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ABSTRACT

‘The cutting force under a slanting cutter is discussed. It is not only related to the sheet to be cut and the

slanting cutter height, but also to the shape of the cutter. It is from this point of view that the question of optimiz-

ing the cutter for slanting knife cutting operation is addressed. Then the general differential equations for the

optimum cutter are obtained, and analytic solutions for the workpiece, the contour of which consists of straight

lines and arcs, are obtained. A method for solving the general equations is also presented.The cutting force and

breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is em-

ployed.
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1 INTRODUCTION

Because the seperation of material is con-
tinuous in the slanting knife cutting opera-
tions, the cutting force and the breaking noise
can be effectively reduced. The operation is es-
pecially suited for blanking and trimming for
large size or thick sheet. At present the force of
slanting kinife cutting operations is considered
to be 0.15—0.6 times the force coresponding to
a flat cutter in the general literature papers.
Analysis shows that different cutter shapes
produce greatly different cutting forces even
under the same slanting cutter height. Then
what kind of cutter shape makes the force and
the noise smallest? It’s just a question of
optimizing the cutter shape for slanting knife
cutting operatiuns"*].

The optimum single peak cutter for axi-
ally symmetric parts and the cutting force un-
der a slanting cutter will be discussed first.
Then, the results will be extended to the multi-

®Manuscript received May 11, 1992

ple peak cut and the general sheet. Regardless
of whether the slanting cutter is put on a
punch or die, the analysis and conclusions do
not change. Therefore, only a slanting cutter
on punch is discussed.

2 THE CUTTING FORCE ON AXIALLY
SYMMETRIC PARTS WITH A SINGLE
PEAK CUTTER

2.1 Cutting Force of General Axially Sym-
metric Part

Assuming an axially symmetric piece, as
shown in Fig. la , take curve ED, 1/ 4 of the
contour, to be analysized. AB is the curve
segment i in éb, expressed as r= r(p) or
y=y(x) in a coordinate system with a y axis
parallel to the generatrix of the cutter f= f(u)
cylinder. Supposing that the cutting stroke u is
getting into curve segment i, and cutter ab is
acting with the material to be cut, then the lo-
cal cuting force on b shall be the product of
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(a)
Fig. 1 Slanting knife cutting operation analysis for an axially symmetric workpiece

the material cross area under ab times t,, the
shearing stress limit of the material. Take #<<v
<utt, and the arc length cd = s(v, u) (hereafter
called effective arc length)corresponding to v

is:

s(vu) = J'::H)‘l Pt do m
effectrive area

Fa) =["""s(vaudv @

The parameters in fomulas (1) and (2) are
shown in Fig. la. Of these parameters, ¢(u)
can be calculated by

Sw)=rsing(u)+h, 3

Then the cutting force corresponding to u

Pa@ =4z, (70N 4 dpav @)

With cartesian coordinates similar analy-
sis can be made:

Pa@ =4z, [ [N 1y dxdy @y

When the punch dosen’t go through the
sheet (see Fig. 1d), the effective arc length can
be written as

stvay =7 rt +" do

O<u<t)

b o

b oo

or s
s(v,u)=fﬂ:) 1+y”dx

O<u<p

-

©

and the effective area Fu) can be written as

Fw) = [} s(vauddv + s(o.u)t — u) } ©
O<u<p)

the cutting force becomes
Plu) =4t Fu) (O<u<1) @

For a concave cutter in a coordinate sys-
tem as shown in Fig. lc, @(u) is calculated by

Sw) = rcosp(u)+h; ®
All the formulas above are suited for the
corresponding cutting force i

2.2 Cutting Force of a Circular Part Under
Slanting a Flat Cutter

The shape of a convex flat cutter is given
by f=(au/ H), where H is the slanting knife
height, and the radius of the circular part is
r=a. Thus from equations (1)~ (4), we get.

