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Abstract: Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced 
convection, an extended free dendritic growth model for binary alloys was proposed. Comparative analysis indicates 
that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on 
thermal diffusion at low bath undercooling, due to the fact that solute diffusion coefficient is usually three orders of 
magnitude less than thermal diffusion coefficient. At high bath undercooling, the effect of convection on the dendritic 
growth is very slight. Furthermore, a satisfying agreement between the model predictions with the available experiment 
data for the Cu70Ni30 alloy was obtained, especially at low bath undercoolings, profiting from the higher values of 
interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one 
ignoring the effect of convection. 
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1 Introduction 
 

Theoretical analysis and mathematical 
modeling implicated in the investigation of crystal 
growth are as important as experimental 
observation [1−6]. To describe the free dendritic 
growth, three aspects should be taken into account, 
which are the interface kinetics, the thermal or 
solutal transport in the bulk liquid ahead of the 
solid−liquid interface and the morphological 
stability for the interface [7−14]. The interface 
kinetics, i.e. the interface response function [15], is 
used to set up a relationship between the interfacial 
migration velocity and thermodynamic driving 
force determined by the interfacial temperature and 
compositions of solid and liquid phases. The 

thermal or solutal transport in liquid is commonly 
dealt with by solving the classical Fick diffusion 
equation or the extended hyperbolic diffusion 
equation [16,17]. The morphological stability 
analysis should also be made, which gives a 
relationship between the interfacial migration 
velocity and the dentritic tip radius of     
curvature [18]. 

Most of the free dendritic growth models have 
a deficiency, i.e. the isothermal and isosolutal 
solid−liquid interface assumption. In fact, the 
interface is nonisothermal and nonisosolutal    
one [19]. Strictly speaking, the solid−liquid 
interface is non-planar one, which leads to the 
variable interfacial curvature and normal velocity 
along the curved interface. Additionally, the 
crystalline anisotropy results in the interfacial 
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energy anisotropy and the kinetic growth  
anisotropy. Recently, for eliminating the isothermal 
and isosolutal solid−liquid interface assumption, LI   
et al [20−24] have successfully obtained the exact 
solution of steady state Fick diffusion equation and 
made a series of comparative analysis. It was 
further demonstrated that the effect of the 
nonisothermal nature of interface is significant and 
the effect of the nonisosolutal nature of interface is 
very slight and really negligible. 

Those models [20−24], however, ignore the 
influence of convection on dendrite growth. It is 
interesting and necessary to consider the  
convection effect when modeling the free dendrite 
growth [25−28]. There are two kinds of convection, 
i.e., the forced convection and the natural 
convection. The forced convection is caused by an 
external force. The natural convection occurs 
naturally and is caused by the density change due to 
the variation in concentration or temperature. In the 
present work, the focus of our attention is the 
forced convection to model the free dentritic growth 
during solidification. The forced convection affects 
the thermal or solutal transport in the liquid as  
well as morphological stability for the interface. 
According to the Navier−Stokes equation [26,28], 
the new thermal diffusion equation was re-solved. 
Based on microscopic solvability theory, the tip 
radius of dendrite given by ALEXANDROV and 
GALENKO [28−31] was adopted. Comparisons 
with the related models and the available 
experiment data were also made. 
 
2 Modeling 
 

In this section, considering a forced convection 
in alloy melts, the thermal diffusion equations with 
the nonisothermal boundary condition were 
re-solved to discuss the influence of convection on 
thermal diffusion. The results for solutal transport 
and morphological stability criterion given by 
ALEXANDROV and GALENKO [28] were 
adopted considering convection and isosolutal 
interface assumption. 
 
2.1 Thermal transport in liquid 

Crystal growth in the incoming flow of fluid is 
described in terms of the nonlinear Stefan type 
diffusion problem [32,33] with the moving free 
boundary of phase transition. The flow can be 

described by the Navier−Stokes equation [26,28]: 
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where ω is the fluid flow velocity,  is the vector 
gradient operator, ρ is the density, P is the pressure, 
and η is the kinematic viscosity of the fluid. 
Considering convection in the liquid and ignoring 
diffusion in the solid, the thermal transport 
phenomena can be described by the extended Fick 
diffusion equation as 
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where TL is the temperature in bulk liquid, t is time, 
and DT is the thermal diffusivity in the liquid. 

