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Abstract: Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced
convection, an extended free dendritic growth model for binary alloys was proposed. Comparative analysis indicates
that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on
thermal diffusion at low bath undercooling, due to the fact that solute diffusion coefficient is usually three orders of
magnitude less than thermal diffusion coefficient. At high bath undercooling, the effect of convection on the dendritic
growth is very slight. Furthermore, a satisfying agreement between the model predictions with the available experiment
data for the CuyNi;, alloy was obtained, especially at low bath undercoolings, profiting from the higher values of
interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one
ignoring the effect of convection.
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thermal or solutal transport in liquid is commonly

1 Introduction

Theoretical  analysis and  mathematical
modeling implicated in the investigation of crystal
growth are as important as experimental
observation [1-6]. To describe the free dendritic
growth, three aspects should be taken into account,
which are the interface kinetics, the thermal or
solutal transport in the bulk liquid ahead of the
solid—liquid interface and the morphological
stability for the interface [7—14]. The interface
kinetics, i.e. the interface response function [15], is
used to set up a relationship between the interfacial
migration velocity and thermodynamic driving
force determined by the interfacial temperature and
compositions of solid and liquid phases. The

dealt with by solving the classical Fick diffusion
equation or the extended hyperbolic diffusion
equation [16,17]. The morphological stability
analysis should also be made, which gives a
relationship between the interfacial migration
velocity and the dentritic tip radius of
curvature [18].

Most of the free dendritic growth models have
a deficiency, i.e. the isothermal and isosolutal
solid—liquid interface assumption. In fact, the
interface is nonisothermal and nonisosolutal
one [19]. Strictly speaking, the solid—liquid
interface is non-planar one, which leads to the
variable interfacial curvature and normal velocity
along the curved interface. Additionally, the
crystalline anisotropy results in the interfacial
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energy anisotropy and the kinetic growth
anisotropy. Recently, for eliminating the isothermal
and isosolutal solid—liquid interface assumption, LI
et al [20—24] have successfully obtained the exact
solution of steady state Fick diffusion equation and
made a series of comparative analysis. It was
further demonstrated that the effect of the
nonisothermal nature of interface is significant and
the effect of the nonisosolutal nature of interface is
very slight and really negligible.

Those models [20—24], however, ignore the
influence of convection on dendrite growth. It is
interesting and necessary to consider the
convection effect when modeling the free dendrite
growth [25—28]. There are two kinds of convection,
1.e., the
convection. The forced convection is caused by an
external force. The natural convection occurs
naturally and is caused by the density change due to
the variation in concentration or temperature. In the
present work, the focus of our attention is the
forced convection to model the free dentritic growth
during solidification. The forced convection affects
the thermal or solutal transport in the liquid as
well as morphological stability for the interface.
According to the Navier—Stokes equation [26,28],
the new thermal diffusion equation was re-solved.
Based on microscopic solvability theory, the tip
radius of dendrite given by ALEXANDROV and
GALENKO [28-31] was adopted. Comparisons
with the related models and the available
experiment data were also made.

forced convection and the natural

2 Modeling

In this section, considering a forced convection
in alloy melts, the thermal diffusion equations with
the nonisothermal boundary condition were
re-solved to discuss the influence of convection on
thermal diffusion. The results for solutal transport
and morphological stability criterion given by
ALEXANDROV and GALENKO [28] were
adopted considering convection and isosolutal
interface assumption.

2.1 Thermal transport in liquid

Crystal growth in the incoming flow of fluid is
described in terms of the nonlinear Stefan type
diffusion problem [32,33] with the moving free
boundary of phase transition. The flow can be

described by the Navier—Stokes equation [26,28]:

(w-V)a):—%VPH]VZa), V-o=0 (1)

where @ is the fluid flow velocity, V is the vector
gradient operator, p is the density, P is the pressure,
and # is the kinematic viscosity of the fluid.
Considering convection in the liquid and ignoring
diffusion in the solid, the thermal transport
phenomena can be described by the extended Fick
diffusion equation as

%L +(@-V)T, =D, V’T, (2)

where T} is the temperature in bulk liquid, ¢ is time,
and Dr is the thermal diffusivity in the liquid.