P_. =Pl

max wmt—1
=dar, (NH —(H-1)" -
(H—tcos '(H—0/H} )
If the cutter is concave, f=a(H-u)/ H,
the maximum force is given by
P, =4at [a(Hcosa + 1) — Hsina] (10)
where « is the root of equation asina—t/
H=0. It's easy to work out that when 't/ H=
0.1~°1.0, the ratio of equations (9) to (10) is
about 2. This means that the cutting forces
under different shape cutters are greatly differ-
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ent even with the same workpiece and slanting
knife height.

2.3 Cutting Force on Shears

Cutting operation on shears is a special
type of slanting knife cutting operation Wl}cre
f=ku, y="b. From equation (4), we get *

P =<, §" 1 N1+ dxay =%klzr"

this is just the normal formula for calculating
the cutting force on shears?.

3 OPTIMUM CUTTER DIFFERENTIAL
EQUATIONS AND OPTIMUM CUTTER
FOR AXIALLY SYMMETRIC PARTS

3.1 Target Analysis

The tool designer always hopes that the
cutting force first increases slowly with cutting
stroke and then reduces slowly, and that the
maximum force is small. Thus, he can decrease
the tonage of the equipment, the breaking

noise and the elastic energy which is stored.

and released in a working cycle. Of course, the
cutting force can be reduced by increasing the
slanting knife height, but the approach is limi-
ted by the tool life, the workpiece deflection
and the equipment stroke. Then, what kind of
cutter can make the force and the noise smal-
lest for a given H?

Imagine a cutter /=/f(u)which meets the
following criteria:

(1) The force is an increasing function of
the punching stroke when the punch dosen’t
go through the sheet:

(2) The force remains constant when the
punch goes through;

(3) Finally, the force slowly reduces to
zero.
when the cutter shape meets these three condi-
tions, the distribution of the force with u is
most even, so that the maximum force, the

breaking noise and the vibration are smallest
in all kinds of cutters with the same slanting
kinfe height. In general, condition (3) is met
naturally. The cutter’ which f=f{u) meets (1)
and (2) is called an optimum cutter. Now the
question of how to design an optimum cutter
changs into one of how to get a f=f{u) which
meets (1) and (2) from the part shape r=r(¢p)
or y=y(x).
3.2 Optimum Cuter Differential Equations

To get the optimum cutter, consider equa-
tion (1) and change equation (4) into:

P) =4z, i"'s(vu)dv

According to the law of differentiation of
integrals with varying parameters, we get

dP(u) _ u+125(v,u)

e 4 lf v

s+ 1) — s(ua)]

To make cutter /=f(u) meet condition(2),
putdP(u) / du=0,i.e.
Ivﬂav(v,u)

dv+s(u+ tuw) —su) =0  (11)

Obviously, condition (1) is also an inte-
gral with varying parameters. This results in
the following equation

o) L [T o
Thus,
i tras(vr) L !
e o=olutn
x o(u+1) 12)

Again it’s easy to get from equalicn 1)
sttt =17 N T dp =0 (13)

swa) =[N+ dp (14)
Putting equation (12), (13) and (14) into
equation (11) yields

NP R

S 3
e=olutn ¢(“ = 1)

(2 4 T ap=0 15)

um
Similarly Cartesian coordinates
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=f N tit) ~

EENT L g

f;:”‘” 1+y2dx=0 (1sy
In order to make the cutter optimum, con-
dition (1) must also be met. Thus, considering
the situation in which the punch dosen’t go
through the sheet, from equation (7),
dP(u) dF(u)
Tdu b
From equation (6)
dF(u) uas(v,u)
T L
ds(0.u)
du

=41, O<u<i (16)

dv + s(uu) +

(t =) — s(0.u) } a7

O<u<n
From equation (5),

as(v,u) \[T]
u<1)
;;’%m:m AT,
O<u<n as)
50 =[N+ dp, O<u<n (19

Thus,

R(0)

@

dsOu) . _ [T .
Td i i, sliol) } (20)
O<u<r)

From equation (5) again

stwa) =70+ dp=0 } an)

O<u<yp)
Putting equations (18)~ (21) into equa-
tion (17) ylelds

B i NP+ -
j:::«/r'w dp. (O<u<p ()

Putting equation (22) into equation(16)
B AR T
1N 417 el O<u<o) (23)

o)
In order to make f=£u) meet (1), put
dP(w) / du>000<u<1),i.e.