In a small domain of the tip, the solid−liquid 
interface can be approximated by a paraboloid of 
revolution under the steady state dendritic growth 
condition in undercooled melts [18,34]. It is 
convenient to use a parabolic coordinate system  
(α, β, φ) to solve temperature and solute fields in 
the liquid phase, instead of the Cartesion coordinate 
system (x, y, z). The coordinate transition is adopted: 
x=rαβcos φ, y=rαβsin φ, and z′=0.5r(α2−β2), where r 
is the tip radius of curvature, z′=z−Vt is a 
conversion to fix the reference frame on the moving 
interface, and V is the interfacial migration velocity 
in the z-direction. Then α=1 represents the 
solid−liquid interface with a tip radius of curvature 
r [22]. The temperature and solute concentration 
fields in the bulk liquid have the forms TL(α, β) and 
CL(α, β), respectively. Here, the coordinate φ is not 
included due to rotational symmetry. With the 
parabolic coordinate system (α, β, φ), Eq. (2) is 
rewritten as follows [28]: 
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where uα and uβ are the normal and tangent 
components of relative velocities between the 
interface of growing dendritic crystal and the 
undercooled melt, which are defined as follows: 
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where U is the incoming fluid flow velocity far 
from the interface, and g(α) is described by 
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(6) 
where Re is the Reynolds number defined by 
Re=rU/η and the exponential function E1(z) is 
defined by 
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It is hard to obtain the exact solution of Eq. (3), 

due to the complexity of the expression of g(α) 

defined by Eq. (6). In order to discuss the effect of 

convection in the liquid on the thermal diffusion 

field, a simplified version of g(α)=1/α is taken. This 

corresponds to the ideal fluid condition. Then, 

Eq. (3) can be rewritten as 
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                        (8) 
where Pt0=Pt+Ptf, Pt is the thermal growth Peclet 
number defined by Pt=rV/(2DT), and Ptf is the 
thermal flow Peclet number defined by 
Ptf=rU/(2DT). In this equation, a term −2Pt0β∂TL/∂β 
is neglected with the approximation 1/β >>2Pt0β, 
since the solidification behavior at the tip of 
dendrite (β=0) is only influenced by the regions in 
the vicinity of β≈0 [23]. 

By adopting the separation variable method, 
Eq. (8) is divided into a Bessel equation and a 
confluent hypergeometric equation. Its solution can 
be obtained as 
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           (9) 
where Φ(a, b, z) is the confluen thypergeometric 
function of the second kind, J0(λβ) is the zeroth 
order Bessel function of the first kind, T∞ is the 
temperature of the undercooled melt far from the 
interface as an integration constant, At(λ) is a 
coefficient to be determined, and λ is a constant. 
Considering the nonisothermal nature of the 

interface, caused by the non-planar interface and the 
crystalline anisotropy, with the isosolutal interface 
assumption [25], the interface response function can 
be given as [24] 
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where TL(1, β) represents the interfacial temperature, 
TM is the melting point of binary alloy with the 
nominal composition C0, Q is the latent heat of 
fusion, cp is the specific heat capacity, d0 is the 
capillary constant, β is the kinetic coefficient, mL 
is the slope of equilibrium liquidus, and *

LC  is the 
solute concentration on the liquid side at the tip. In 
addition, the kinetic liquidus slope m(V) and the 
parameters f1(β) and f2(β) are defined as follows 
with the assumption θd=0 and θβ=π/4 [24]: 
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where ad and aβ are the stiffnesses of anisotropy,  
VD is the solute diffusive speed in bulk liquid,    
Vn is the interfical normal speed, ke and k are    
the equilibrium and nonequilibrium partition 
coefficients, respectively, and VDI is the interfacial 
solute diffusive velocity, 2 2

D1 /V V    at V<VD 
and ψ=0 at V ≥VD. 

By using the Hankel transform for coordinate 
β, combined with Eqs. (9) and (10), At(λ) can be 
further determined as follows: 
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(15) 
where δ(λ) is the delta function. F1(λ) and F2(λ) are 
defined by [23] 
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Additionally, the thermal transport balance 
equation is adopted at the nonisothermal solid− 
liquid interface: 
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where KL is the thermal conductivity in the liquidin 
the absence of melt convection, and n


 is the unit 

vector normal to the interface. Substituting the 
temperature field described by Eq. (9) into the 
conservation equation, Eq. (18), the following 
relationship at the tip (β=0) can be finally given as 
follows: 
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where the new Ivantsov function Iv(Pt, Ptf) and the 
parameters N1(Pt, Ptf) and N2(Pt, Ptf) are defined by 
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Here, a relationship Φ(a, a, z)/Φ(a, a+1, z)= 