In a small domain of the tip, the solid—liquid
interface can be approximated by a paraboloid of
revolution under the steady state dendritic growth
condition in undercooled melts [18,34]. It is
convenient to use a parabolic coordinate system
(a, B, ¢) to solve temperature and solute fields in
the liquid phase, instead of the Cartesion coordinate
system (x, y, z). The coordinate transition is adopted:
x=rafcos @, y=rafsin ¢, and z'=0.5r(a’—f"), where r
is the tip radius of curvature, z=z—Vt is a
conversion to fix the reference frame on the moving
interface, and V is the interfacial migration velocity
in the z-direction. Then a=1 represents the
solid—liquid interface with a tip radius of curvature
r [22]. The temperature and solute concentration
fields in the bulk liquid have the forms 71 (a, ) and
Ci(a, p), respectively. Here, the coordinate ¢ is not
included due to rotational symmetry. With the
parabolic coordinate system (a, f, ¢), Eq. (2) is
rewritten as follows [28]:

uaaaiJruﬂﬂai:
oa op
2 2
&aTZL+iaTL+aTZL+iaTL) 3
r oa® ada Op° P o

where u, and ug are the normal and tangent
components of relative velocities between the
interface of growing dendritic crystal and the
undercooled melt, which are defined as follows:

uaz—V(V+U)+Ug—(a) 4)
a
uﬁ,:(V+U)+Udia(ag(a)) (%)
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where U is the incoming fluid flow velocity far
from the interface, and g(a) is described by

uE [Reoz2 ) exp( Re) exp[ Rea’ J
1 _C _
2 2 2

g(a)= -
E, (Rej ReakE| (Rej
2 2
(6)

where Re is the Reynolds number defined by
Re=rU/n and the exponential function FE(z) is
defined by

['e] e_t
E(z)=] —dr (7)

It is hard to obtain the exact solution of Eq. (3),
due to the complexity of the expression of g(a)
defined by Eq. (6). In order to discuss the effect of
convection in the liquid on the thermal diffusion
field, a simplified version of g(a)=1/a is taken. This
corresponds to the ideal fluid condition. Then,
Eq. (3) can be rewritten as

1 0T,
+ =
B op

o o°T,

o°T, s [1 —2P,
oo op*

P + 2Ptoaj

a
®)
where Py=P+Py, P is the thermal growth Peclet
number defined by P=rV/(2Dr), and Py is the
thermal flow Peclet number defined by
Py=rU/(2Dr). In this equation, a term —2PS0T11/0p
is neglected with the approximation 1/>>2Pp,
since the solidification behavior at the tip of
dendrite (f=0) is only influenced by the regions in
the vicinity of =0 [23].
By adopting the separation variable method,
Eq. (8) is divided into a Bessel equation and a
confluent hypergeometric equation. Its solution can
be obtained as

T(a,p) =, A(A)exp(=Pya)-
22 >
——, 1= Py, Ryo*)-Jo(AB)dA+T,
10

)
where @(a, b, z) is the confluen thypergeometric
function of the second kind, Jy(4f) is the zeroth
order Bessel function of the first kind, T, is the
temperature of the undercooled melt far from the
interface as an integration constant, A4(1) is a
coefficient to be determined, and A is a constant.
Considering the nonisothermal nature of the

O(1-F; +

interface, caused by the non-planar interface and the
crystalline anisotropy, with the isosolutal interface
assumption [25], the interface response function can
be given as [24]

1 (18) =T - 22 £(5) - b1 (p) -
(m.Co-m(V)Cy) (10)

where 71 (1, f) represents the interfacial temperature,
Tw is the melting point of binary alloy with the
nominal composition C;, Q is the latent heat of
fusion, ¢, is the specific heat capacity, dy is the
capillary constant, ,é is the kinetic coefficient, mp
is the slope of equilibrium liquidus, and C; is the
solute concentration on the liquid side at the tip. In
addition, the kinetic liquidus slope m(}) and the
parameters fi(f) and f(f) are defined as follows
with the assumption 0,0 and 6;=n/4 [24]:

