

Deformation behavior of explosive detonation in electroformed nickel liner of shaped charge with nano-sized grains

YANG Feng(杨 峰), LI Chun-hua(李春华), CHENG Sheng-wei(成生伟),
WANG Lei(王 雷), TIAN Wen-huai(田文怀)

Department of Materials Physics and Chemistry,
University of Science and Technology Beijing, Beijing 100083, China

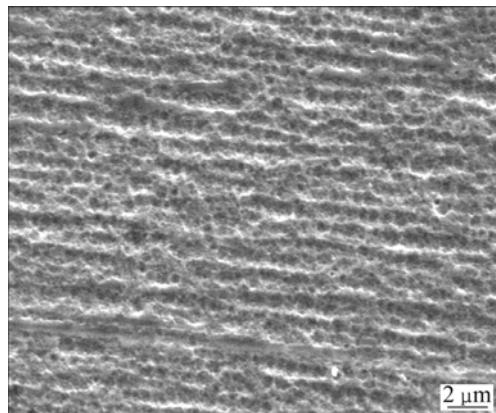
Received 1 September 2009; accepted 2 February 2010

Abstract: Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-high-strain-rate deformation was performed by explosive detonation. The as-electroformed and post-deformed microstructures of electroformed nickel liner of shaped charge were observed by optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the orientation distribution of the grains was analyzed by electron backscattering pattern (EBSP) technique. Both melting phenomenon in the jet fragment and recovery and recrystallization in the slug after ultra-high-strain-rate deformation were observed. The research evidence shows that dynamic recovery and recrystallization play an important role in ultra-high-strain-rate deformation for electroformed nickel liner of shaped charge with nano-sized grain.

Key words: nano-sized electroformed nickel; ultra-high-strain-rate deformation; electroformation; microtexture; dynamic recovery and recrystallization; detonation

1 Introduction

As a key part of the armor penetrator, the preparation of liner of shaped charge is very important. Specially, the grain size of liner of shaped charge has a dramatic effect on the penetration depth of the liner[1]. The smaller the grain size, the greater the cumulative length and the better the performance of penetration. Electroformation technique is a useful method for preparing liner materials due to the controlled microstructure[2]. Electroformed nickel was selected as a potential material applied for liner of shaped charge because of its high density and sound velocity and good corrosion resistance[3].


After explosive detonation, a conical metal liner forms an elongated jet that represents one of the most severe examples of plastic deformation where strains vary from 500% to more than 1 000% at strain rates between 10^4 and 10^7 s^{-1} . Copper and tantalum shaped charges were researched extensively[4–8] and dynamic recovery and recrystallization played a significant role in the deformation process. There was a systematic relationship between the starting grain size in the liner

(D_0) and the ratio of starting/ending (jet) grain size (D_0/D_s)[9]. Knowledge of the physical state of the jet is crucial in determining its apparent ductility in relation to its breakup at the high strain rate. The temperature issue, in connection with the detonating shaped charge, is still an unsettled question.

In the present work, the electroformed nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and undergone a plastic deformation by explosive detonation. The microstructures of recovered slug were observed by transmission electron microscopy (TEM) for comparison with the un-deformed nickel liner of shaped charge. Optical metallography (OM) and scanning electron microscopy (SEM) were also employed to provide a detailed overview of residual microstructures of slug and the changes in microstructures before and after high-strain deformation at the ultra-high strain rate. Electron backscattering pattern (EBSP) technique was employed to examine the distribution of grain-orientation in the recovered slug. The deformation mechanism and temperature distribution over the whole section of the slug under such high strain rate deformation were presented.

colony area, many grains with a nanocrystalline structure can be observed. WEIL and COOK[10] reported that the colony structures were observed in samples from baths containing thiourea and aniline. FISCHER[11] concluded that the incorporation of organic additives into the plating bath resulted in the inhibition of pyramidal growth, a concomitant reduction in surface roughness and increase in surface brightness. More recently, NAKAMURA et al[12] observed morphological transitions from large crystals to a colony-like morphology in nickel electrodeposited from the Watts bath containing saccharin.