0
e e d

 z zt a

 
z t t

   is used, which can be demonstrated 

mathematically. 
As the value of g(α) is in the range of (0, 1) 

and is monotonically decreasing with α, there are 
two limit cases for the effect of convection on the 
thermal diffusion in liquid phase. g(α)≡1 represents 
the condition that there is no convection in the 
liquid. With this assumption, the present result is 
reduced to the previous one [24]. Under another 
limit condition, g(α)≡0, one can obtain the same 
expression as described by Eq. (19), in which 
related parameters are redefined as follows: 
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2.2 Solutal transport in liquid 

For solutal transport in the liquid, the 
isosolutal assumption along the solid−liquid 
interface has been shown to be reasonable 
approximation [22]. With this assumption the 
interfacial solute composition at the tip is given by 
ALEXANDROV and GALENKO [28] as 
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where Pc is the solute growth Peclet number 
defined by Pc=rV/(2DL) (where DL is the solute 
diffusivity in the liquid), and Pcf is the solute flow 
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Peclet number defined by Pcf=rU/(2DL). At the 
given parabolic coordinate system (α, β, φ), 
Iv(Pc, Pcf) is defined as 
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where Pc0 is defined by Pc0=Pc+Pcf. 

Considering the relaxation effect of local 
nonequilibrium solute diffusion in bulk liquid, the 
interfacial solute composition at the tip can be 
rewritten as [9,11] 
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Similar to the thermal diffusion, there are also 

two limit cases for the solute diffusion. One is with 
the assumption g(α)≡1, i.e. the condition ignoring 
the effect of convection on solute diffusion in the 
liquid. The other limit case is with the assumption 
of g(α)≡0. Under this condition, Eq. (27) can be 
re-solved as 
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2.3 Morphological stability criterion 

The analysis of solid−liquid interface 
morphological stability should be made to uniquely 
determine solidification behavior with steady state 
dendritic growth. Taking into account the interfacial 
nonisothermal nature, the microscopic solvability 
theory can give a correlation between the tip radius 
of curvature r and the interfacial migration velocity 
V at a given bath undercolling ∆T. According to 
Ref. [28], the selection criterion derived from 
microscopic solvability theory is described as 
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where σ* is defined by σ*=2DTd0/(r
2V), σ0 is the 

selection constant, , TQ is defined by TQ=Q/cp, and 
the other parameters are defined as follows: 
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              (35) 

 
Then being derived from Eq. (31), the tip 

radius of curvature r can be obtained as 
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          (36a) 
 

  11/143/4
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1
1

,  
Q d

D
Qd

d T b a α Re
r V V

T Pσ a 

      

                        (36b) 

Up to now, considering forced flow in the fluid, 
the entire free dendrite growth model has been 
described. By solving Eqs. (19), (28) and (36) 
simultaneously, with any given bath undercooling 
∆T, one can determine the solidification behavior, 
uniquely. 
 
3 Results and discussion 
 

In this section, model comparisons were made 
to analyze the effect of convection on thermal 
diffusion and solutal diffusion. Experimental 
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comparison was also made for the Cu70Ni30 alloy. 
The numerical results are shown in Figs. 1−6. The 
thermo-physical data, used in the present 
computations, are listed in Table 1. In order to 
express more clearly, the distinction between these 
models discussed in the present work is shown in 
Table 2. 
 

Table 1 Thermo-physical data for Cu70Ni30 alloy used in 

model computations  

Parameter Value 

Solidification temperature, TM/K 1513 [22] 

Heat of fusion, Q/(Jꞏkg−1) 2.317×105 [24]

Specific heat capacity, cp/(Jꞏkg−1ꞏ K−1) 576 

Anisotropic capillary length, d0/m 6.2×10−10 

Chemical capillary length, d0CD/m 3.48×10−9 

Diffusion coefficient, DL/(m2ꞏs−1) 6.0×10−9 [24]

Thermal diffusivity, aL/(m2ꞏs−1) 3×10−6 [24] 

Interfacial diffusion speed, VDI/(mꞏs−1) 10 [24] 

Diffusion speed in  
bulk liquid, VD/(mꞏs−1) 

19 [24] 

Liquidus slope, mL/(Kꞏat.% −1) −4.38 [24] 

Partition coefficient, ke 0.81 [24] 

Coefficient of growth, β /(sꞏKꞏm−1) 0.588 

Stiffness of surface  
energy anisotropy, ad 

0.25 

Stiffness of kinetic anisotropy, aβ 0.25 

Selection constant, σ0 1.5 

Velocity of force convection, U/(mꞏs−1) 0.3 

Coefficient of fluid viscosity, η/(m2ꞏs−1) 0.5×10−7 

 
3.1 Effect of convection on thermal diffusion 

The dendritic tip temperature Ti as function of 
the bath undercooling ∆T is shown in Fig. 1, for 
three models considering different expressions of 
g(α).  

