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Abstract: The rock indentation tests by a conical pick were conducted to investigate the rock cuttability correlated to 
confining stress conditions and rock strength. Based on the test results, the regression analyses, support vector machine 
(SVM) and generalized regression neural network (GRNN) were used to find the relationship among rock cuttability, 
uniaxial confining stress applied to rock, uniaxial compressive strength (UCS) and tensile strength of rock material. It 
was found that the regression and SVM-based models can accurately reflect the variation law of rock cuttability, which 
presented decreases followed by increases with the increase in uniaxial confining stress and the negative correlation to 
UCS and tensile strength of rock material. Based on prediction models for revealing the optimal stress condition and 
determining the cutting parameters, the axial boom roadheader with many conical picks mounted was satisfactorily 
utilized to perform rock cutting in hard phosphate rock around pillar. 
Key words: rock cuttability; rock indentation; prediction model; regression analysis; support vector machine; neural 
network 
                                                                                                             

 

 

1 Introduction 
 

Mechanized excavation is a widely used 
method in rock engineering, which can be as an 
alternative approach to drilling and blasting method, 
resulting from its numerous advantages: continuous 
and safe operation, high quality of construction and 
low excavation disturbance [1−3]. Rock cuttability 
is a comprehensive parameter reflecting the 
interaction between cutter and rock, which 
determines the feasibility of mechanized excavation. 
Rock cuttability is influenced by rock properties 
and stress conditions [4]. Mechanized excavation 
method has been widely used in soft and 
medium-hard rock, such as coal, bauxite and salt 
minerals, while it is unsuitable for extremely hard 

rock. The high stress and high temperature at 
interaction between rock and cutter will cause 
serious pick wear failures and high mining costs 
during hard rock cutting [5]. However, it is worth 
noting that deep mining of non-ferrous metals at 
depths greater than 1 km is often in hard rock  
mines [6]. Therefore, the application of mechanized 
excavation in hard rock is an urgent problem and 
should be addressed in deep mining. High stress is a 
prominent condition in hardrock around deep 
opening, which had been traditionally considered as 
a disaster factor to induce instability and dynamic 
failure of rock, such as rockburst, large deformation, 
slabbing and zonal disintegration [7−12]. 

Many previous efforts had been taken to study 
the rock cuttability. In experimental investigations, 
the multiform approaches had been undertaken,  
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which included full-scale and small-scale cutting 
experiments, linear and rotary cutting tests, single- 
and multi-cutter cutting tests, and so on. These 
experiments were taken to study the cutting force, 
cutting work, specific energy, fragment yield, shape 
and size of fragments, fractured surface roughness 
and wear of cutter under different conditions of 
rock properties and cutting operations [13−15]. In 
terms of theoretical models, some analytical and 
semi-empirical expressions have been proposed to 
determine the peak cutting force of conical    
cutter [16,17]. For numerical simulations, the finite 
element method (FEM), discrete element method 
(DEM) and coupled FEM−DEM method have been 
used to simulate the rock fragmentation by conical 
or point-attack cutters to trace the complex 
fracturing process and reduce the costs [18,19].   
In addition, artificial intelligence (AI)-based 
approaches, such as artificial neural network (ANN), 
adaptive neuro fuzzy inference system (ANFIS), 
fuzzy logic, particle swarm optimization (PSO) and 
support vector machine (SVM), have been used to 
estimate the parameters of tunnel boring machine 
(TBM) performances including advance rate (AR) 
and penetration rate (PR) [20−26]. The valuable 
studies mentioned above play a significant role in 
understanding rock cuttabilities and cutting 
performances under different rock properties and 
cutting parameters. However, the previous efforts 
did not consider the influence of confining stress 
condition that can be ignored in shallow 
excavations but is a common factor in deep mining 
and tunneling [27]. 

In this work, the rock indentation tests by a 
conical pick under different uniaxial confining 
stress conditions were conducted on the granite, 
marble, red sandstone and phosphate rocks by using 
the true-triaxial loading system. The peak 
indentation force, peak indentation depth, cutting 
work and specific energy of conical pick for rock 
breakage were used to determine the rock cuttability. 
Then, the two- and three-dimensional regression 
analyses and AI-based approaches including SVM 
and generalized regression neural network (GRNN) 
were used to establish the models of rock cuttability 
correlated with the confining stress conditions and 
rock strength properties. Finally, the transverse 
roadheader having many conical picks was utilized 
to perform field cutting in rock around pillar. 

 
2 Rock indentation experiments 
 
2.1 Experimental apparatus 

The rock indentation experiments were 
performed with TRW−3000 true triaxial electro- 
hydraulic servo test system shown in Fig. 1, which 
was designed and manufactured by Central South 
University, China. This system can perform rock 
loading tests under triaxial, biaxial, uniaxial stress 
conditions. The maximum static loads in the X-, Y- 
and Z-direction can reach 2000, 2000 and 3000 kN, 
respectively. 
 

 

Fig. 1 TRW−3000 true triaxial electro-hydraulic servo 

system for true triaxial loading test: (a) True triaxial 

loading system; (b) Loading frame of rock indentation by 

conical pick 

 

2.2 Rock specimens 
The granite, marble, red sandstone and 

phosphate rock specimens were selected in rock 
indentation experiments, which were all cubic rock 
specimens with size of 100 mm × 100 mm × 
100 mm. There were 35 groups of rock specimens, 
including 9 groups of granites, 9 groups of marbles, 
8 groups of red sandstones, and 9 groups of 
phosphate rocks. The uniaxial compressive strength 
(UCS) and tensile strength of rock materials are 
listed in Table 1. 
 