IRV '» REAOR
I+ dp>0, 0<u<n @4

In Cartesian coordinates equation (24) is
expressed as

R AT Ty o
Iﬁi?vw dx>0, O<u<n (4

It’s easy to see that if the cutter f=/f(u)
meets equations (15) and (24), then dP(u)/
du>0 before the punch goes through the
sheet, and dP(u)/du=0 after. The cutting
force and breaking noise certainly are smallest
with this kind of cutter. It’s necessary to point
out that equation (24) must be met by /= f(u)
or a greater cutting force will develop probably
before the punch goes through the ‘sheet.
Equations (15) and (24) are called optimum
cutter differential equations. Obtained by as-
suming an axially symmetric sheet, they can be
applied to general blankings too. Now the
question of how/to get all optimum cutters is
just a question of how to further get a solution
from differential equations equations (15) and
(24).

3.3 Optimum Cutter for Circular Blanking
For circular blanking, r=a. ¢=sin"'(f(u)
/al. From equation (15), the differential

equation corresponding to the optimum cutter
is

I_[Sinij'(u-*-f)]' e —flutt) 4
a o a
= g
a

and the solution is

)= asin(Au+B) 25)

According to the boundary conditions, i. e.
Slu=o= 0,and f|,_ ,=a, we have

(W)= asinlru / 2H)] 26)
where H is the slanting cutter height. It’s
easy to see that equation (25) meets equation
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(24), and the cutting force under optimum cut-
ter (26) is
P=rat’t,/ H="P(t/2H) @n

where P, is the force corresponding to the.

normal flat cutter.

3.4 Optimum Cutter for Rhomboidal Blank-
ing
As shown in Fig. 2a, in Cartesian coordi-
nates, the shape of the blanking is y=a(l-x /
b). From equation (15), one finds
LGt =[flut)-fw) / t

the solution is.

flu)=Au+B (28)

Considering that f],-o=0 f],-y=>b, then
we have

f=bu/H 9)

Equation (27)meets equation (24), and the
corresponding cutting force is

p=2la’ +b> 1,/ H=P 1/ QH)

3.5 Optimum Cutter for Axially Symmetric
Blankings with Contours Which Consist
of Straight Lines and Arcs

Examples are shown in Fig. 2. The
optimum cutter corresponding to straight lines
on contour can be ined by i

For that in Fig. 2b are given by the fol-
lowing equations
rsinltu/ 2H )l O<u<H)
rsing, +bu—H )/ H,,
(H <u<H_+H)

Sl rsing, +b— r,sing  +r sin
["u—H —H)/QH)+0o]
(H +H <u<H)
where  H,=2raH/I;
=4bH / (1 - cos@o)
=2rmH/ I;

H,=4rHe,/l; H,=H,
And for that in Fig. 1a are given by
Rsinfnu / 2H )}, (0<
Rsing, —

[fu—H )/ QH,)+¢)
(H <u<H)
where H,=2RnH/I;
H,=2rnH/ I;
H,=4g,RH /|
It can be shown that all the cutters above
fulfill equations (15) and (24). And it is neces-
sary to point out that the optimum cutters for
these kinds of sheets can be directly written
oul wu.h no need for obtaining solution from

u<H)

rsing + rsin -

fw)=

(28), and that corresponding to arcs by equa-
tion (26). The continuous, optimum cutter is
formed by equations (26) and (28). Limited by
length, the analysis is left out and the results
are shown below.

The optimum cutter for the pieoe in Fig.
2cis
bu/H, (O0<u<H)
b—rsing +rsinln(u—H )/2H, +
?,) (H <u<H_ +H =H)
where H,=H, 4bH/1
Hrr/ I;
=4(n/2—@JrH/ I;
I—Perimeter of the blanking.

