

I, AR AR IR (11.6£1.5)% i K F; A EE A
&4 i IR R FE M(141+2) MPa #2151 3(219+2) MPa,
Pihr 5 N (28042) MPa $215%1(377+3) MPa, Lt
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Fig. 9 Tensile curves of alloys under different treatment conditions at room temperature: (a) Al-Zn-Mg-Cu alloy;

(b) Al-Zn-Mg-Cu-Sc-Zr alloy

®2 AFERSERET G SR kR
Table 2 Mechanical properties of alloys under different treatment conditions
Material Condition Yield Strength/MPa Ultimate tensile strength/MPa Elongation/%
Extruded 319+1 463+3 19.2+£2.2
Solution treated 141+2 280+2 31.6+2.5
Sc-free alloy
T5 430+20 495+11 14.2+0.9
T6 462+2 510+3 15.5¢1.8
Extruded 54943 594+4 11.6£1.5
) Solution treated 21942 37743 12.4+1.8
Sc-enriched alloy
TS 568+2 604+2 8.7+0.1
T6 57443 608+2 10.1+1.1

% M(495+11) MPa #i2 /5 £1)(604+2) MPa, {H H AR 3
HREREAG, N (14.2+0.9)%FEK 3 #(8.7+0.1)%:
18 T6 2544 Jm IR T8 M(462+2) MPa $2 5 £ (574+3)
MPa, Hihi 58 I (510+3) MPa 2 5 5/(608+2) MPa,
bR, KRR ERE00.1£1.1) %M E K.

RBURES R INE ST RS . BVAES. TS fl T6 &
1) Al-Zn-Mg-Cu & 4 JiE IG5 FE 43 il 52 5 1 230 MPa
(72.1%). 78 MPa (55.3%). 138 MPa (32.1%)#1 112
MPa (24.2%), B, iR+ BAA B3 1l
MH . T6 AL TS A& HA W s AT K
KR, XFEERRN T6 BHE LT T FHEAAEE.
R T R e (0] 2 e ) 152 Ko S N BV E
%, AT AT E& =i s B o bk, [ A EE
IR AT BB o R v B R AR N 77, AT 32 e A
%,

A SCHG DA T6 A4 3% Aly(Sei— Zr) b1

SERALALE A, ) BH AR R0 & i P (1
454 TEM 1 EBSD RfdHZ g nr s, KEia 4
ST A & B A /AN R RS, BARETE 2 A
Aly(Sci— Zr) LRI AELE, Bk, XG4 5m R 4
1 2 BRI TR 5] R ) 41 5 A R0 A B AT HY
sfk, BT AW OISR 2R R SFATE 15 nm
FAr, M ik DL T L 3 .

1) 4H &AL

i b AL — R FH 42 ML 1Y) Hall-Petch A 303K

7Nt

-1/2

)

e d NERRST RNk NEEG o, NEERGE
.

o=0,+k

SHFASER A4S, HRSUMER NG R
SREEII NG Ao = k(dg)? —dg) )« FHr, &k HL0.04
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MPa'm'?, ¥ EBSD % it #4E (dse~1.2 pm,
dse-ree™167 pm), FCA (1) 5715, B Aly(Sci-Zr,)
R 512 148 d A (E 292 36 MPa.

2) Mk

XA Aly(SerZr) KT 51 N ELS T Hr H
SRR IR N

Aoy = KM(1-v)**(Gb/A)In(d, / b) (2)

A MOANRELS v G 95N LR
W b ARG EMMBgRE: K h—H 8, H
FANELRT Aly(Sci—Zr ) Ri T KN Je A4 L 5
ds AV A 43 R KT 1 B AR R AR BE . g kT
Aly(Sc-Zr) ER TR 711 5 -

d =nd, /4 3)

0.5
A=l 2m ) | 4)
2\3f 4
NTERAEESMmME, K=0.127, M=0.36,
v=0.331, G=27.8 GPa, b=0.286 nm, AR (2)75:

Aoy, =13209(b/ A)In(nd, /4b) (MPa) (5)

4B AL(SciZr) ki FHHLiE A1, S50
2 Aly(Sc i Zr)Ki T EHARZN dp=15 nm, $H 5%
218 1.08X10*/m’ s X FBHFEATT S, HIEHEL
N 80 nm, R E T AARLE 80N 1.91X107,
N5 Ao, =77 MPa.