 
Table 2 Definition of g(α) used in different models 

No. Thermal diffusion Solute diffusion

Limit case 1 g(α)≡1 g(α)≡1 

Limit case 2 g(α)≡0 g(α)≡1 

Ideal fluid case g(α)≡1/α g(α)≡1 

Limit case 3 g(α)≡1 g(α)≡0 

Nonideal fluid case g(α)≡1 
g(α) defined
 by Eq. (6) 

 

 
Fig. 1 Evolution of tip temperature as function of bath 

undercooling ∆T for Cu70Ni30 alloy 

 
As the value of g(α) is in the range of (0, 1) and is 
monotonically decreasing with α, there are two 
limit cases for the effect of convection on the 
thermal diffusion in liquid phase. As shown in 
Table 2, limit case 1 represents the model with 
assumption of g(α)≡1, and this is the condition that 
there is no convection in the liquid. Another limit 
case, called limit case 2, denotes the model with 
assumption of g(α)≡0. It is a limiting condition that 
the influence of the convection on thermal diffusion 
is the most remarkable. The ideal fluid case means 
the model with the assumption of g(α)=1/α. It 
should be stressed that in order to focus on the 
discussion about the effect of convection on thermal 
diffusion, different expressions of g(α) are only 
adopted in the description of thermal diffusion, 
while the same equations were adopted in the 
description of solutal diffusion, Eqs. (27) and (28) 
with g(α)≡1, as well as morphological stability 
criterion, Eq. (36), for the three models. This can be 
seen from Table 2 more clearly. Figure 1 shows that 
there are slight differences of the dendritic tip 
temperatures between these models at low bath 
undercoolings while the differences are more 
negligible at high bath undercoolings. 

As well know, the total undercooling ∆T can 
be divided into the following five parts: the thermal 
undercooling ∆TT=TM−T∞, the constitutional 
undercooling *

C L 0( )( ),T m V C C    the under- 
cooling due to the kinetic liquidus line which 
deviates from the equilibrium position ∆TN= 
(mL−m(V))C0, the curvature undercooling RT   

0( / )2 /pQ c d r  and the kinetic undercooling KT   
.βV  So, we have ∆T=∆TT+∆TC+∆TN+∆TR+∆TK. 
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Based on this relationship and the result given by 
the present model, Eq. (19), one can further 
determine the thermal undercooling ∆TT as 
∆TT=IvQ/cp+∆TR(N1−1)+∆TK(N2−1) (where N1 is 
the parameter mentioned above as N1(Pt, Ptf); N2 is 
the parameter mentioned above as N2(Pt, Ptf)). Thus, 
the difference between the tip temperatures *

LT  
predicted by the three models discussed above can 
be analyzed through the values of the Ivantsov 
function (Iv) and the parameters N1 and N2, due   
to the relation *

T L .T T T    The values of the 
Ivantsov function (Iv) and the parameters N1 and N2 
as functions of both Peclet number Pt and 

undercooling ∆T are shown in Figs. 2 and 3, 
respectively. It can be seen from Fig. 2 that the 
values of Iv for the three conditions are almost 
equal to each other. This means that the effect of 
convection on thermal diffusion with the isothermal 
interface assumption is ignorable (N1=N2≡1).  
Under the nonisothermal interface condition, the 
parameters N1 and N2 are not constantly equal to 1. 
So, the difference between the tip temperatures *

LT  
predicted by the three models is mainly caused by 
the parameters N1 and N2. As shown in Fig. 3, at 
low undercoolings ∆T, the value of parameter N2 
given by limit case 1 has an obvious deviation from 
that predicted by limit case 2, while there is a 
relatively small difference between the parameters 
N1. However, it is just the value of parameter N1 
that plays an important role in determining the 
difference between the tip temperatures *

LT  
predicted by the three models. This is because the 
curvature undercooling ∆TR is much larger than the 
kinetic undercooling ∆TK, at low bath undercooling 
∆T, in the relationship ∆TT=IvQ/cp+∆TR(N1−1)+ 
∆TK(N2−1). Under this condition, the value of 
parameter N2 almost does not influence the 
difference between *

LT . Therefore, considering the 
small difference between the values of N1, the effect 
of convection on thermal diffusion is also very 
slight under the condition with nonisothermal 
solid−liquid interface. Additionally, in Fig. 4 it can 
also be seen that there is a very slight deviation of 
the interfacial migration velocity predicted by limit 
case 1 from that calculated by limit case 2, 
especially at high undercooling. 