S =

(15) and (24)
every time. The corresponding cutting forces
can be expressed uniformly as

P=P(t/2H)

3.6 An Optimum Cutter for General, Axially
Symmetric Pieces

The general form of equation (15) is

GLf (1), flurt1), flw), ul =0,
this is a kind of differential equations which
has been studied by few people. It’s a mathe-
matical theory problem presenting difficulties
in finding its general solution. In engineering
its solution for blanking can be found with a
conputer by numerical methods. The method
is as follows.
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2a

(a)

(©)

Fig.2 The axial symmetric blankings the contours of which consist of straight liness and arcs

A function f=f{u)(0<<u <t), for example,

f=ku" k>00<u<n  (30)
can be first given by designer. Then, the values
of f corresponding to u>>1 can be determined
from equation (15). A numerical solution of
the optimum cutter for an elliptic sheet with
different /= f{u)(0<<u <t) is shown in Fig. 3.

O<u<t=1)

r = 400sin’ @ + 100cos’@

I TP S 2 (1
u
Fig.3 Numerical value optimum cutter for elliptic sheets

One must pay attention to the following
points when seeking a numerical solution: (1)
Equation (24) must be met by flw)(0<<u<t);
(2) The numerical solution is probably related
to the thickness of sheet #; (3) Giving different
f=fw) (0<u<t) is tantamount to giving dif-
ferent values of of H; (4) The cutting force is

P=4 [l 47 dgdy

o)

orziP =4z, f/(’)\/ ? dxdy

4 OPTIMUM (OR MULTI-PEAK) CUT-
TER

The multi-peak cutter shall be employed
for large sheet owing to the equipment stroke
and the sheet deflection. It’s considered that
the lateral forces of every peak are balanced by
another when there are more peaks on the
multi-peak cutter. Therefore, the optimum
multi-peak cutter can be applied to general
blanking pieces.

4.1 Optimum Multi-peak Cutter for Circular
Pieces

Assuming that there are n peaks on the
cutter for circular blanking shown in Fig. 4a,
and that the central angle coresponding to
peak iis 2¢; and defining the radial direction
of the peak as the y axis, then it can be found
that the optimum cutter for peak i is

[ =rsin(u/2H ), (0<u<H) (31)

where H=nH,/ (th,) The cutting force is
P= ZP = E' %) th

et P ek
*HIT" Pu(zﬂ)’

where P, is the local cutting force on peak .
Comparing with equation (27), it’s obvious
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that the cutting forces under the single peak
optimum cutter and under the multi-peak
optimum cutter are the same and unrelated to
the dividing peaks and number of peaks.

4.2 Optimum Multi-Peak Cutter for Rectan-
gular Pieces

The optimum multi-peak cutter for rec-
tangular sheets can be analyzed by similar
manner. Select the normal of the straight edge
of the cutter as y axis, as shown in Fig. 4b. The
width 1 of peak i is 2b. The optimum cutter for
the peak is

fW)=ub, /H,
and the cutting force is

P=(z (t/2H)=P (¢/2H)

O<u<H) (32)

7
I 2
i y

Fig.4 The multi-peak optimum cutter
for axially symmetric sheets

5 OPTIMUM CUTTER FOR GENERAL
PIECES

Only the multi-peak cutter can be em-
ployed for general blankings considering later-
al forces, and there is no need for every peak
to be symmetric with respect to its y axis. As-
suming that there is a peak at point A on the
curve edge (Fig. 5), select a y axis on the basis
of ease of calculation. The shapes of the cutter
of the peak are f,=f,(u) and f,=/,(u) respec-
tively. It can be shown by an analysis similar
to that in section 2 that if f; and f both meet

equations (15) and (24), the peak is a local
optimum cutter and the method for finding it
is the same as that for axially symmetric
blankings. If the local force of every peak
meets equations (15) and (24) and every peak
possesses the same slanting cutter height, the
resultant force is bound to meet equations (15)
and (24). In such a case the whole cutter shall
be optimum. The whole problem of optimiza-
tion has changed into a local optimiza- tion
problem, and the optimum cutter for general
sheet can be obtained as follow.