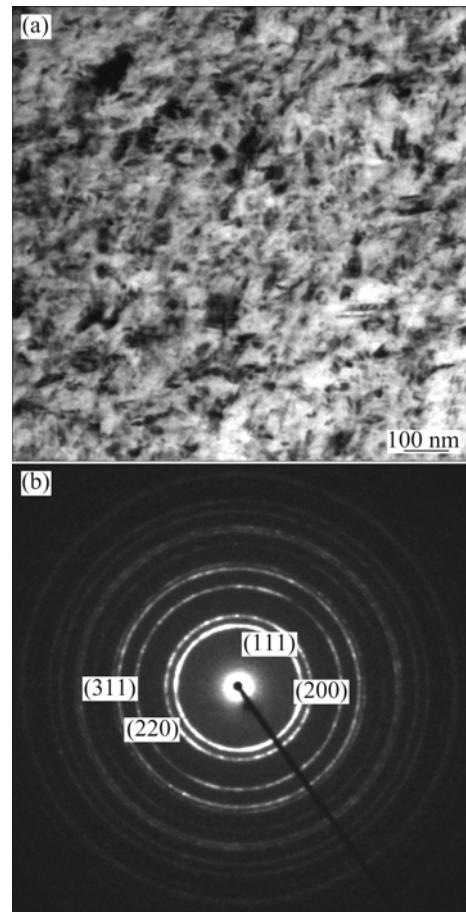


Fig.3 Second electron image of specimen A showing colony structures in electroformed nickel liner of shaped charge

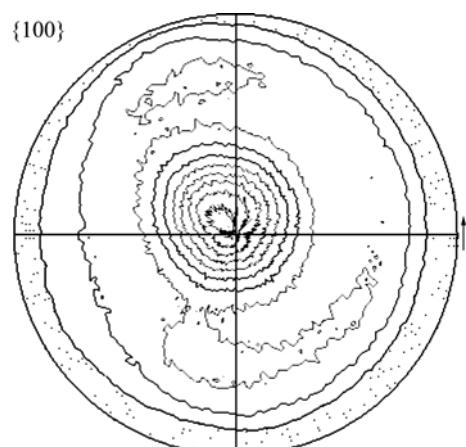

Fig.4 shows the TEM bright-field image and the electron diffraction pattern of specimen A. It is clear that grains have a nano-sized scale and the grains have an average size of 30 nm. It can be considered that the additive saccharin results in a transition to the colony morphology with a nano-sized grain. Similar microstructure was also recognized by EL-SHERIK and ERB[13]. As a result, the use of additive results in the inhibition of large grains growth and formation of colony microstructure.

Fig.5 shows the pole figure obtained from specimen A. It can be seen that specimen A has a mixture of $\langle 100 \rangle$ and $\langle 111 \rangle$ textures. It has been reported that an increase in the saccharin concentration in the bath leads to a progressive change in the preferred orientation from a strong $\langle 100 \rangle$ fibre texture to a $\langle 111 \rangle$ – $\langle 100 \rangle$ double fibre texture[13]. The present result is in agreement with the observations reported by NAKAMURA et al[12] on the preferred orientation of D.C.-plated nickel from the Watts bath containing saccharin. In previous studies[14]. Specimen A was analyzed using XRD. Saccharin in the bath resulted in expansion of diffraction peaks due to the minimized grain size. It is confirmed that the grain size of specimen A is 29 nm, as determined from the full-width at half-maximum of (111) reflection by the

Scherrer equation. This calculation value from X-ray diffraction pattern is very close to that observed by TEM as shown in Fig.4.

Fig.4 TEM bright field image (a) and electron diffraction pattern (b) of specimen A showing nano-sized grains in electroformed nickel liner of shaped charge

Fig.5 {100} pole figure of specimen A

3.2 Microstructure in recovered nickel slug

Fig.6 shows the cross sectional view of the microstructure in the recovered nickel slug of specimen B. It can be seen that there is a clear borderline in outer

zone of cross sectional view of specimen B. The grain size inside the slug is not uniform due to the different plastic strains for different positions of the slug. Plastic deformation degree of the slug is very different for different parts of the slug across the section of the slug, and the temperature of the slug raises because the plastic deformation is an adiabatic process. There exists a temperature distribution across the section of the slug due to the different plastic strains for different parts of the slug. In fact, the microstructure of the cross section at view of recovered slug is different from that observed in previous studies of copper liner[5, 7–8]. It is very interesting that there are two completely different microstructures in recovered nickel slug, which are separated by a clear borderline.

