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Abstract: A new model for describing the compaction process of iron powder was proposed based on the continuum hypothesis and 
elliptical yield criterion. To simulate the densification behaviour, the constitutive model was implemented in Marc computer program. 
For the relationship between load and displacement, different models were compared and the influence of the parameters in the 
constitutive equations was determined by means of simulation and experiments. The density distribution of a balancer was measured 
and simulated. The results show that the parameter η adopted plays a modification role for the load−displacement curve, and 
compared with other models the present model fits better with the experimental data in the later stage of the compaction process 
mainly due to the different parameters A and B. The friction on the contact surface contributes to the inhomogeneous density 
distribution under large deformation of the workpiece. The comparison between the simulation and experimental data indicates that 
this model can be used to predict the powder compact process precisely and effectively. 
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1 Introduction 
 

Powder forming is a highly developed process of 
manufacturing ferrous matrix or ceramic matrix 
composite material products, which combines the cost 
and material saving advantages of conventional powder 
metallurgy with the high production rates and property 
enhancement of forging. Some important factors, such as 
pressure, temperature and strain rate, determine the 
product quality. Therefore, these process factors should 
be optimized by using theoretical methods or 
experimental approaches to manufacture high strength 
and accuracy parts with homogeneous density 
distribution[1−5]. 

During the deep exploration of powder forming 
phenomenon, a number of constitutive models were 
proposed based on the hypothesis that powder was 
considered as a continuous, elasto-plastic, and 
compressible medium. With some classical elliptical 
yield equations[6−9], they are commonly integrated with 
finite element method (FEM) for the investigation of 
metal powder. However, most of these models[10−12] 

are based on the constitutive function of porous material 
which is not in accordance with the properties of the 
powder material completely. 

A new constitutive relation under a general form of 
the yield function with an ellipsoidal yield surface for the 
densification process of iron powder during the cold 
compaction was reported which was put forward based 
on the speciality of powder. The action mechanisms of 
different parameters in the yield function were analyzed 
in detail. And the finite element calculations derived 
from user-subroutines of Marc were compared with 
experimental data. 
 
2 Constitutive model 
 

Taking into account of the influence of porosity and 
hydrostatic pressure of porous materials, one general 
form of the yield criterion is 
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where 2J ′  and J1 are the second invariant of deviatoric 
stress tensor and the first invariant of stress tensor, 
respectively. σs is the yield stress of the dense reference 
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material and σR is the flow stress of the porous material. 
The parameter η is a function of relative density ρ and 
represents contribution of geometric hardening. A and B 
are the coefficients of the yield criterion which can be 
presented as functions of material Poisson ratio ν . 
KUHN and DOWNEY[6], and DORAIVELU et al[8] 
put forward the following functions: 
 
A=2(1+ν ), B=(1−2ν )/3                       (2) 
 

For the uniaxial stress condition, J1= 11σ , 
3/2

112 σ=′J  and Rσ = 11σ , i.e. A and B satisfy the 
following relationship： 
 
A/3+B=1                                    (3) 
 

Various relationships between ν  and ρ were 
proposed by many investigators[6, 8, 13]. According to 
the experimental data, ZHDANOVICH[14] assumed that 
 
ν =0.5ρn                                    (4) 
 

KUHN and DOWNEY[6], and DORAIVELU et 
al[8] applied n=2 to the yield criterion. WANG et al[15] 
adopted a linear relationship between ν  and ρ for iron 
powder material[15]: 
 
ν =0.93ρ−0.43                               (5) 
 

Compared with KUHN’s[6] formula by compaction 
experiments of iron powder, Eq.(5) fits better with the 
experimental data. Therefore, Marx-Davies function was 
adopted in this work for the higher precision. 

WANG[15] et al Submitted Eq.(5) to Eq.(2) and 
scaled the parameter B properly. The yield criterion can 
be written as 
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It is noteworthy that when materials are of full 

density, i.e. in the state of ρ=1 and ν =0.5, this yield 
criterion reduces to the usual von Mises yield criterion. 
Although when ρ≠1, Eq.(6) does not accord with the 
uniaxial stress condition, Eq.(3). KIM et al[2] mentioned 
that Eq.(3) is mandatory for porous materials, but not for 
powder. 