fl(/)))z(l_ad)(lﬁLﬁz)_%+(1+7ad)(1+ﬂ2)_%_

,
8ad(1+52)_5 (11)
! 3
fz([)’)z(1+aﬂ)(l+ﬁ2) 2 —8a3(1+ﬂ2) 24
5
8a,(1+4°) (12)
my g _ 2V,
m(V)—l_ke {1 k(V)+(1-k(7)) 7 +
ln(k](:/)ﬂ, V<V (13a)
m(V)=-""Ink,, V2V, (13b)
_ky =V V)
(V)_ =V /Vy) ’ ’ (142)
k(V)=1, V=V, (14b)

where a, and ag are the stiffnesses of anisotropy,
Vp is the solute diffusive speed in bulk liquid,
V, is the interfical normal speed, k. and k are
the equilibrium and nonequilibrium partition
coefficients, respectively, and Vp; is the interfacial
solute diffusive velocity, w=1-V>/V> at V<V
and y=0 at V' >)p.

By using the Hankel transform for coordinate
[, combined with Egs. (9) and (10), 4«(4) can be
further determined as follows:
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4.(%) ={[(TM —Tm)—(mLC0 —m(V)CE)].

0 24, iy
- F(2) ﬂVFz(ﬂ)}/
12
{GXP( Boa)- Q{l Ptf+4P I—Rf,ROJ}
0

t
(15)
where d(4) is the delta function. F(1) and F»(1) are
defined by [23]

5(4)-

27 8 8
F (1) =(1—ad)+(l+?ad)/1—§ad/12 —Ead/13
(16)
16 2
Fy(2)= (1+aﬂ)—?aﬁz+ agA (17)

Additionally, the thermal transport balance
equation is adopted at the nonisothermal solid—
liquid interface:

Vo (B)Q=—K. VT, (a.pB) (18)

where K| is the thermal conductivity in the liquidin
the absence of melt convection, and 7 1is the unit
vector normal to the interface. Substituting the
temperature field described by Eq.(9) into the
conservation equation, Eq. (18), the following
relationship at the tip (f=0) can be finally given as
follows:

2d,
AT:%W(Q,P“M%T (R.Py)+
BVN, (P, P, )+m Co—m(V)C; (19)

where the new Ivantsov function Iv(P,, Py) and the
parameters N;(P;, Pi) and N,(P;, Py) are defined by

P ®(1= Py 1= Py, By) _

Iv(P,P; )=
)= o (1= R, 3-8, 7y)
Pe | f—exll(l_ T 4o (20)
N(PP):QD(I—Rf,l—Rf,RO)
N o(1-By, 2By, By)

¢(1_Ptf +2° /(4pt)’ Z_Ptfa pt)

q)(l_Ptf +ﬂ'2 /(4pt)= 1_Ptf: pt)
(22)
Here, a relationship @(a, a, 2)/®(a, a+1, z)=

[ e"R(2) dA

z€’ I . e '+ “dtis used, which can be demonstrated

mathematically.

As the value of g(a) is in the range of (0, 1)
and is monotonically decreasing with a, there are
two limit cases for the effect of convection on the
thermal diffusion in liquid phase. g(a)=1 represents
the condition that there is no convection in the
liquid. With this assumption, the present result is
reduced to the previous one [24]. Under another
limit condition, g(a)=0, one can obtain the same
expression as described by Eq.(19), in which
related parameters are redefined as follows:

P ®(1, 1, B,)

v(P,P,)=—"t—F— "2 =
V( to tf) Pto ¢(1, 2, Pto)

P[eRnI:OeXp(;Pth) da (23)

?(1, 1, By)

D(1, 2, By)

2)0(1+ 47 /(4Ry), 2, B )
D(1+47 /(4R), 1, )

—_—
8
|
~
sl
—_

di(24)

=)
[\

B ?(1, 1, Py)
S o(1, 2, Py)

D(1+2°/(4P,), 2, By)

D(1+2°/(4Ry), 1, By)

da (25)

[ e*R(2)

2.2 Solutal transport in liquid

For solutal transport in the liquid, the
isosolutal assumption along the solid—liquid
interface has been shown to be reasonable
approximation [22]. With this assumption the
interfacial solute composition at the tip is given by
ALEXANDROYV and GALENKO [28] as

* CO
C= —(1=k(7))v(B.Py)

where P. is the solute growth Peclet number
defined by P=rV/(2D,) (where D is the solute
diffusivity in the liquid), and P is the solute flow

(26)
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Peclet number defined by P.=rU/(2D.). At the

given parabolic coordinate system (a, S, ¢),

Iv(P,, P.) is defined as

(R, Py)= _[ lwexp[ZPcfj:g(a)da ~Pya’ }%
(27)

where Py is defined by P.y=P.+Pr.