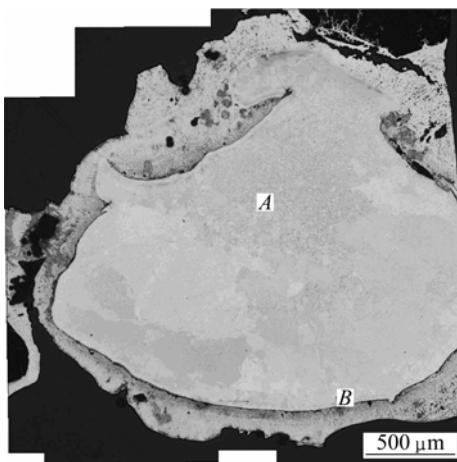


Fig.6 Cross sectional view of recovered nickel slug in specimen B

Fig.7(a) shows the magnified image of region A marked in Fig.6. Grain size in region A is about 25 μm . Fig.7(b) shows the magnified image of region B marked in Fig.6. It is clear that the grains near the inter part show a columnar shape which is formed during solidification, similar to the case of solidification in a cast mould. Furthermore, the energy dispersive X-ray spectrometer (EDS) was employed to analyze the component of samples. The EDS results outside borderline show that the mass fractions of Ni and Fe are 55.96% and 44.04% in this area, which are very close to those of permalloy in composition. However, the EDS result of area inside borderline indicates that only nickel element exists. EDS analysis results indicate that the area near the outer surface of the slug contains iron element and forms an binary Fe-Ni alloy. It should be mentioned that this part of slug near the surface of the steel target is formed during the early pass of jet fragments. A melting phenomenon between the jet fragment and steel target occurred during explosive detonation due to an adiabatic process. It can be considered that the initial nano-grained

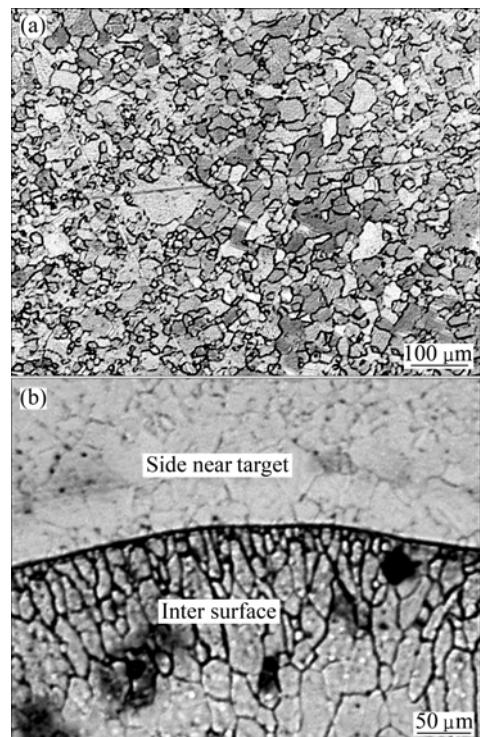


Fig.7 Magnified images of area A (a) and area B (b) marked in Fig.6

nickel liner has undergone melting phenomenon for jet fragments during penetration detonation. It can be also considered that nano-grained nickel liner stores high energy due to the small grain and much grain boundary. This leads to a remarkable raise of the temperature during explosive detonation. From these microstructure, one can see that the outside and inside of borderline come from different parts of metal liners. The jet, which is strained about 1 000% at strain rates over 10^6 s^{-1} , forms from roughly 1/5 of the inner cone wall. The remaining 4/5 of the liner mass flows plastically into an accelerating slug, which is lagging behind the tail of the jet at a slower velocity. Thus, it is not arbitrary to suppose that the outside of borderline belongs to the jet, and the inside of borderline belongs to the slug. The melt-metal in the outer side of the borderline shows a typical classical solidification. Inside of borderline toward the center of the slug is a typical microstructure of recrystallization. From the observed microstructure of outside of the borderline, we assume the jet is liquid flow, and the temperature of the jets exceeds T_m (melt point). However, the temperature of the slug is below T_m , and the slug remains solid state.