The foctor η was introduced via the flow stress in 
order to characterize geometrical and strain hardening 
which is generally considered as the function of relative 
density. DORAIVELU et al[8] assumed that 
 

)1/()( 2
c

2
c

2 ρρρη −−=                         (7) 
 
where ρc is an experimental parameter that is referred as 
the critical relative density for the state of the porous 
material without flow stress. The value of ρc should be 
very close to the initial relative density. Based on the 
DORAIVELU’s formula[8], an expression of the factor η 
was proposed by LI et al[16]: 
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It produced better results with the experimental data. In 
this work, the elasto-plastic deformation of iron powder 
with low initial density was analyzed and the yield 
criterion was put forward as follows: 
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During the compaction of powder material, the 

density is closely related to the plastic strain. The density 
increases gradually with the cumulation of plastic strain 
and the property of material changes simultaneously. The 
evolution of density must follow the mass conservation 
equation and the relationship between relative density 
and plastic strain is given as follows: 
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where ρ0 and (ρ+∆ρ) are the relative densities before and 
after deformation, li and (li+∆li) are the dimensions of a 
micro-unit before and after deformation, and p

ijε  is the 
cumulative logarithmic plastic strain. 
 
3 Three-dimensional FEM analysis and 

experiments of compaction process 
 

This new constitutive model was employed into 
MSC. Marc. User subroutines which used the implicit 
code to simulate the compaction process of pure iron 
powder and the corresponding experimental data were 
presented to verify the simulation results. 

In the following simulations, eight-noded and 
full-integration solid elements were adopted to build the 
3D finite element models. The material parameters were 
set as: ρc=0.457 9, σs=405 MPa, ρ0=0.458 and elastic 
modulus E=210ρ GPa. 
 
3.1 Comparison of different models 

An uniaxial compaction experiment of a block 
workpiece was conducted on the test machine 
SANS-CMT5105. Pure iron powders were filled in a die 
with a square cross-section of 10 mm×10mm in size, and 
the filling height was 19.65 mm. The load on the upper 
punch increased linearly from 0 to 70 kN. The load− 
displacement curves were recorded by test machine. 

In the simulations, the influence of inertia force was 
ignored because it was far less than the pressure of the 
upper punch actually. The upper punch, the lower punch, 
and the die were assumed as rigid walls. A coulomb 
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friction model with an additional stress limit was used. 
The friction coefficients at the interfaces were supposed 
to be 0.1. With relative residual testing, the check for 
convergence was made whether the largest residual force 
divided by the maximum reaction force was smaller than 
the tolerance of 0.1. 

In Fig.1, the load vs displacement curve obtained 
from the experiment is compared with that of the 
simulation for the constitutive models of LI et al[16], 
DORAIVELU et al[8] and the present model. It can be 
found that the present model shows a higher accuracy in 
this case. Compared with model in Ref.[8], model of 
Ref.[16] has the same functions of the parameters A and 
B and the different expression of the parameter η, which 
makes the load−displacement cuve ‘softer’ because of its 
‘softer’ relationship between relative density and η 
shown in Fig.2. Fig.2 suggests that η of these two models, 
Eq.(7) and Eq.(8), all approach to 1.0 as relative density 
approaches to the limit, and the difference of η increases 
gradually with the densification process to the maximum 
value at the relative density of 0.816, then decreases 
rapidly to zero. These evolution trends are also reflected 
on their comparison in Fig.1, and the start and end points 
 

 
Fig.1 Load vs displacement curves of experiment and simulation 
 

 
Fig.2 Parameter η as function of relative density 

of these two load−displacement curves are almost the 
same. Although DORAIVELU’s model[8] fits well with 
the experiment in the later densification process, it is 
obvious that its error is large at the beginning. In one 
word, η is overestimated in DORAIVELU’s model. As 
mentioned above, η represents geometric hardening 
contribution, so in the prometaphase of compaction, the 
advance of the flow stress for powder material can be 
described more accurately by LI et al[16]. The 
expression proposed by LI et al[16], Eq.(8), was adopted 
in the present model. 

Compared with the model in Ref.[16], the present 
model has a similar load−displacement curve with the 
different functions of the parameters A and B and the 
same expression of the parameter η, because Fig.3 and 
Fig.4 show that there is not a great difference between 
these two models for the A and B functions of relative 
density. Although A and B of all models approach to 3.0 
and 1.0, respectively, as relative density approaches to 
1.0, which meets the constraint of von Mises yield 
criterion, the present model fits better with the 
experimental data in the later stage of the compaction 
mainly due to the more reasonable expression of ν ,  
 

 
Fig.3 Parameter A as function of relative density 
 

 
Fig.4 Parameter B as function of relative density 
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Eq.(5). The parameters A and B can be regarded as 
weighting factors for deviatoric stress and hydrostatic 
stress, respectively[1]. So, based on the parameters A and 
B modified through the experiments of iron powder, the 
present model behaves a more authentic status of 
elasto-plastic stress and strain for this material. 
 