Considering the relaxation effect of local
nonequilibrium solute diffusion in bulk liquid, the
interfacial solute composition at the tip can be
rewritten as [9,11]

. C

C = 0 , V<V, 28
Fo1-(1-k(V))Iv(R,Py) <'p (282)
C, =C,, V=V, (28b)

Similar to the thermal diffusion, there are also
two limit cases for the solute diffusion. One is with
the assumption g(a)=1, i.e. the condition ignoring
the effect of convection on solute diffusion in the
liquid. The other limit case is with the assumption
of g(a)=0. Under this condition, Eq. (27) can be
re-solved as

_R 2(LLE)

v(P,B;)= =
PR3 w02, )
p ot [ SR 4, (29)
(21

2.3 Morphological stability criterion
The analysis of solid-liquid
morphological stability should be made to uniquely
determine solidification behavior with steady state
dendritic growth. Taking into account the interfacial
nonisothermal nature, the microscopic solvability
theory can give a correlation between the tip radius
of curvature r and the interfacial migration velocity
V' at a given bath undercolling AT. According to

interface

Ref. [28], the selection criterion derived from
microscopic solvability theory is described as
. Joad—7/4
o = a4 114
1+b(ﬂ a, (Re))
g + 2L, oy, 0a)
Dy T,
~7/4
. 0,a
c L = V2V, (30b)

i 1+b(B 7" ay (Re))

where o* is defined by o*=2Ddy/(i’V), oy is the
selection constant, , Ty is defined by Tp=0/c,, and
the other parameters are defined as follows:

& =[1+al\/aPt (1+a1\/af)t (1+50DTﬂ0/d0)):|_2

(31)
Se =[1+a2 ad])c*(1+§0DLﬂ0/d0CD):|_2 (32)
o (Re) = ad,U N ad,UD; (33)

4pVp  2pVpD,

where a; is a constant defined by oy
(‘11:(8‘70/7)1/2(3/56)3/8), 612=\/5a1 R }f is defined

B

by P =P/ \/_ , 00=1, dycp 1s the chemical capillary

length, and the parameters a(Re) and p are
defined by

_exp(—Re/2)
a(Re)= —El (Re/2) (34)
2 -k, o

D Q/c,

Then being derived from Eq.(31), the tip
radius of curvature » can be obtained as

4T, [1 +b(a, ey (Re)) ””}

=
ooa)”
! —, V<V,
(Tp&.P +2m)C (k) -1)EF)
(36a)
dyTy [1 + b(ad_3/40c0 (Re))ll/m} |
r= =7 , V=r,
004y TQé:t])t
(36b)

Up to now, considering forced flow in the fluid,
the entire free dendrite growth model has been
described. By solving Egs. (19), (28) and (36)
simultaneously, with any given bath undercooling
AT, one can determine the solidification behavior,
uniquely.

3 Results and discussion
In this section, model comparisons were made

to analyze the effect of convection on thermal
diffusion and solutal diffusion. Experimental



Shu-cheng LIU, et al/Trans. Nonferrous Met. Soc. China 31(2021) 1518—-1528 1523

comparison was also made for the CuyNizo alloy.
The numerical results are shown in Figs. 1—6. The
thermo-physical data, wused in the present
computations, are listed in Table 1. In order to
express more clearly, the distinction between these
models discussed in the present work is shown in
Table 2.