Fig.8 shows the optical microscope image of longitudinal section of slug. Crystal grains exhibit equiaxed shape and show an average grain size of about 25 μm . It was reported that the slug of electroformed copper liner of shaped charge has a grain size of 30–100

μm which is larger than that in the liner of shaped charge before deformation in the previous study[2]. It is of particular interest that the grain size in recovered slug transferred from the nano-sized liner of shaped charge increases by a level of 10^3 orders. This is a typical recrystallization structure and indicates that the original nano-grained nickel liner has undergone a dynamic recovery and recrystallization for the slug during penetration detonation. Deformation at extremely high strains and/or strain rates, which approaches a strain rate of 10^7 s^{-1} , can be considered as an adiabatic process essentially. After plastic deformation, the associated process temperatures are considered to be larger than $0.6T_m$. ZERNOW and LOWRY[15] estimated that temperatures in copper jets exceeded about 0.7 times of melting temperature, but in the case of tantalum shaped charges, the jet temperature would exceed $2\ 000^\circ\text{C}$ which was 0.7 times of melting temperature. Finite element simulation of shaped charge[16] shows in particular that there exists a temperature variation across the width of jet. It is demonstrated that the variation is the result of shearing deformation across the jet. The temperature increases regularly with the formation of the jet. The heat is mostly generated by plastic work. The plastic deformation degree and thus the temperature are the highest in the center of the jet. After nano-grained electroformed nickel liner of shaped charge undergoes a plastic deformation by explosive detonation, the temperature of slug is lower than that of jet. In the present study, the jet is in a melting state, whereas the slug is still in a solid state. Fig.9 shows the TEM bright field image of specimen B. Moving dislocations exist in the slug, but dislocation cell wall in slug changed from the electroformed copper liner could not be observed.

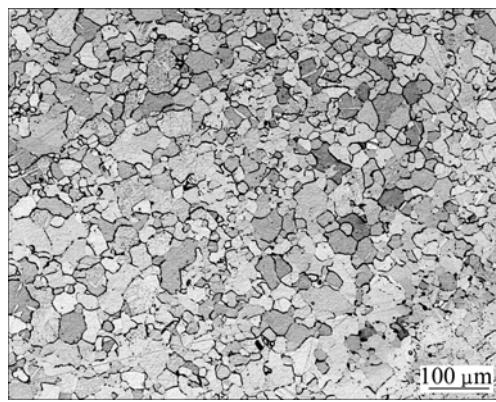


Fig.8 Optical microscope image of longitudinal section of slug

3.3 Microtexture in recovered nickel slug

In order to understand the change in microtexture after explosive detonation, EBSP technique was employed to investigate the microtexture of recovered slug. Figs.10 (a) and (b) show the pole figure and inverse pole figure of specimen B. It is clear that no texture exists in specimen B. It can be concluded that nano-grained nickel liner of shaped charge undergoes a dynamic recrystallization and recovery during explosive detonation. A mixture of $\langle 100 \rangle$ and $\langle 111 \rangle$ textures, which originally existed in the nickel liner of shaped charge, disappears by the deformation of explosive detonation. TIAN et al[17] compared the microstructures in electroformed copper liner of shaped charge before and after plastic deformation at different strain rates, and found that fibrous texture detected in as-electroformed copper liner disappeared after high-strain-rate plastic