There are several parameters which can 
influence the effect of convection on thermal 
diffusion, such as the velocity of convection U, the 
coefficient of the fluid viscosity η and the stiffness 

 

 
Fig. 2 Ivantsov function on thermal diffusion Iv(Pt,Ptf) as 

function of thermal Peclet number Pt, at given velocity of 

forced convection U=0.3 m/s 
 

 
Fig. 3 Values of parameters N1 and N2 predicted by three 

models, as function of bath undercooling ∆T for Cu70Ni30 

alloy 
 

 
Fig. 4 Interfacial migration velocity V as function of bath 

undercooling ∆T for Cu70Ni30 alloy 

 

of anisotropy ad. The faster the velocity of 
convection U is or the smaller the coefficient of the 
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fluid viscosity η is, the more remarkable the 
influence of convection on solute diffusion is. 
Besides these two factors, the anisotropy strength ad 
is also a factor that can determine the degree of the 
convection effect. As described by Eqs. (16) and 
(21), the value of N1 depends on the anisotropy 
strength ad. Taking these parameters given in 
Table 1, the effect of convection on thermal 
diffusion is slight enough to be ignored. 
Furthermore, as discussed in the next section, the 
effect of convection on solute diffusion is 
remarkable compared with the ignorable effect of 
convection on thermal diffusion. 

Based on above discussion, it is also 
concluded that the effect of nonisothermal nature of 
the solid−liquid interface is comparable with the 
effect of convection on thermal diffusion. However, 
it should be stressed that above discussion is made 
with the assumption θd=0 and θβ=π/4 as well as a 
set of parameters given in Table 1. Under other 
conditions, the effect of non-isothermality may be 
obvious or even remarkable [23−27]. For example, 
as discussed in Ref. [27], the effect of non- 
isothermality is not ignorable and should be taken 
into account, under the condition that θd=π/4 or ad 
decreases to 0.1. 
 
3.2 Effect of convection on solute diffusion 

In this section, three cases are used for 
comparative analysis, including limit case 1, limit 
case 3 and nonideal fluid case. Limit case 1 is the 
one mentioned above that there is no convection in 
the liquid. g(α)≡1 is adopted for limit case 1 in the 
equations describing both thermal diffusion and 
solute diffusion in the liquid phase. Limit case 3 
represents the model with g(α)≡0 in Eqs. (28) and 
(30), for solute diffusion, which means the 
maximum limit of the influence of convection on 
solute diffusion. The nonideal fluid case represents 
the model, in which g(α) is defined by Eq. (6) for 
Eqs. (27) and (28) in the solutal transport (Section 
2.2). In order to focus on the discussion about the 
effect of convection on solute diffusion, the same 
expressions of g(α)≡1 are adopted in the description 
of thermal diffusion (see also the column “Thermal 
diffusion” in Table 2). That is to say, in this section 
it is assumed that the influence of convection on 
thermal diffusion in liquid is neglected completely 
in all of the three cases. 

As shown in Fig. 4, there is an obvious 

distinction between the nonideal fluid case and the 
limit case 1 for the interfacial velocity at low bath 
undercooling. In contrast, as discussed in Section 
3.1, the deviation of the interfacial velocity 
predicted by limit case 2 from that calculated by 
limit case 1 is very slight. It is indicated that the 
effect of convection on solute diffusion is greater 
than that on thermal diffusion with a set of 
parameters given in Table 1. This is due to the fact 
that solute diffusion coefficient is usually three 
orders of magnitude less than thermal diffusion 
coefficient. Therefore, the solute diffusion is 
remarkably slower compared to thermal diffusion. 
It is just the slower diffusion that leads to more 
obvious influence of the forced convection on the 
solutal diffusion compared with the thermal 
diffusion. This can also be understood by using the 
solute diffusion scale lC and the hydrodynamic 
spatial scale lH, which are defined as lC=2DL/V and 
lH=η/U, respectively [35]. The ratio of lC to lH (lC/lH) 
is shown in Fig. 5, as a function of the bath 
undercooling. It is indicated that the value of lC is 
comparable with the value of lH at low 
undercoolings. Thus, the effect of forced convection 
on the solutal diffusion is obvious [35]. 
 