2.3 Experimental processes 

In order to simulate the rock breakage on pillar 
by conical picks mounted on the mining machine 
such as roadheader, the rock indentation tests were 
conducted on cubic rock specimens, which were 
subjected to uniaxial confining stress on a pair of 
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lateral end faces and broken by a conical pick, as 
shown in Fig. 2. The loading frame is shown in 
Fig. 2(b). Firstly, the uniaxial confining stress was 
applied to the left and right lateral end faces of  
rock specimen by Y-direction loading. Then, a 
concentrated force was applied to a conical pick by 
Z-direction loading until rock breakage. 

 

Table 1 Strengths of rock materials used in tests 

Rock  
type 

Uniaxial compressive 
strength, σc/MPa 

Tensile strength,
σt/MPa 

Granite 126.24 7.56 

Marble 129.22 6.18 

Red 
sandstone 

97.79 5.31 

Phosphate 
rock 

106.21 5.24 

 

In the rock indentation tests, the nine groups of 
granite rock specimens and the nine groups of 
marble rock specimen were tested under uniaxial 
confining stresses of 5, 10, 20, 40, 60, 80, 100, 
120 MPa and stress-free condition (0 MPa), 
respectively. The eight groups of red sandstone rock 
specimens were tested under uniaxial confining 
stress of 5, 10, 20, 40, 60, 80, 90 MPa and 
stress-free condition (0 MPa), respectively. The 
nine groups of phosphate rock specimens were 
tested under uniaxial confining stress of 5, 10, 20, 
40, 60, 80, 90, 100 MPa and stress-free condition 
(0 MPa), respectively. 

The indentation forces and depths of conical 
pick can be directly fed back to the computer 
through the load and displacement monitoring 
sensors during tests. The peak indentation force and  

depth at rock failure can be extracted from the 
real-time monitoring data of the indentation force 
and depth of conical pick. The cutting work can be 
calculated by Eq. (1). Meanwhile, the volume of 
rock fragments broken from rock specimen can be 
measured after the experiment, and then the specific 
energy can be calculated by Eq. (2). The rock 
cuttability can be reflected by peak indentation 
force, peak indentation depth, cutting work and 
specific energy for rock breakage, and the low 
values of these indices indicate the good rock 
cuttability. Among these parameters, the peak 
indentation force and specific energy are key 
factors to determine the cuttability of rock, which 
represent the load and energy required for cutting 
rock. 
 

c c c/1 2W F D                              (1) 
 

c c c/E W V                                (2) 
 
where Wc and Ec are the tested cutting work and 
specific energy for rock breakage, respectively; Fc 
and Dc are the peak indentation force and depth at 
rock failure measured in the rock indentation tests, 
respectively; Vc is the volume of fragments cut by 
the conical pick under different uniaxial confining 
stresses. 
 
2.4 Experimental results 

According to experimental results and the 
associated calculations, the results of peak 
indentation force, peak indentation depth, cutting 
work, specific energy of granite, marble, red 
sandstone, and phosphate rocks under different 
uniaxial confining stress conditions are given in 
Table 2. 

 

 

Fig. 2 Loading condition for simulating rock indentation on pillar by conical pick: (a) Schematic mining process for 

cutting pillar; (b) Simplified loading platform 
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Table 2 Experimental results of rock indentation tests 

Rock type 
Uniaxial confining  
pressure, σy/MPa 

Peak indentation
 force, Fc/kN 

Peak indentation
 depth, Dc/mm 

Cutting work, 
Wc/J 

Specific energy,
 Ec/(10−3Jꞏcm−3)

Granite 

120 114.27 3.74 213.68 213.68 

100 140.14 5.39 377.68 377.68 

80 148.95 9.10 677.72 5421.76 

60 162.33 12.19 989.40 7915.20 

40 206.28 12.27 1265.53 5062.12 

20 203.44 11.25 1144.35 3433.08 

10 76.45 5.34 204.12 510.30 

5 63.77 3.43 109.37 240.61 

0 50.03 2.69 67.29 134.58 

Marble 

120 100.07 5.17 258.68 258.68 

100 138.34 8.04 556.13 556.13 

80 160.83 12.08 971.41 7771.28 

60 188.90 12.83 1211.79 9694.32 

40 217.90 13.04 1420.71 4972.56 

20 183.26 12.07 1105.97 3317.94 

10 62.89 6.03 189.61 474.03 

5 43.42 5.61 121.79 267.94 

0 34.84 5.15 89.71 179.42 

Red 
sandstone 

90 25.13 3.24 40.71 40.71 

80 58.71 6.41 188.17 188.17 

60 78.93 7.32 288.88 2311.04 

40 112.15 9.45 529.91 2649.55 

20 103.62 8.64 447.64 1342.93 

10 42.33 5.17 109.42 273.55 

5 31.55 4.13 65.15 143.33 

0 16.24 3.04 24.68 49.36 

Phosphate rock 

100 23.15 3.61 41.79 41.79 

90 45.21 4.21 95.17 95.17 

80 68.74 6.55 225.12 1800.96 

60 100.92 8.64 435.97 3487.76 

40 142.17 11.23 798.28 2794.02 

20 113.62 9.31 528.90 1586.72 

10 32.33 4.12 66.60 166.50 

5 16.51 3.23 26.66 58.65 

0 5.26 3.01 7.92 15.84 

 

 
3 Regression analyses 
 

In order to find the relationships between rock 
cuttabilities and rock properties under different 
uniaxial confining stress, a series of regression 
models were established. 