Table 1 Thermo-physical data for Cu,(Nis, alloy used in

model computations

Value
1513 [22]
2.317x10° [24]

Parameter

Solidification temperature, 7)/K
Heat of fusion, Q/(J-kg ")

Specific heat capacity, c,/(J kg K™ 576
Anisotropic capillary length, dy/m 6.2x107"°
Chemical capillary length, docp/m 3.48%107°
Diffusion coefficient, D;/(m*s™")  6.0x107° [24]

Thermal diffusivity, a;/(m*-s ") 3x10°°[24]

Interfacial diffusion speed, Vpi/(m's™) 10 [24]

i e
Liquidus slope, m/(K-at.% ") —4.38 [24]
Partition coefficient, k. 0.81 [24]
Coefficient of growth, ,é/(s-K-mfl) 0.588
Stiffnessiof surface 0.25
energy anisotropy, a,
Stiffness of kinetic anisotropy, as 0.25
Selection constant, o 1.5
Velocity of force convection, U/(m's ') 0.3
Coefficient of fluid viscosity, 7/(m*s ™)~ 0.5x107’

3.1 Effect of convection on thermal diffusion

The dendritic tip temperature 7; as function of
the bath undercooling AT is shown in Fig. 1, for
three models considering different expressions of

g(a).

Table 2 Definition of g(«) used in different models

No. Thermal diffusion Solute diffusion
Limit case 1 g(a)=1 g(a)=1
Limit case 2 g(a)=0 g(a)=1
Ideal fluid case g(a)=1/a g(a)=1
Limit case 3 g(a)=1 g(a)=0
Nonideal fluid case g(a)=1 g(g})} (é:ﬁr(lg;l

1520
— Limit case 1
1500 F ----Ideal fluid case
M LN e Limit case 2
E_
g 1480+
8
<
8
£ 1460t
8
g
= 1440t
1420 . . ) ) L . .
0 40 80 120 160 200 240 280 320

Bath undercooling, AT/K
Fig. 1 Evolution of tip temperature as function of bath

undercooling AT for CuyNij3, alloy

As the value of g(a) is in the range of (0, 1) and is
monotonically decreasing with o, there are two
limit cases for the effect of convection on the
thermal diffusion in liquid phase. As shown in
Table 2, limit case 1 represents the model with
assumption of g(a)=1, and this is the condition that
there is no convection in the liquid. Another limit
case, called limit case 2, denotes the model with
assumption of g(a)=0. It is a limiting condition that
the influence of the convection on thermal diffusion
is the most remarkable. The ideal fluid case means
the model with the assumption of g(a)=1/a. It
should be stressed that in order to focus on the
discussion about the effect of convection on thermal
diffusion, different expressions of g(a) are only
adopted in the description of thermal diffusion,
while the same equations were adopted in the
description of solutal diffusion, Egs. (27) and (28)
with g(a)=1, as well as morphological stability
criterion, Eq. (36), for the three models. This can be
seen from Table 2 more clearly. Figure 1 shows that
there are slight differences of the dendritic tip
temperatures between these models at low bath
undercoolings while the differences are more
negligible at high bath undercoolings.

As well know, the total undercooling AT can
be divided into the following five parts: the thermal
undercooling AT=Tv—T., the constitutional
undercooling A7 =m(V)(CE—C0), the under-
cooling due to the kinetic liquidus line which
deviates from the equilibrium position AT\=
(m—m(V))C,y, the curvature undercooling AT, =
(Q/c,)2d,/r and the kinetic undercooling ATy =
pV. So, we have AT=ATTHATHATNHATRHAT.
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Based on this relationship and the result given by
the present model, Eq. (19), one can further
determine the thermal undercooling A7t as
AT=IvQ/c,*ATr(N\—1)+ATx(N>—1) (where N; is
the parameter mentioned above as Ni(Py, Py); N, is
the parameter mentioned above as N,(P;, Py)). Thus,
the difference between the tip temperatures T;
predicted by the three models discussed above can
be analyzed through the values of the Ivantsov
function (Iv) and the parameters N; and N,, due
to the relation AT, =7 —T,. The values of the
Ivantsov function (Iv) and the parameters N, and N,
as functions of both Peclet number P; and
undercooling AT are shown in Figs. 2 and 3,
respectively. It can be seen from Fig. 2 that the
values of Iv for the three conditions are almost
equal to each other. This means that the effect of
convection on thermal diffusion with the isothermal
interface assumption is ignorable (N,=N,=1).
Under the nonisothermal interface condition, the
parameters Ny and N, are not constantly equal to 1.
So, the difference between the tip temperatures 7]
predicted by the three models is mainly caused by
the parameters N; and N,. As shown in Fig. 3, at
low undercoolings AT, the value of parameter N,
given by limit case 1 has an obvious deviation from
that predicted by limit case 2, while there is a
relatively small difference between the parameters
Ni. However, it is just the value of parameter N,
that plays an important role in determining the
difference between the tip temperatures T;
predicted by the three models. This is because the
curvature undercooling ATy is much larger than the
kinetic undercooling AT, at low bath undercooling
AT, in the relationship ATr=IvQ/c,+ATr(N\—1)+
ATx(N>—1). Under this condition, the value of
parameter N, almost does not influence the
difference between 7; . Therefore, considering the
small difference between the values of NV, the effect
of convection on thermal diffusion is also very
slight under the condition with nonisothermal
solid—liquid interface. Additionally, in Fig. 4 it can
also be seen that there is a very slight deviation of
the interfacial migration velocity predicted by limit
case 1 from that calculated by limit case 2,
especially at high undercooling.