Pl h

| ———
<4
A

i

Fig.5 Local optimizing of the multi-peak cutter

for general blanking

(1) Classify the contour of the sheet, arcs
as one type, straight lines as another, and
others as a third. The slantng cutter height is
the same H.

(2) Divide the arcs into appropriate peaks
Take the radial direction of every peak as cor-
responding to the y axis, and determine the
central angle, 2¢,. Then the optimum cutter of
peak iis

f, =R sin"—u,

T
where R, is the corresponding radius, and
Hi=n/29H;

(3) Select the normal of the straight line
as the y axis. If the width of peak i is 25, its
optimum cutter is

fi=b/H w

(4) Select a y axis according to calcula-
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tion convenience for other curves. Get the
analytic solution or numerical solution from
equations (15) and (24);

(5) By the method explained in seetion
2.5 one can find the analytic solution for arc or
straight lines which aren’t long enough for one
peak if the curves next to it are still arcs or
straightlines.

(6) The resultant cutting force is the sum
of the cutting forces under every peak.

6 EXPERIMENTAL TEST

The analysis in this paper is based on that
the cutting force being the product of the effec-
tive area times the shearing stress limit of the
material. The goal of the experiment is to veri-
fy whether this approach is justified. The ex-
perimental results from reference [3] will be
compared with the analytic results of this pa-
per. The experimental conditions are; dia 35
mm punches with slanting convex flat cutter
and the slanting angles 2, 4, 8, 11 and 15 (° )
respectively, and steel sheet with thicknesses of
0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mm respectively,
7,=304~ 441 MPa from referen- ce [2]. Take
7,=400 MPa in the theory cal- culation. Table
1 is the comparision bet- ween the results of
the experiment and those of the analysis,
P, was calculated by equation (9) P, was cal-
culated by equation (27). P’ refers to the exper-
imented results. The table shows that P, coin-
cides with P’ quite well in a range of thickness
1=1.0~2. 5mm and that P, is a little smaller
when ¢=0. 5Smm and little greater when r=3. 0
mm. The error is probably related to the real
value of z,. The size of the grains of the rolling
sheet is related to the thickness of the sheet.
7, is greater when the thickness is small be-
cause of the small grains, and vice versa.
P, would coincide with P’ well if calculated
according to t,=304—441 MPa. This shows
that the method employed in the paper con-
forms to reality. The comparison between P’

and P, shows the optimum cutter’ can
effecctively reduce the cutting force. It must be
pointed out that in the experiment directly
comparing the forces between the optimum
cutter and the normal slanting cutter is very
significant. Therefore, it is neccessary to do
further study.

Table 1 Relationship Between blanking force (7), plate

thickness (1) and slanting angle (8).7

B/ P/ /mm
YN TS0 s 20 25, A0
P53
2. Ba28]
P, 90
Poi 121 38
4 P, 862 2550

P93 196 369
37.46
26.90
P87 176 330 481

8 P 603 172 3200 49.90
P, 224 894 2012 3577
# 139 276 416 530 650
ez 145 2690 418 5890 78.20
Py 647 1455 2586 4041 58.18
I3 11 240 360 451 556
L 123 2280 3530 49.60 65.60
P, 4.69 1055 1876 2931 4221

7 CONCLUSIONS

The cutting force under multi-peak cutter
can be calculated by one peak after another,
and the sum is the resultant force. In cutting
operations for general blankings with slanting
cutters, the optimum cutter will make the cut-
ting force and the breaking noise smallest.
When the contour consists of arcs and straight
lines, the optimum cutter satisfies equations
(31) and (32). The axially symmetric blanking
can be blanked by an optimum single peak
cutter or a multi-peak optimum cutter, but on-
ly optimum multi-peak cutters can be em-
ployed for general sheet. The optimum cutter

(To be continued on page 87)
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