3.1 Two-dimensional regression 
3.1.1 Granite rock specimens 

The four models were established and 
regressed by experimental results of granite rock 
specimens, as expressed in Table 3 to reflect the 
peak indentation force, peak indentation depth, 
cutting work and specific energy influenced by  
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Table 3 Regression models for different rocks  
Rock 

sample 
Regression model 

Granite 

y0.048062
c y63.36 (0.01007 e 1)F

     

y0.050662
c y2.485 (0.02124 e 1)D

     

y0.052922
c y7.219 (0.9478 e 1)W

     

y0.079984
c y15.09 (0.004216 e 1)E

     

Marble 

y0.044112
c y39.94 (0.01663 e 1)F

     

y0.046972
c y4.568 (0.008602 e 1)D

     

y0.047322
c y4.466 (1.357 e 1)W

     

y0.07474
c y0.9786 (0.05713 e 1)E

     

Red 

sandstone 

y0.061092
c y13.04 (0.05553 e 1)F

     

y0.060742
c y2.921 (0.01612 e 1)D

     

y0.062412
c y0.2808 (13.18 e 1)W

     

y0.10424
c y0.07381 (0.9544 e 1)E

     

Phosphate 

rock 

y0.055472
c y0.1086 (7.456 e 1)F

     

y0.056142
c y2.102 (0.02524 e 1)D

     

y0.059152
c y0.5119 (8.564 e 1)W

     

y0.090934
c y0.05091 (0.9784 e 1)E

     

 
uniaxial confining stress. The regressive curves are 
plotted in Figs. 3−6. By analyzing the experimental 
and regressive results of granite rock specimens and 
the failure patterns, the variation trend of peak 
indentation force, peak indentation depth and 
cutting work can be divided into three zones. In 
Zone 1 with uniaxial confining stress varying from 
0 to 40 MPa (near 30% of UCS of granite material), 
there was a positive correlation in which the peak 
indentation force, peak indentation depth and 
cutting work increased with the increase in uniaxial 
confining stress, and the failure pattern was 
complete splitting. In Zone 2 with the uniaxial 
confining stress varying from 40 to 100 MPa (near 
80% of UCS of granite material), there was a 
negative correlation in which the peak indentation 
force, peak indentation depth and cutting work 
decreased with the increase in the uniaxial 
confining stress, and the failure pattern of rock was 
partial splitting. In Zone 3 with uniaxial confining 
stress exceeding 100 MPa, the peak indentation 
force, peak indentation depth and cutting work 
continued to decrease, and the rockburst occurred 

 

 
Fig. 3 Regressed curves of peak indentation forces for 

four types of rock specimens 

 

 
Fig. 4 Regressed curves of peak indentation depths for 

four types of rock specimens 
 

 
Fig. 5 Regressed curves of cutting work for four types of 

rock specimens 
 
(In experiment, the failure of rock specimen occurs 
with a large number of rock fragments ejected at 
high speed, which is called as experimental 
rockburst). 
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Fig. 6 Regressed curves of specific energy for four types 

of rock specimens 

 
According to the changing trend of specific 

energy, there was also three zones. In Zone 1 with 
uniaxial confining stress increasing from 0 to 
60 MPa (near 50% of UCS of granite material), the 
specific energy increased with the increase in 
uniaxial confining stress. In Zone 2 with uniaxial 
confining stress increasing from 60 to 100 MPa 
(near 80% of UCS of granite material), the specific 
energy decreased with the increase in uniaxial 
confining stress. In Zone 3 with uniaxial confining 
stress increasing beyond 100 MPa, the specific 
energy decreased to the very low values with the 
rockburst occurring. 

The detailed failure modes of rocks had been 
shown in our previous work [4]. 
3.1.2 Marble rock specimens 

The variation curves of peak indentation force, 
peak indentation depth, cutting work and specific 
energy of conical pick for breakage of marble rock 
specimens were also regressed by experimental 
values, as given in Table 3 and shown in Figs. 3−6. 
There were three zones reflecting the variation 
characteristic. In Zone 1 with uniaxial confining 
stress in the range of 0−40 MPa (near 30% of UCS 
of marble material), the peak indentation force, 
peak indentation depth and cutting work increased 
with the increase in uniaxial confining stress, and 
the failure pattern is complete splitting. In Zone 2 
with uniaxial confining stress changing in the range 
of 40−100 MPa (near 80% of UCS of marble 
material), the peak indentation force, peak 
indentation depth and cutting work decreased with 
the increase in uniaxial confining stress, and the 
failure pattern was partial splitting. In Zone 3 with 

uniaxial confining stress exceeding 100 MPa, the 
peak indentation force, peak indentation depth and 
cutting work continued to decrease into the very 
low values, and the failure pattern was rockburst. 
The specific energy increased first and then 
decreased with the uniaxial confining stress 
increasing in the range of 0−60 MPa (near 50% of 
UCS of marble material) and 60−100 MPa, 
respectively. In addition, the specific energy 
continued to decrease and had a very low value 
when the uniaxial confining stress exceeded 
100 MPa. 
3.1.3 Red sandstone rock specimens 