 
Fig. 5 Ratio of solutal length scale lC to hydrodynamic 

length scale lH as function of bath undercooling ∆T for 

Cu70Ni30 alloy 

 
In order to further demonstrate the effect of 

convection on solute diffusion, the tip solute 
concentration *

LC  of the dendrite as a function of 
the bath undercooling ∆T is shown in Fig. 6, for 
different models including the nonideal fluid cases 
with η=5×10−8 m2/s and η=5×10−10 m2/s. Firstly, it 
can be seen that the larger the coefficient of 
viscosity η is, the slighter the effect of the 
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convection on solute diffusion is. Secondly, the 
forced convection results in the lower tip solutal 
concentrations *

LC  on the liquid side compared 
with the condition that there is not forced 
convection. Thus, the forced convection can depress 
solute segregation at the solid−liquid interface. 
Thirdly, as indicated by Fig. 5, the effect of 
convection on solute diffusion is very slight and can 
further be ignored at high bath undercooling, since 
the solute trapping or even complete solute trapping 
occurs. Therefore, the effect of convection on solute 
diffusion should be taken into account in modeling 
free dendritic growth, under the condition that there 
exists forced convection, especially at low bath 
undercoolings. 

 

 
Fig. 6 Evolution of tip solute concentration (mole 

fraction) on liquid side as function of bath undercooling, 

for Cu70Ni30 alloy 

 
3.3 Experimental comparison 

An experimental comparison for the interfacial 
migration velocity V versus the bath undercooling 
∆T for the Cu70Ni30 alloy is shown in Fig. 7 [36]. As 
discussed above, the effect of convection on solute 
diffusion is remarkable compared with the 
ignorable effect of convection on thermal diffusion. 
Thus, in Fig. 7, the interfacial velocity V is 
predicted by the present model with the nonideal 
fluid case shown in Table 2. The related 
thermophysical parameters are shown in Table 1. In 
addition, as one of the series of models [20−24], the 
present model also takes into account the 
nonisothermal nature of the solid−liquid interface 
caused by curved interface and crystalline 
anisotropy and takes the isosolutal interface 
assumption. It is indicated that the present model 
can give a satisfying description to the experiment 

data, especially at low bath undercoolings. One of 
the main reasons lies in the fact that the present 
model introduces the effect of the forced convection 
on solutal diffusion. It can be further supported by 
Fig. 4, in which the interfacial migration velocity V 
predicted by the present model with nonideal fluid 
case is obviously faster than that predicted by the 
one ignoring the effect of convection. 
 

 
Fig. 7 Comparison of experimental and predicted results 

of interfacial migration velocity V as function of bath 

undercooling ∆T for Cu70Ni30 alloy 

 

4 Conclusions 
 

(1) The larger the coefficient of viscosity, the 
slighter the effect of the convection on solute 
diffusion. The forced convection can depress solute 
segregation at the solid−liquid interface. 

(2) Model comparison indicates that the effect 
of convection on solute diffusion is remarkable 
compared with the ignorable effect of convection 
on thermal diffusion, at low bath undercooling. At 
high bath undercooling, the effect of convection is 
very slight. 

(3) Experimental comparison shows that the 
present model can give a satisfying description to 
the experimental data for the Cu70Ni30 alloy, 
especially at low bath undercoolings, benefiting by 
introducing the effect of forced convection on 
solutal diffusion. 
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同时考虑界面非等温特性和对流影响的 
二元合金自由枝晶生长模型 
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摘  要：在同时考虑界面非等温性质以及强制对流影响的情况下，提出二元合金的扩展自由枝晶生长模型。模型

对比表明：由于溶质扩散系数通常比热扩散系数小 3 个数量级，当低过冷时，对流对溶质扩散的影响比其对热扩

散的影响更强烈。当高过冷时，对流对枝晶生长的影响很小。此外，本模型能够对现有 Cu70Ni30 合金实验数据给

出一致的描述，特别是在低过冷时。这得益于当前模型获得了比忽略对流影响的模型更快的界面迁移速率。 

关键词：建模；枝晶凝固；二元合金；非等温界面；对流 
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