®2 NG E SRR MIFS

Table 2 Exfoliation corrosion rating of aged alloys

MR YRR L0825 5, ARBURNES (198 0 m] 4 i) 3%
A Al-Zn-Mg-Cu &4 1) JE IR EEEHG N 112 MPa, H
PR TR AT SN, 1 Als(Sci—Zr) ki 75l E I HT 5
FEXGINME N 7TMPa, 20 Sh5m Ak 51 S 1) 58 FE 38 I e N
36 MPa, HLIRUREEHESEE A 113 MPa, &Sl 42
e 28 RN, ARBURESIRINGE S Al-Zn-Mg &4
R FE DL M s e .

2.5 A% Aly(Sei—Zr) R T 33 & ikt BE A 22 AL 6l

IR 2 IS RN I B 280 AT T4 R 5 )
IR BT 55 R 77 1w R A K T S0 9 e o o 55 4
K2 PR, HER 2 ATAL TEFAT THETT FFE &
b, PR RORE AT R AR R A A PR T
(LT PR 1 B0 IS R 2 N s R 5 ol 51 P (T £ )
TN RS 280 U B R0 AN Io B 280 e I e 3RV S
PhEEZLHH EC, EB Al EA #2154 EA, EA fl PC 4.
T E T BT MR S, AR SES T
Pl &30 A RTE R hEURYE, BN N X

B 10 FTom RN A0 DA 25O aok B 2850 4 i
R TS . I 10 w71, BRA S
AT ASFIREFE I A ek, HLIFP A &1 8] S
L e R 22 T o I AR FEE T3 I T 9k /0, 3K 156
Tob B 255 Ak B AT e A A s L O (R PR R s (I
A A NN, AR R AL, W ORI I 3R 4
) s 1A JE3 kR B H 341 pm. 29.1 um A1 25.5 pm 43
WIBEZE 27.7 um. 24.5 pm A1 17.4 pm, X3 AEST
I I0T DA S8R A 4 0 ot (B J e g

Alloy Heat treatment Relationship with extrusion direction Visual ratings
Parallel EC
Under aged .
Perpendicular N
Parallel EB
Sc-free Peak aged
Perpendicular N
Parallel EA
Over aged
Perpendicular N
Parallel EA
Under aged ]
Perpendicular N
) Parallel EA
Sc-enriched Peak aged ]
Perpendicular N
Parallel PC
Over aged

Perpendicular N
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FIVE B o — FRP R 2R i () ik, DAL, TARBIHT B AN R SR ST SR T IR T IR PR
FHRRL T R R PR R R i L], 2R SRS T SAETA R T XS AR E
HEARBIA TEH S B i 22 57 0 T Al-Zn-Mg-Cu - HUAZZE, DRI SR A0 D J i B AR 1T 5 it b T A
BEME, ANk, REAEARSEK AT R, A SBUR RN R L. BHE
Rimfe, FMHEFRE TS RS, NMSEE SRR TEM 332 E& 08 11 Jros. i tnr

B 10 IS i ) bR A T T 30

Fig. 10 Intergranular corrosion and its cross-sectional morphology of aged alloys: (a) Al-Zn-Mg-Cu, under aged; (a')
Al-Zn-Mg-Cu-Sc-Zr, under aged; (b) Al-Zn-Mg-Cu, peak aged; (b") Al-Zn-Mg-Cu-Sc-Zr, peak aged; (c) Al-Zn-Mg-Cu, over
aged; (c") Al-Zn-Mg-Cu-Sc-Zr, over aged

11 WA G4 TEM #1145

Fig. 11 Bright field images of aged alloys: (a) Al-Zn-Mg-Cu, under aged; (a') Al-Zn-Mg-Cu-Sc-Zr alloy, under aged,
(b) Al-Zn-Mg-Cu, peak aged; (b") Al-Zn-Mg-Cu-Sc-Zr, peak aged; (c) Al-Zn-Mg-Cu, over aged; (c¢') Al-Zn-Mg-Cu-Sc-Zr,
over aged
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PRI, AEAH [R5 R A e ) s AT H S X
5l ABARBT & < A ST BUR 1 X (PFZ(EUTTENT H
HNIZZ/ N T T4, MR PFZ AT LLEEAIR 8
5 AT A A A PR REZE S, AT SR R A
R A, IMHE S Al-Zn-Mg-Cu & & IR S
bR it TR B kR e