The peak indentation force, peak indentation 
depth, cutting work and specific energy of conical 
pick for breakages of red sandstone rock specimens 
influenced by uniaxial confining stresses are shown 
in Table 3 and Figs. 3−6. Similar to the granite and 
marble, the peak indentation force, peak indentation 
depth and cutting work increased first and then 
decreased with the increase in uniaxial confining 
stress in the range of 0−40 MPa (near 40% of  
UCS of red sandstone material) and 40−80 MPa 
(near 80% of UCS of red sandstone material), 
respectively, and the failure patterns changed from 
complete splitting to partial splitting. The peak 
indentation force, peak indentation depth and 
cutting work continued to decrease with the 
increase of uniaxial confining stress exceeding 
80 MPa, and the failure pattern was rockburst. The 
specific energy increased first and then decreased 
with the uniaxial confining stress increasing in the 
range of 0−40 MPa and 40−80 MPa, respectively. 
In addition, the specific energy continued to 
decrease and had a very low value when the 
uniaxial confining stress exceeded 80 MPa with 
rockburst occurring. 
3.1.4 Phosphate rock specimens 

The peak indentation force, peak indentation 
depth, cutting work and specific energy of conical 
pick for breakages of phosphate rock specimens 
influenced by uniaxial confining stresses are shown 
in Table 3 and Figs. 3−6. Similar to the granite, 
marble and red sandstone, the peak indentation 
force, peak indentation depth and cutting work 
presented increase followed by decrease with the 
increase in uniaxial confining stress in the ranges of 
0−40 MPa (near 40% of UCS of phosphate  
material) and 40−90 MPa (near 80% of UCS of 
phosphate material), respectively, and the failure 
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patterns changed from complete splitting to partial 
splitting. The peak indentation force, peak 
indentation depth and cutting work continued to 
decrease with the increase of uniaxial confining 
stress exceeding 90 MPa, and the rockburst 
occurred under this high uniaxial confining stress. 
The specific energy also presented increase 
followed by decrease with the uniaxial confining 
stress increasing in the ranges of 0−60 MPa (near 
55% of UCS of phosphate rock) and 60−90 MPa, 
respectively. In addition, the specific energy 
continued to decrease and had a very low value 
when the uniaxial confining stress exceeded 
90 MPa, in which the rockburst occurred. 
3.1.5 Evaluation of regression models 

In order to evaluate the reliabilities of 
regression models, we evaluated each model using 
the root-mean-squared error (RMSE) and 
determination coefficient (R2) expressed as Eq. (3) 
and Eq. (4), respectively. The corresponding RMSE 
and R2 values were obtained by calculation, as 
listed in Table 4. 
 

2
t( ) p( )

1

1
RMSE ( )

n

i i
i

y y
n 

                 (3) 

 

2 2 2
p( ) t t( ) t

1 1

( ) / ( )
n n

i i
i i

R y y y y
 

               (4) 

 
where yt(i) is the experimental value, yp(i) is the 
regression value, ty  is the mean of all 
experimental values, and n is the number of values. 
 

3.2 Three-dimensional regression 
In order to characterize the influence of rock 

properties and uniaxial confining stress conditions 
on the rock cuttabilities reflected by peak 
indentation force, peak indentation depth, cutting 
work and specific energy, three-dimensional 
regression analyses were taken by the experimental 
data obtained from rock indentation tests. The UCS  

and tensile strength of rock material were used to 
determine rock properties. 
3.2.1 Peak indentation forces 

The USC values of granite, marble, red 
sandstone and phosphate rock materials were taken 
as the X-axis, the different uniaxial confining 
stresses applied to rock specimens were taken as the 
Y-axis, and the peak pick forces applied to conical 
pick for rock breakages were taken as the Z-axis. 
The curved surface was obtained by three- 
dimensional regression to express the relationship 
among peak indentation force, UCS of rock 
materials and uniaxial confining stress, and the 
expression and illustration are shown in Eq. (5) and 
Fig. 7, respectively. The product of UCS and tensile 
strength was taken as the X-axis, but keep the 
Y-axis and Z-axis parameters unchanged. Another 
curved surface was achieved, as shown in Eq. (6) 
and Fig. 8. 
 

0.4
y1.7715 2.2 3

c c y5.904 (2.854 10 e 1)F          (5) 
 

0.4
y1.7588 2.2 2.2 3

c c t y28.51 (7.137 10 e 1)F         (6) 
 
3.2.2 Peak indentation depth 

Similar to the regression analyses of peak 
indentation force, the curved surfaces of peak 
indentation depths correlated to UCS, tensile 
strength of rock material and uniaxial confining 
stress were regressed by experimental data. The 
regressed expressions are given in Eqs. (7) and (8), 
and the curved surfaces are shown in Figs. 9 and  
10, respectively. 
 

0.5
y1.0096 2 3

c c y2.538 (2.473 10 e 1)D           (7) 
 

0.7
y0.3416 3

c c t y3.341 (5.242 10 e 1)D          (8) 

 
3.2.3 Cutting work 

Similarly, the curved surfaces of cutting work 

influenced by UCS, tensile strength of rock material 
 
Table 4 RMSE and R2 values of two-dimensional fitting models for different rock types 

Rock type 
Peak indentation force  Peak indentation depth Cutting work  Specific energy 