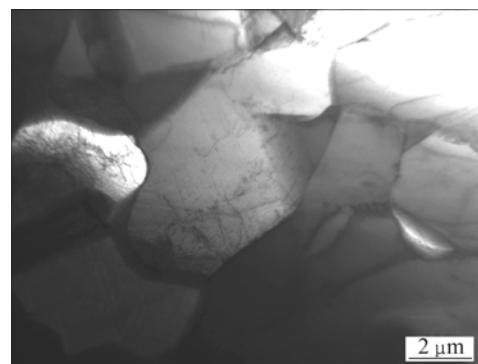


Fig.9 TEM bright field image of specimen B

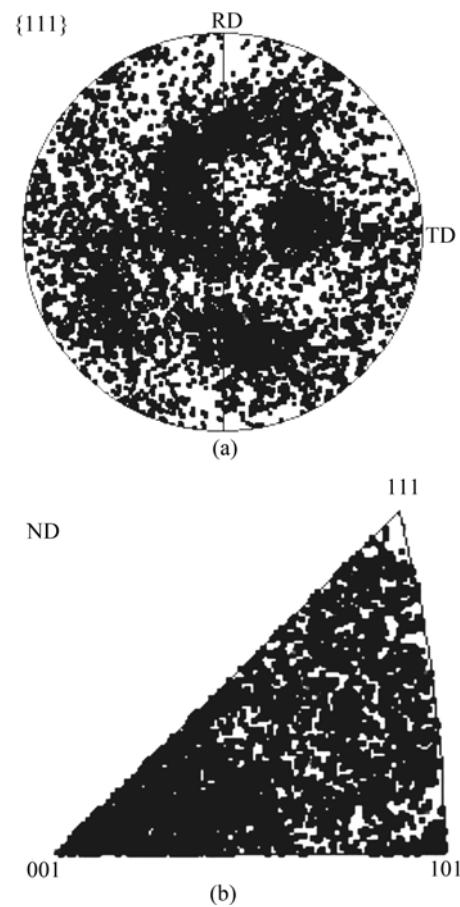


Fig.10 Pole (a) and inverse pole (b) figures of specimen B

pole figure of specimen B. It is clear that no texture exists in specimen B. It can be concluded that nano-grained nickel liner of shaped charge undergoes a dynamic recrystallization and recovery during explosive detonation. A mixture of $\langle 100 \rangle$ and $\langle 111 \rangle$ textures, which originally existed in the nickel liner of shaped charge, disappears by the deformation of explosive detonation. TIAN et al[17] compared the microstructures in electroformed copper liner of shaped charge before and after plastic deformation at different strain rates, and found that fibrous texture detected in as-electroformed copper liner disappeared after high-strain-rate plastic

deformation. In the present study, it is also confirmed that dynamic recrystallization plays an important role in plastic deformation at ultra-high strain rate. Especially, melting phenomenon occurs in the jet fragment part.

Fig.11 shows the schematic illustration of the forming process of slug and jets. A shock wave created by TNT40 collapses the nickel liner, which forms a stretching jet and slug. The jets penetrate the target, with the jets keeping state of melting flow liquid. Some of jets remain on the cavity wall of the hole generated by the jets. After the slug penetrates into the target, it stays in the hole cavity and is surrounded by the jet remains. Slug remains in the target surrounded by the remained jet in cavity wall of the hole. Under this circumstance, remained jet in the hole wall will combine with the slug in the hole and form the microstructure observed in the present study.

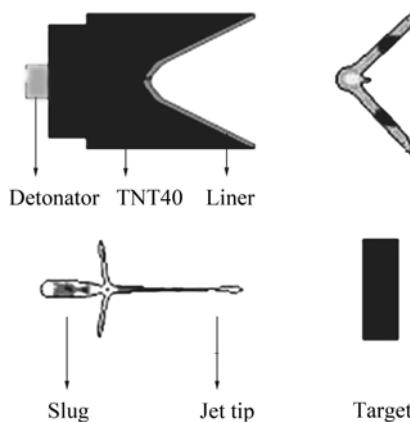


Fig.11 Schematic illustration of forming process of slug and jets

4 Conclusions

1) The nickel liner of shaped charge prepared by electroforming with additive saccharin is composed of a colony structure having a size of about 700 nm. Inside the colony area, many grains with a nanocrystalline structure with a grain size of about 30 nm can be observed. The use of saccharin makes the grains size decrease due to the acceleration of nucleation during electroformation.

2) After plastic deformation at ultra-high strain rate, the grain size in recovered slug transferred from the nano-sized liner of shaped charge increases by a level of 10^3 orders. Many moving dislocations exist in the slug. The mixture of $\langle 100 \rangle$ and $\langle 111 \rangle$ textures, existing in nickel liner of shaped charge disappears due to the explosive detonation.

3) Dynamic recovery and recrystallization play an important role in the deformed shaped charge, especially in the formed slug during explosive detonation. In addition, the temperature of the jet exceeds melting point due to an adiabatic deformation process. The following

slug remains solid state even keeping a high temperature.

References

- [1] WANG Tie-fu, WANG Lei, RUAN Wen-jun, ZHAO Tong-hu. The effects of the grain size of a liner on the performance of shaped charge jets [J]. Chinese Journal of High Pressure Physics, 1996, 10(4): 291–298. (in Chinese)
- [2] TIAN W H, HU S L, FAN A L, WANG Z. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate [J]. Radiation Effects and Defects in Solids, 2002, 157: 145–156.
- [3] ROBERTSON A, ERB U, PALUMBO G. Practical applications for electrodeposited nanocrystalline materials [J]. NanoStructured Materials, 1999, 12: 1035–1040.
- [4] GUREVITCH A C, MURR L E, SHIH H K, NIOU C S, ADVANI A H, MANUEL D, ZERNOW L. Characterization and comparison of microstructures in the shaped-charge regime: Copper and tantalum[J]. Materials Characterization, 1993, 30: 201–216.
- [5] FAN Ai-ling, LI Shu-kui, TIAN Wen-huai, WANG Fu-chi. Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation [J]. Transaction of Nonferrous Metals Society of China, 2007, 17(6): 1447–1450.
- [6] TIAN Wen-huai, GAO Hong-ye, FAN Ai-ling, SHAN Xiao-ou, SUN Qi. Microstructure and texture of electroformed copper liners of shaped charges [J]. J University of Science and Technology Beijing, 2002, 9(4): 265–270.
- [7] FAN Ai-ling, TIAN Wen-huai, SUN Qi, WANG Bao-sheng. Microstructure and penetration behavior of electroformed copper liners of shaped charges [J]. J University of Science and Technology Beijing, 2006, 13(1): 73–78.
- [8] FAN Ai-ling, TIAN Wen-huai, SUN Qi, WANG Bao-sheng. Microstructural characteristics associated with high-strain-rate plastic deformation in the electroformed copper liner of shaped charges [J]. Acta Metallurgica Sinica, 2005, 18(5): 620–626.
- [9] MURR L E, NIOU C S, SANCHEZ J C, SHIH H K, DUPLESSIS L, PAPPU S, ZERNOW L. Comparison of beginning and ending microstructures in metal shaped charges as a means to explore mechanisms for plastic deformation at high rates [J]. Journal of Materials Science, 1995, 30: 2747–2758.
- [10] WEIL R, COOK H C. Electron-microscopic observations of the structure of electroplated nickel [J]. Journal of the Electrochemical Society, 1962, 109: 295–301.
- [11] FISCHER H. Aspects of inhibition in electrodeposition of compact metals: 1. Effects of electrochemical inhibition [J]. Electrodeposition Surface Treatment, 1972/73, 1: 239–251.
- [12] NAKAMURA Y, KANEKO N, WATANABE M, NEZU H. Effects of saccharin and aliphatic alcohols on the electrocrystallization of nickel [J]. Journal of Applied Electrochemistry, 1994, 24: 227–232.
- [13] EL-SHERIK A M, ERB U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition [J]. Journal of Materials Science, 1995, 30: 5743–5749.
- [14] YANG Feng, TIAN Wen-huai, FENG Chuan-chao, WANG Bao-sheng. Crystal defects formed in electroformed nickel liners of shaped charges [J]. Acta Metallurgica Sinica, 2009, 22(5): 383–391.
- [15] ZERNOW L, LOWRY L. Shock-wave and high-strain-rate phenomena in materials [M]. MEYERS M A, MURR L E, STAUDHAMMER K P, ed. New York: Marcel Dekker, 1992, 46.
- [16] MOLINARI J F. Finite element simulation of shaped charges [J]. Finite Elements in Analysis and Design, 2002, 38: 921–936.
- [17] TIAN W H, FAN A L, GAO H Y, LUO J, WANG Z. Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates[J]. Materials Science and Engineering A, 2003, 350: 160–167.

(Edited by LI Xiang-qun)