3.2 Simulation of density distribution 

A balancer used in the piston mechanism is shown 
in Fig.5. In the compaction process, it is difficult to 
achieve a completely homogeneous density distribution 
because of the structure of two levels steps, which means 
the requirement of the elaborated process scheme. Fig.6 
shows the schematic illustration of the die, powder and 
punches. In this case, the lower punch 2 and the upper 
punch were movable downwards to compact the powder, 
and their velocities were proportional to their final 
displacements. The initial positions of the lower punch 2 
and the upper punch were set as H1=15.23 mm and 
H2=15.23 mm. The lower punch 1, die and core rod were 
fixed. 
 

 

Fig.5 Schematic diagram of balancer (Unit: mm) 
 

 

Fig.6 Schematic diagram of die, powder, core rod and punches 
 

The constitutive model described above was 
implemented to simulate the densification process. A full 
3D simulation was conducted using a mesh with 3 398 

nodes and 2 400 hexahedral elements. The calculation 
was divided into 200 incremental steps. The updated 
Lagrangian approach was used in this procedure for a 
large-strain elasticity and plasticity analysis. The 
convergence criterion assumed that the residual force 
should be less than 1% of the reaction force. On a 
computer with 1.8 GHz CPU and 2 GB memory, the total 
time steps taked approximately 7 h. 

Fig.7 shows the contour plots of relative density of 
the sample. The highest relative density, 0.933 9, is at the 
upper joint of the ring part and the fan-shaped part. The 
relative density distribution from 0.911 0 to 0.933 9 
appears mainly at the outter upside edge of the 
fan-shaped part. The lowest relative density, 0.819 5, is 
at the outter arc edge of the downside of fan-shaped part. 
The relative density distribution from 0.819 5 to 0.831 0 
appears mainly at the outter edge of the downside of 
fan-shaped part. All the large gradients occur around the 
die, core rod, and punches where the flow of powders is 
constrained by the friction at interfaces, especially in the 
corners, but the relative density in inner districts presents 
a relatively homogeneous distribution. 
 

 
Fig.7 Relative density distributions of simulation: (a) Top;   
(b) Bottom 
 

At the vertical interfaces between powders and the 
die, relative density exhibits a decreasing trend from up 
to down. However, the situation is contrary on the axial 
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interface between powders and the lower punch 2 (i.e. 
surface B marked in Fig.7(b), because the downward 
friction, with the downward compaction of the lower 
punch 2, promotes the movement of powders to the 
bottom and densifies these regions. In addition, the 
places of lower density in the upside form an annular 
shape (i.e. A marked in Fig.7(a)), which is the joint effect 
of the horizontal friction from upper punch and the 
vertical friction from die and core rod. Fig.8 reveals the 
directions of the friction on upper surface and the dashed 
line represents the region A. As shown in Fig.8, the 
bilateral friction of the region A is completely reversed in 
direction, which causes the diffusion of the intermediate 
powders to the both sides and the downward. As a result, 
an annular low density distribution comes into being. 
 

 
Fig.8 Directions of friction on upper surface 
 

 

Fig.9 Cutting scheme for measuring relative density 
distribution 

Two parts of the balancer shown in Fig. 9 were split 
into sixteen pieces respectively for measuring the relative 
density distribution by Archimedes’ method. Fig.10 
shows the experimental and simulative results of the 
symmetry plane and A—A section. By comparison, the 
simulations are basically consistent with the 
experimental results. It is found that the span and the 
maximum value of relative density on the symmetry 
plane are greater than those in the A—A section. And the 
prediction mentioned above that the relative density 
nearby the interfaces is more inhomogeneous than that of 
the inner, is confirmed by the experiment. 
 

 

Fig.10 Comparison of experimental and simulative results:    
(a) Simulative results on symmetrical plane; (b) Experimental 
results on symmetrical plane; (c) Simulative results in A-A 
section; (d) Experimental results in A−A section 
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4 Conclusions 
 

1) The simulative load vs displacement curve of the 
new model agrees better with the experimental data. The 
parameters A, B and η produce different influence on the 
numerical solutions. The results show that the parameter 
η adopted plays a modification role for the load− 
displacement curve, because of the compaction of 
powder, which describes the increase of the flow stress 
more accurately. In the later stage of the compaction, the 
present model fits better with the experimental data 
compared with other models mainly due to the different 
parameters A and B which are based on the more 
reasonable expression of ν  for the iron powder. 

2) In the simulation of a balancer with a 3D finite 
element model, the relative density distribution was 
obtained by employing the constitutive function into 
MSC. Marc. User subroutines. The simulative results 
show that the friction on the contat surfaces contributes 
to the inhomogeneous density distribution of the 
workpiece under large deformation. For the relative 
density distribution, the simulation data are basically 
consistent with the experimental results. Some errors 
exist because the simulation data are obtained from 
nodes of the specified plane but the experimental data are 
from the solid entities. 
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