RMSE/kN R2  RMSE/mm R2 RMSE/J R2  RMSE/(10−3Jꞏcm−3) R2

Granite 28.390 0.8183  0.8683 0.9635 106.70 0.9484  1324 0.849

Marble 20.580 0.9310  1.2430 0.9077 104.00 0.9604  1887 0.800

Red sandstone 9.216 0.9539  0.8069 0.9212 53.13 0.9347  379.9 0.9117

Phosphate rock 7.235 0.9775  0.7041 0.9602 97.64 0.8928  581.1 0.8609
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Fig. 7 Regressed curved surface of peak indentation force correlated to UCS of rock material and uniaxial confining 
stress: (a) Three-dimensional view of curved surface; (b) View of curved surface from X-axis 
 

 
Fig. 8 Regressed curved surface of peak indentation force correlated with uniaxial confining stress and product of UCS 
and tensile strength: (a) Three-dimensional view of regressed curved surface; (b) View of regressed curved surface from 
X-axis 
 

 

Fig. 9 Regressed curved surface of peak indentation depth correlated to UCS of rock material and uniaxial confining 
stress: (a) Three-dimensional view of curved surface; (b) View of curved surface from X-axis 
 

and uniaxial confining stress were obtained from 
regression analysis. The expressions are given in 
Eqs. (9) and (10), and the illustrations are shown in 
Figs. 11 and 12, respectively. 
 

0.7
y0.35264 2.3 3

c c y0.08793 (3.564 10 e 1)W       (9) 

0.6
y0.59074 1.6 1.6 3

c c t y0.4152 (2.153 10 e 1)W         

(10) 
3.2.4 Specific energy 

Similar to the three-dimensional regression 
analyses mentioned above, the curved surfaces of  
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Fig. 10 Regressed curved surface of peak indentation depth correlated with uniaxial confining stress and product of 

UCS and tensile strength: (a) Three-dimensional view of regressed curved surface; (b) View of regressed curved surface 

from X-axis 
 

 

Fig. 11 Regressed curved surface of cutting work correlated to UCS of rock material and uniaxial confining stress:    

(a) Three-dimensional view of curved surface; (b) View of curved surface from X-axis 
 

 

Fig. 12 Regressed curve surface of cutting work correlated to uniaxial confining stress applied to rock specimen and 

product of UCS and tensile strength of rock material: (a) Three-dimensional view of regressed curve surface; (b) View 

of regressed curve surface from X-axis 
 
specific energy are expressed in Eqs. (11)      
and (12). The illustrations are shown in Figs. 13  
and 14.  

1.1
y0.0959814 2.7 9

c c y0.9365 (1.062 10 e 1)E        

(11) 

y0.096259 1.6 1.6 5
c c t y55.67 (1.041 10 e 1)E

        (12) 

3.2.5 Evaluation of models 
Similar to the evaluation of two-dimensional 

regression model, RMSE and R2 of three- 
dimensional model were obtained, as given in Table 5. 
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Fig. 13 Regressed curved surface of specific energy correlated to UCS of rock material and uniaxial confining stress:  

(a) Three-dimensional view of curved surface; (b) View of curved surface from X-axis 

 

 

Fig. 14 Regressed curved surface of specific energy correlated to uniaxial confining stress applied to rock specimen and 

product of UCS and tensile strength of rock material: (a) Three-dimensional view of regressed curved surface; (b) View 

of regressed curved surface from X-axis 

 
Table 5 RMSE and R2 values of three-dimensional regression models 

Regression type 

Peak indentation
 force 

Peak indentation 
depth 

Cutting work  Specific energy 

RMSE/kN R2 RMSE/mm R2 RMSE/J R2  RMSE/(10−3Jꞏcm−3) R2 

UCS of rock material as X-axis 23.95 0.8473 1.19 0.8725 144.88 0.8803  1231.37 0.7691

Product of UCS and tensile 
 strength of rock material as X-axis 

26.96 0.8065 1.34 0.8388 158.27 0.8572  1281.72 0.7493

 

 
4 Prediction of rock cuttability using 

SVM and GRNN 
 

The artificial intelligence technology has also 
been applied to the experiment. We adopt the 
support vector machine (SVM) and generalized 
neural network (GRNN) to predict the peak 
indentation force, peak indentation depth, cutting 
work and specific energy of rock breakage. The 
input parameters are composed of three parts, 

namely UCS of rock material, tensile strength of 
rock material and uniaxial confining stress. 
 
4.1 Prediction of rock cuttability using SVM 
4.1.1 SVM method and establishment 

SVM is a typical machine learning method 
based on statistical theory [28]. The general 
structure diagram of SVM is shown in Fig. 15. In 
this work, SVM was used to predict and analyze the 
rock cuttability reflected by peak indentation force, 
peak indentation depth, cutting work and specific  
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Fig. 15 General structure of SVM (X(i) is input support 

vector, K(X, Xn) is kernel function, b is bias, and Y is 

output) 

 
energy of conical pick for rock breakage. 
4.1.2 Peak indentation force 

In order to make the prediction results more 
universal and effective, the uniaxial confining 
stresses of 60, 40, 20 and 10 MPa were selected 
from granite, marble, red sandstone and phosphate 
rock as the test set, and the remaining 31 sets of 
data were taken as the training set. Normalization 
processing was adopted, and data were mapped to 
interval [0,1] with “mapminmax” function. 

In order to verify the prediction accuracy of 
the established model, 31 groups of predicted 
results were compared with the experimental data 
by using the root-mean-squared error (RMSE) and 
determination coefficient (R2). The illustrations of 
predicted and experimental results are shown in 
Fig. 16(a), and the corresponding RMSE and R2 
values are listed in Table 6. 

By calculation using the trained SVM model, 
the predicted values of peak indentation forces were 
153.7094, 203.3377, 99.2792 and 50.7648 kN, 
respectively. Compared with original experimental 
data, the prediction accuracies were 94.70%, 
93.32%, 95.81% and 42.98%, respectively. The 
comparisons between predicted and experimental 
values for four groups of test data are shown in 
Fig. 17(a) and listed in Table 7. 
 

Table 6 RMSE and R2 values of SVM prediction models 

Index 
Peak 

indentation 
force/kN 

Peak 
indentation 
depth/mm

Cutting 
work/J 

Specific 
energy/ 

(10−3Jꞏcm−3)

RMSE 16.4127 0.8919 16.1475 6.6888 

R2 0.7529 0.8275 0.9919 0.9990 

Table 7 Comparisons between predicted results and 

experimental results for four groups of test data using 

SVM prediction 

Cutting performance
Tested 
value 

Predicted 
value 

Accuracy/
% 

Peak indentation force, 
Fc/kN 

162.33 153.7094 94.70 

217.90 203.3377 93.32 

103.62 99.2792 95.81 

32.33 50.7648 42.98 

Peak indentation depth, 
Dc/mm 

12.19 13.6944 87.66 

13.04 11.3134 86.76 

8.64 9.6448 88.37 

4.12 4.3564 94.26 

Cutting work, Wc/J 

989.40 989.6682 99.97 

1420.71 1421.0098 99.98 

447.64 447.4315 99.95 

66.60 77.3540 83.85 

Specific energy, 
Ec/(10−3Jꞏcm−3) 

7915.20 7914.1198 99.99 

4972.56 4972.9859 99.99 

1342.93 1343.4571 99.96 

166.50 162.2709 97.46 

 
4.1.3 Peak indentation depth 

The comparison results of predicted results 
and experimental data for 31 groups of training data 
are shown in Fig. 16(b), and the corresponding 
RMSE and R2 values are listed in Table 6. By 
predication of the trained SVM model, the 
predicted values of peak indentation depth were 
13.6944, 11.3134, 9.6448 and 4.3564 mm, 
respectively. Compared with original experimental 
data, the prediction accuracies were 87.66%, 
86.76%, 88.37% and 94.26%, respectively. The 
comparisons between predicted and experimental 
values for four groups of test data are shown in 
Fig. 17(b) and listed in Table 7. 
4.1.4 Cutting work 

The comparison results of predicted results 
and experimental data for 31 groups of training data 
are shown in Fig. 16(c), and the corresponding 
RMSE and R2 values are listed in Table 6. By using 
the trained SVM model, the predicted values of 
cutting work were 989.6682, 1421.0098, 447.4315 
and 77.3540 J, respectively. Compared with the 
original experimental data, the prediction accuracies 
were 99.97%, 99.98%, 99.95% and 83.85%, 
respectively. The comparisons between predicted 
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Fig. 16 Comparisons of predicted and experimental results for 31 groups of training data in SVM model: (a) Peak 

indentation force; (b) Peak indentation depth; (c) Cutting work; (d) Specific energy  
 

 

Fig. 17 Comparisons between predicted results using SVM and experimental results for four groups of test data 
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and experimental values for four groups of test data 
are shown in Fig. 17(c) and listed in Table 7. 
4.1.5 Specific energy 

The compared results of predicted results and 
experimental data for 31 groups of training data are 
shown in Fig. 16(d), and the corresponding RMSE 
and R2 values are listed in Table 6. By using the 
trained SVM model, the predicted values of specific 
energy were 7914.1198, 4972.9859, 1343.4571  
and 162.2709 J/cm3, respectively. Compared with 
the original experimental data, the prediction 
accuracies were 99.99%, 99.99%, 99.96% and 
97.46%, respectively. The comparisons between 
predicted and experimental values for four groups 
of test data are shown in Fig. 17(d) and listed in 
Table 7. 
 
4.2 Prediction using GRNN 
4.2.1 GRNN method and establishment 

Generalized regression neural network (GRNN) 
is a kind of radial basis neural network [29]. The 
general GRNN model is shown in Fig. 18. The 
selections of training and test set of GRNN model 
were similar to the SVM model. 
 

 

Fig. 18 General structure of GRNN model 

 
4.2.2 Peak indentation force 

After training, 31 groups of predicted results 
were compared with the experimental data. The 
illustration of predicted and experimental results is 
shown in Fig. 19(a), and the corresponding RMSE 
and R2 values are listed in Table 8. By using the 
trained GRNN model, the predicted values of peak 
indentation force under the uniaxial confining 
stresses of 60 (granite), 40 (marble), 20 (red 
sandstone) and 10 MPa (phosphate rock) were 
177.6150, 185.8675, 105.6953 and 36.2473 kN, 

respectively, and the corresponding prediction 
accuracies were 90.58%, 85.30%, 98.00% and 
87.88%, respectively. The comparisons between the 
predicted and experimental values for four groups 
of test data are shown in Fig. 20(a) and listed in 
Table 9. 
4.2.3 Peak indentation depth 

The comparison results of predicted results 
and experimental data for 31 groups of training data 
are shown in Fig. 19(b), and the corresponding 
RMSE and R2 values are listed in Table 8. The 
predicted values of peak indentation depth 
corresponding to four groups of test data were 
10.6850, 12.4460, 9.0069 and 4.47 mm, 
respectively. Compared with the original 
experimental data, the prediction accuracies were 
87.65%, 95.44%, 95.75% and 91.50%, respectively. 
The comparisons between predicted and 
experimental values for four groups of test data are 
shown in Fig. 20(b) and listed in Table 9. 
4.2.4 Cutting work 