There are several parameters which can
influence the effect of convection on thermal
diffusion, such as the velocity of convection U, the
coefficient of the fluid viscosity # and the stiffness

1.0
0.8
= 0.6
Q
&
2z 04r
— Limit Case 1
02 ---- Ideal fluid case
"""""" Limit Case 2

010'3 1072 107! 10° 10! 102
Peclet number, P,

Fig. 2 Ivantsov function on thermal diffusion Iv(P,Py) as

function of thermal Peclet number Py, at given velocity of

forced convection U=0.3 m/s

127

— N, for limit case 1
- N, for limit case 1
— N, for ideal fluid case
<<<<<<<< N, for ideal fluid case
— N, for limit case 2
-------- N, for limit case 2

10

0 40 80 120 160 200 240 280 320
Bath undercooling, A7/K

Fig. 3 Values of parameters N; and N, predicted by three
models, as function of bath undercooling AT for CuNisg
alloy

102§

10! 3

10°F
— Limit case 1
---- Ideal fluid model

wte o7/ e Limit case 2
F Nonideal fluid case

Interfacial velocity, V/(m-s™)

102 {
0 40

80 120 160 200 240 280 320
Bath undercooling, A7/K

Fig. 4 Interfacial migration velocity V as function of bath
undercooling AT for Cuy(Nis, alloy

of anisotropy a, The faster the velocity of
convection U is or the smaller the coefficient of the
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fluid viscosity # 1is, the more remarkable the
influence of convection on solute diffusion is.
Besides these two factors, the anisotropy strength a,
is also a factor that can determine the degree of the
convection effect. As described by Egs. (16) and
(21), the value of N, depends on the anisotropy
strength a,. Taking these parameters given in
Table 1, the effect of convection on thermal
diffusion is slight enough to be ignored.
Furthermore, as discussed in the next section, the
effect of convection on solute diffusion is
remarkable compared with the ignorable effect of
convection on thermal diffusion.

Based on above discussion, it is also
concluded that the effect of nonisothermal nature of
the solid—liquid interface is comparable with the
effect of convection on thermal diffusion. However,
it should be stressed that above discussion is made
with the assumption 6,=0 and 0;=n/4 as well as a
set of parameters given in Table 1. Under other
conditions, the effect of non-isothermality may be
obvious or even remarkable [23—27]. For example,
as discussed in Ref. [27], the effect of non-
isothermality is not ignorable and should be taken
into account, under the condition that 8,~=n/4 or a,
decreases to 0.1.

3.2 Effect of convection on solute diffusion

In this section, three cases are used for
comparative analysis, including limit case 1, limit
case 3 and nonideal fluid case. Limit case 1 is the
one mentioned above that there is no convection in
the liquid. g(a)=1 is adopted for limit case 1 in the
equations describing both thermal diffusion and
solute diffusion in the liquid phase. Limit case 3
represents the model with g(a)=0 in Egs. (28) and
(30), for solute diffusion, which means the
maximum limit of the influence of convection on
solute diffusion. The nonideal fluid case represents
the model, in which g(a) is defined by Eq. (6) for
Egs. (27) and (28) in the solutal transport (Section
2.2). In order to focus on the discussion about the
effect of convection on solute diffusion, the same
expressions of g(a)=1 are adopted in the description
of thermal diffusion (see also the column “Thermal
diffusion” in Table 2). That is to say, in this section
it is assumed that the influence of convection on
thermal diffusion in liquid is neglected completely
in all of the three cases.