3 #ZEig

1) £ Al-5.70Zn-1.98Mg-0.41Cu & & 4
0.10% Sc Al 0.09% Zr, A EIhEI N =k IEH
Aly(Sci Zr)ki ¥, HiBER T HIA Aly(Sci—Zr) ok
KA, IR P RSN 15 nm, 52E445€
SILHs, MBREERCEEZN 1.16%, AIEHTEAS.
A TS A1 T6 35 Al-Zn-Mg-Cu &4 i IR 58 5 4 5l
FETF 230 MPa(72.1%)- 78 MPa(55.3%). 138 MPa
(32.1%) 11 112 MPa(24.2%), FLk&HRi 7otk RR B
EN

2) AEFEBLYE S HERMFM R, 535
NRAFEGS, GFEENSAEEE, SR, 6
W R s SRS RET & & b K AR T
AR, LR SIS, SR AR AR T
ML, FE R AL TR o

3) HIRTIAE R, B Al(SciZr)Ri T 5] L1
T HH 35 P B B A 77 MPa, i A 51 6 F 5 P 3
BBy 36 MPa, BRGREIR S{E )Y 113 MPa, 55
WME 112 MPa #3l, SEARL TR A0 WL LB 2 75
Hmih .

4) R 0.10% Sc(ii &7 ) rgiasm, (|
AR Aly(ScyZry) FEA& L F-T5 ] A 2 HAK G 4 1E
T ] 3740 s 2050 Ak L 3o R o K A R )
I, A o SRR BRI O R IR T A, AT AR
I 20 IS ORI IS R0 6~ AT T 55 R 77 [l B
IR EC. EB Al EA 2 HI#2 % % EA. EA
A PC g, FHAE = & R IR B 34.1 pm 29.1
um Fl 25.5 pm 43 3P % 27.7 pm. 24.5 pm F1 17.4
pmo

5) HuH% Aly(Sci— Zr) ki 7 & Al-Zn-Mg-Cu &
G 5 P RV e P R RO 2 S L@ PR AR A o R - s

A% Aly(Sci-Zr) A KRLT A B ) i Az g 1 AR
HOVESRAS A R B 5 i iAok B 25 fe A <
SREE, I Aly(SciZr)ki FAEBEM ] &L R 5
A AT ISR ELAE T, #] Al-Zn-Mg-Cu & & H 5
KA JBE i 5 A0 i B 0 ) T 2 T DT X R ) T
i TS s & e M R R RE . LR T A
] e o e T b B A PR AR S B SO
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Mechanisms of improving strength and
corrosion resistance of high-strength aluminum alloy bars by
coherent Al;(Sci-.Zr,) particles

HUANG Ji-wu"?, ZHU Xin-wen', LAI Yi', GUO Yi-fan', XU Guo-fu"?, ZHANG Guo', DENG Ying"?

(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education,
Central South University, Changsha 410083, China)

Abstract: In this paper, the effects of 0.10% Sc and 0.09% Zr (mass fraction) on microstructures and properties of
extruded Al-5.98Zn-1.88Mg-0.41Cu alloy bars during preparation were investigated by microalloying technique of
low-content Sc and Zr, mechanical and corrosion testing and microstructure characterization methods. The results
show that low-content Sc and Zr exist in the form of secondary coherent Al;(Sc,_,Zr,) particles, avoiding the
formation of primary Aly(Sc,_Zr,) particles. The average size of coherent particles is about 15 nm, and they keep
completely coherent relationship with matrix, with lattice misfit of about 1.16%. Those particles can improve the
yield strength of extruded, solution treated, T5 and T6 alloys by 230 MPa (72.1%), 78 MPa (55.3%), 138 MPa
(32.1%) and 112 MPa (24.2%), showing significantly strengthening effects. The theoretical calculation shows that
Orowan precipitate strengthening is the main mechanism of coherent Aly(Sc,_,Zr,) particles. In addition, although
the addition of Sc is very few, the formed coherent Al;(Sc,-,Zr,) particles still can effectively decrease the fraction
of high angle grain boundaries of aged alloy bars, and can inhibit the formation of solute-atomic-free regions
around grain boundaries, improving the EXCO rating from EC, EB and EA to EA, EA and PC, and decreasing the
intergranular corrosion depth from 34.1 pm, 29.1 um and 25.5 pm to 27.7 um, 24.5 pym and 17.4 pm in under aged,
peak aged and over aged Al-Zn-Mg-Cu bars parallel to the extrusion direction. This study provides a new way for
simultaneously improving the strength and corrosion performance of alloys, moreover, the microstructural
adaptation model for enhancing strength and corrosion resistance of Al-Zn-Mg-Cu alloy can provide scientific
theoretical support for the development of high strength and high corrosion resistance aluminum alloy .

Key words: aluminum alloys; strengthening mechanism; corrosion performance; coherent particles; microstructures
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