The comparison results of predicted results 
and experimental data for 31 groups of training data 
are shown in Fig. 19(c), and the corresponding 
RMSE and R2 values are listed in Table 8. The 
predicted values of cutting works corresponding  
to four groups of tests data were 971.6250, 
1158.8800, 528.3222 and 68.2585 J, respectively. 
Compared with the original experimental data, the 
prediction accuracies were 98.20%, 81.57%, 
81.98% and 97.51%, respectively. The comparisons 
between predicted and experimental values for four 
groups of test data are shown in Fig. 20(c) and 
listed in Table 9. 
4.2.5 Specific energy 

The comparison results of predicted results 
after the training of GRNN model and experimental 
data for 31 groups of training data are shown in 
Fig. 19(d), and the corresponding RMSE and R2 
values are listed in Table 8. The predicted values of 
specific energy corresponding to four groups of test 
data were 6502.8115, 4014.3037, 1029.2626, 
109.3745 J/cm3, respectively. Compared with    
the original experimental data, the prediction 
accuracies were 82.16%, 80.73%, 76.64%,   
65.69%, respectively. The comparisons between 
predicted and experimental values for four groups 
of test data are shown in Fig. 20(d) and listed in 
Table 9. 
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Fig. 19 Comparisons of predicted and experimental results for 31 groups of training data in GRNN model: (a) Peak 

indentation force; (b) Peak indentation depth; (c) Cutting work; (d) Specific energy  
 

 

Fig. 20 Comparisons between predicted results using GRNN and experimental results for four groups of test data 
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Table 8 RMSE and R2 values of GRNN prediction 

models 

Index 
Peak 

indentation 
force/kN 

Peak 
indentation 
depth/mm

Cutting 
work/J 

Specific 
Energy/ 

(10−3Jꞏcm−3)

RMSE 14.8097 0.6878 80.6582 789.3227

R2 0.8210 0.9161 0.9681 0.9708 

 

Table 9 Comparisons between predicted results and 

experimental results for four groups of test data using 

GRNN prediction 

Cutting performance 
Tested 

value 

Predicted 

value 

Accuracy/

% 

Peak indentation 

 force, Fc/kN 

162.33 177.6150 90.58 

217.90 185.8675 85.30 

103.62 105.6953 98.00 

32.33 36.2473 87.88 

Peak indentation depth, 

Dc/mm 

12.19 10.6850 87.65 

13.04 12.4460 95.44 

8.64 9.0069 95.75 

4.12 4.4700 91.50 

Cutting work, Wc/J 

989.40 971.625 98.20 

1420.71 1158.880 81.57 

447.64 528.3222 81.98 

66.60 68.2585 97.51 

Specific energy, 

Ec/(10−3Jꞏcm−3) 

7915.20 6502.8115 82.16 

4972.56 4014.3037 80.73 

1342.93 1029.2626 76.64 

166.50 109.3745 65.69 

 

5 Discussion 
 
5.1 Influence of uniaxial confining stress 

According to the regression analyses of peak 
indentation force, peak indentation depth, cutting 
work and specific energy of conical pick for rock 
breakage, uniaxial confining stress had a nonlinear 
influence on rock cuttability. Peak indentation  
force, peak indentation depth, cutting work and 
specific energy presented nonlinear variation with 
first increasing followed by decreasing as uniaxial 
confining stress was increased, which indicated that 
the rock cuttability first decreased and then 
increased as uniaxial confining stress was  
increased. In addition, the failure patterns of rock 
specimens were changed from complete splitting to 

partial splitting, and then to rockburst as uniaxial 
confining stress was increased. The experimental 
and regressive results showed that there were three 
zones reflecting the influence of uniaxial confining 
stress on rock cuttability. In Zone 1, the increasing 
of uniaxial confining stress impeded the rock 
cutting. In Zone 2, the increasing of uniaxial 
confining stress improved the rock cutting. The 
demarcation point between Zone 1 and Zone 2 was 
at the uniaxial confining stress near 30%−40% of 
UCS of rock material in terms of peak indentation 
force, peak indentation depth and cutting work and 
near 40%−55% of UCS of rock material in terms of 
specific energy. In Zone 3, the increasing of 
uniaxial confining stress continued to improving the 
rock cutting, and only very low specific energy was 
required for rock breakage promoted by high 
uniaxial confining stress. However, the rock 
compressed by high uniaxial confining stress 
produced rockburst induced by point-load 
disturbance of rock cutting. The demarcation point 
between Zone 2 and Zone 3 was at the uniaxial 
confining stress near 80% of UCS of rock material 
in terms of peak indentation force, peak indentation 
depth, cutting work and specific energy. 
 
5.2 Influence of rock strength 

It can be seen from the three-dimensional 
regression models that the peak indentation force, 
peak indentation depth, cutting work and specific 
energy of conical pick required for rock breakage 
presented a positive correlation to the UCS and 
tensile strength of rock material, which indicated 
that the rock strength had a negative influence on 
rock cuttability. Therefore, the high cutting 
parameters such as peak indentation force, peak 
indentation depth, cutting work and specific energy 
should be required for breakage of hard rock. The 
demarcation points for distinguishing the stress- 
impediment zone (Zone 1) and the stress- 
improvement zone (Zone 2) of rock cuttabilities 
were correlated to the UCS of rock material, which 
were near 30%−40% of UCS of rock material in 
terms of peak indentation force, peak indentation 
depth and cutting work and near 40%−55% of UCS 
of rock material in terms of specific energy. The 
demarcation points for distinguishing the stress- 
improvement zone (Zone 2) and the cutting- 
triggered rockburst zone (Zone 3) of rock 
cuttabilities were also correlated to the UCS of rock 
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material, which were near 80% of UCS of rock 
material in terms of peak indentation force, peak 
indentation depth, cutting work and specific energy. 
 