As shown in Fig. 4, there is an obvious

distinction between the nonideal fluid case and the
limit case 1 for the interfacial velocity at low bath
undercooling. In contrast, as discussed in Section
3.1, the deviation of the interfacial velocity
predicted by limit case 2 from that calculated by
limit case 1 is very slight. It is indicated that the
effect of convection on solute diffusion is greater
than that on thermal diffusion with a set of
parameters given in Table 1. This is due to the fact
that solute diffusion coefficient is usually three
orders of magnitude less than thermal diffusion
coefficient. Therefore, the solute diffusion is
remarkably slower compared to thermal diffusion.
It is just the slower diffusion that leads to more
obvious influence of the forced convection on the
solutal diffusion compared with the thermal
diffusion. This can also be understood by using the
solute diffusion scale /- and the hydrodynamic
spatial scale /y, which are defined as /[-=2D;/V and
ly=n/U, respectively [35]. The ratio of /¢ to Iy (Ic/ly)
is shown in Fig. 5, as a function of the bath
undercooling. It is indicated that the value of /¢ is
comparable with the value of /[y at low
undercoolings. Thus, the effect of forced convection
on the solutal diffusion is obvious [35].
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Fig. 5 Ratio of solutal length scale /c to hydrodynamic
length scale Iy as function of bath undercooling AT for
CuyoNis, alloy

In order to further demonstrate the effect of
convection on solute diffusion, the tip solute
concentration C, of the dendrite as a function of
the bath undercooling AT is shown in Fig. 6, for
different models including the nonideal fluid cases
with 7=5x10"m%s and #=5x10""m?s. Firstly, it
can be seen that the larger the coefficient of
viscosity # is, the slighter the effect of the
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convection on solute diffusion is. Secondly, the
forced convection results in the lower tip solutal
concentrations CE on the liquid side compared
with the condition that there is not forced
convection. Thus, the forced convection can depress
solute segregation at the solid—liquid interface.
Thirdly, as indicated by Fig.5, the effect of
convection on solute diffusion is very slight and can
further be ignored at high bath undercooling, since
the solute trapping or even complete solute trapping
occurs. Therefore, the effect of convection on solute
diffusion should be taken into account in modeling
free dendritic growth, under the condition that there
exists forced convection, especially at low bath
undercoolings.

84
_ 5 — Limit case 1
g2 b n=5x107% m’/s ---- Nonideal fluid case
TN T Limit case 3

80+ ............
78t 74
76
74

7=5x10710 m?/s )

72

Tip solute concentration/at.%

70F

68 .
0 40

80 120 160 200 240 280 320
Bath undercooling, AT/K

Fig. 6 Evolution of tip solute concentration (mole
fraction) on liquid side as function of bath undercooling,
for CuyoNi; alloy

3.3 Experimental comparison

An experimental comparison for the interfacial
migration velocity V versus the bath undercooling
AT for the CuyNi;p alloy is shown in Fig. 7 [36]. As
discussed above, the effect of convection on solute
diffusion is remarkable compared with the
ignorable effect of convection on thermal diffusion.
Thus, in Fig. 7, the interfacial velocity V is
predicted by the present model with the nonideal
fluid case shown in Table 2. The related
thermophysical parameters are shown in Table 1. In
addition, as one of the series of models [20—24], the
present model also takes into account the
nonisothermal nature of the solid—liquid interface
caused by curved interface and crystalline
anisotropy and takes the isosolutal interface
assumption. It is indicated that the present model
can give a satisfying description to the experiment

data, especially at low bath undercoolings. One of
the main reasons lies in the fact that the present
model introduces the effect of the forced convection
on solutal diffusion. It can be further supported by
Fig. 4, in which the interfacial migration velocity V'
predicted by the present model with nonideal fluid
case is obviously faster than that predicted by the
one ignoring the effect of convection.

40
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. e Experiment [36]
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2 20}
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Fig. 7 Comparison of experimental and predicted results
of interfacial migration velocity V' as function of bath
undercooling AT for CuyNis alloy

4 Conclusions

(1) The larger the coefficient of viscosity, the
slighter the effect of the convection on solute
diffusion. The forced convection can depress solute
segregation at the solid—liquid interface.

(2) