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ABSTRACT

The fractal model of rock comminution is presented with Mandelbrot’s fractal geometry. The results show

that it is difficult for those with only a linear similarity ratio to it practical situations. The comminution prob-

ability of the central part should be considered so the geometric meaning of the constant in Gaudin-

Schuhmann’s distribution function can be explained more clearly.
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1 FRACTAL MODEL IN PROCESS OF
ROCK COMMINUTION

Recently, fractal geometry has been main-
ly used to study objects of self-similarity.

Where r is the similarty ratio; N(r) is the
number of parts at the similarity ratio.

The continual fracture process of a pyra-
mid is regarded as the model of rock or miner-
al inution. This model is illustrated in

“Self-similarity” is characteristic by which an
object can be decomposed into parts, each of
which belongs to the whole by a similitude.
Stochastic self-similarity in the rock fracture
process has been recognized. The multitude of
rock by i 1 is self-simil

for minute particles under suitable dilations
and large particles resemble each other in con-
struction and shape'’.

In fractal geometry, the most important
exponent which can characterize fractal quali-
ty is called fractal dimension D, which is de-
fined as

D =1gN(/1g(r ") O

(®Manuscript recieved April 28, 1991.

Fig 1. A pyramid with a casual size is referred
to as an initiator. This initiator is divided into
four smaller pyramidic elements which are ea-
sily destroyed and one central part which is
hard to be fragmented further. Each of these
smaller elements is redivided into another four
smaller elements and another smaller central
one. The process is repeated without end. As il-
lustrated in Fig 1, the smaller parts follow the
same shape as the whole, and size is reduced at
the same ratio r in every direction. This fits
perfectly with the self-similar requirements of
the system.
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Fig. 1 The fractal model of the process of rock comminution

In the fractal model, suppose the central
part is not fragmented at all. The size k of a
pyramid can be divided into two, three or four
equal segments, etc. Each fragmention pro-
duces one centre and four smaller pyramids
withasizek/2,k/3,k/ 4,

According to the definition of fractal di-
mensionr=1/2, 1/3, 1/4, =, N=4.
Therefore D= Ig[N(]/ 1g(" =2, 1.26, 1,
L

The fractal dimension value D is over 2.0

as shown in eguation (5) when o= 0.7—1.0 ac-
cording to reference'”.

If only four angles of the initiator are
destroyed, the largest value of D is 2. There-
fore it is understood that the centres in the
fractal model are partly destroyed during com-
minution. Let the probability of a centre de-
stroyed be P.

When linear similar ratio r is 1/ 3, the
number of the smaller pyramids into which
one centre can be divided equals to

(r)F-4=23

where E is the topological dimension, the
value of which is 3 for the pyramidic model.

According to the assumption that the cen-
tral part is comminuted with the probability P.
On average, the number of the pyramids into
which a central part is divided is 23P.

So the total number of the reduced-scale

parts from the initiator for one comminution is
N=[(")~a]P+4
since E=3
D=1g[N(M]/ Igr™
so we have following formula

D=lgl(r '~ 4P +4 /1) @

2 PARTICLE-SIZE DISTRIBUTION

The fractal model illustrates how frag-
mentation can result in a fractal distribution.
The model is illustrated in Fig.1. Let the lar-
gest size of resource pyramid be k, x, be refer-
red to the particle-size after n-times division,
the particle-size is in reduced order according
to the shape of the whole figure (inititator) by
means of the linear similarity ratio r.

Therefore x,=r"k (n=1,2,3,

We have n=lg(x,k™")/ lgr

On the other hand, taking account of the
particle volume y, whose particle-size is below
X, the process of fractal model development
shown in Fig. 1 can be described as follows:

n=rf-N

»=0*N?

Yu=CN"
We put
N = N [, /0T

(s /k)'\gk\'/lghil)
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From equation (1) we have N"=(x, / k)™
The relation between volume and size is

provided by
y, =V N=G, /0, /0"
=(x, /K"

So we obtain the ideal particle-size distri-
bution formula for fractal model as follows:

y, =G, /0" ©)

After rock is comminuted, there exists a
certain distribution function of its production.
One of the well known is Gaudin-Schuhman’s
distribution function, which provided empi-
rically a useful description of the applicable
statistical distribution.

v, =G k) @)
where y, — the percentage of volume;

x, — the particle-size, mm;

k — the characteristic value of par-
ticle- size distribution; as x,=k, we have y, =
100% , that is to say, k is the largest particle
sizes

o« — the exponent of particle-size dis-
tribution function.

If we compare the G—S particle-size dis-
tribution function (4) with the equation
(3)which is formulated from the fractal model,
we find that the fractal model shown in Fig. 1
satisfies the G—S distribution function, and we
can also identify the geometric meaning of par-
ticle-size distribution exponent o. which is

connected with fractal dimension D as:
a=E—D )

3 THE EMPIRICAL RELATION

Some of the experiments were carried out
in our laboratory in a piston press so as to
comminute iron ore and rock material by va-
rying the pressure; then the products were

screened and analyzed by statistical method™

Generally, the test results of rock and iron
ore fracture products follow the G—S distribu-
tion function perfectly. But for different mate-
rials the parameters k and « in formula (4)
vary with the materials.

iron ore: y,=(x,/ 23.18)"*

limestone: y,=(x,/ 12. 44)" *

We put the test results into the lg—Ig plot
as illustrated in Fig. 2. Since both are perfect
linear lines, they satisfy the exponential distri-
bution.

10>
107 Limestone
=
10°% Tron ore
107 107! 10° 0"

distribution of piston press products
20— 30mm; depth of material bed:
S0mm; pressure: 152MPa)

Using formula (5), we can obtain the
fractal dimension values of the particle-size
distribution of two kinds of material:

Dios =264

Dimestone=2- 54

If we choose r tobe 1 /3, then:

Pyon=0.617;

Plimestone = 0. 534
4 CONCLUSION

One of the major requirements in rock
mechanics is an accurate description of the
discontinuity structure of rock masses and of
the way in which the rock fragmentation
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processes are affected' . The fractal model
which described the process of rock comminu-
tion can connect the comminution products
with its process. It is a new method for
studying rock comminution. Some basic ideas
about how to describe the rock comminution
processes with the fractal model have been
given in this paper. The result shows that it is
difficult for the model only with a linear simi-
larity ratio to fit a practical situation. After the
comminution probability of the central part is
considered, the comminution process can be
descrided much better, and the adopted model
satisfies the G—$ distribution function more

to the fractal dimension D in the fractal
model.
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