5.3 Field mining application 

It can be calculated that the prediction effect of 
SVM is better than GRNN, according to the 
compared analyses between predicted and 
experimental results for 31 groups of training data 
and the verified comparisons between predicted and 
experimental results for four groups of test data. In 
addition, the experimental results, regressive 
analyses and AI-based predictions showed that the 
rock cuttability, negatively reflected by peak 
indentation force, peak indentation depth, cutting 
work and specific energy of conical pick for rock 
breakage in rock indentation test, first decreased 
and then increased with the increase in uniaxial 
confining stress, and the rock cuttability was 
negatively correlated to UCS and tensile strength of 
rock material. Meanwhile, the risk of rockburst 
increased obviously under the high uniaxial 
confining stress, which indicated that the rock 
intensively compressed by high uniaxial stress was 
prone to violent failure with rapid ejection of 
fragments triggered by rock indentation, although 
the rock cuttability was improved by high stress. 
Therefore, the rocks under free stress and low 
confining stress have the best rock cuttability and 
cutting safety. In order to further verify the models 
for predicting rock cuttability and confirm the 
feasibility of rock cutting by conical pick, a field 
mining stope was prepared in Kaiyang Phosphate 
Mine, Guizhou Province, China, to perform rock 
cutting. The preparation and cutting entryways were 
excavated to form a pillar. The residual stress in 
rock around pillar was uniaxial confining stress, the 
variation range of which was from stress-free 
condition to 14.5 MPa. The maximum cutting 
parameters of peak indentation force, peak 
indentation depth, cutting work and specific energy 
were predicted by regressed and SVM-based 
models, and the results are listed in Table 10. 
Finally, a roadheader with many conical picks 
mounted was used to perform rock cutting on 
ore-rock pillar, and the cutting parameters were 
designed according to the predicted results. The 
mean cutting efficiency reached 107.7 t/h. The 
roadheader met the requirement of mechanized 
mining in hard rock around the pillar, and the 

prediction models were suitable for guiding the 
rock cutting by conical pick. 
 
Table 10 Maximum rock cutting parameters predicted by 

regressed model and SVM for phosphate rock under 

maximum residual uniaxial confining stress of 14.5 MPa 

Prediction 
method

Peak 
indentation 

force, 
Fc/kN 

Peak 
indentation 

depth, 
Dc/mm 

Cutting 
work, 
Wc/J 

Specific 
energy, Ec/

(10−3Jꞏcm−3)

Regressed 
model 

69.02 6.58 356.74 282.97 

SVM 60.14 5.91 350.90 951.32 

 
6 Conclusions 
 

(1) The regression models can reflect the 
relationships of peak indentation force, peak 
indentation depth, cutting work and specific energy 
with the uniaxial confining stress applied to rock 
and the UCS and tensile strength of rock. The 
prediction accuracy from SVM was better than that 
from GRNN. Therefore, the regression and SVM 
models are satisfactory for predicting the rock 
cuttability reflected by peak indentation force, peak 
indentation depth, cutting work and specific energy 
of conical pick for rock breakage in the rock 
indentation test. 

(2) The experimental results, regressive 
analyses and AI-based predictions indicated that the 
peak indentation force, peak indentation depth, 
cutting work and specific energy of conical pick for 
rock breakage increased and then decreased with 
the increase in uniaxial confining stress, and these 
indices were positively correlated to UCS and 
tensile strength of rock materials. The rocks under 
free stress and low uniaxial confining stress can be 
cut efficiently and safely, while the rockburst 
occurred in the rock under high uniaxial confining 
stress, although the rock cuttability can be 
improved by high stress. Therefore, the rocks under 
free stress and low confining stress had the best 
rock cuttability and cutting safety. 

(3) The regressed and SVM-based models 
were used to predict the cutting parameters of 
roadheader in the mining filed. The axial boom 
roadheader with many conical picks mounted were 
used to perform rock cutting around pillar. The 
cutting efficiencies reached 107.7 t/h. The 
roadheader can satisfy the requirement of 
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mechanized mining in hard rock, and the 
established prediction models can be suitable for 
guiding the rock cutting by conical pick. 
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基于镐形截齿侵入破岩试验的岩石可切割性分析与预测 
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摘  要：为了研究围压条件和岩石强度参数对岩石可切割性的影响，开展一系列镐形截齿侵入破岩试验。利用回

归分析、支持向量机(SVM)和广义回归神经网络(GRNN)分析岩石可切割性与施加在岩石上的单轴围压和岩石强度

参数(单轴抗压强度和抗拉强度)之间的关系。得到的回归模型和 SVM 模型可以准确反映岩石可切割性的变化规

律。分析结果表明，随着单轴围压的增加，岩石的可切割性先降低后增加，岩石的可切割性与岩石抗压强度和抗

拉强度呈负相关。根据预测模型计算得到镐型截齿切割坚硬磷矿石的最佳应力条件和切割参数，从而使基于多截

齿旋转切割的纵轴悬臂式掘进机成功应用于坚硬磷矿石的开采。 
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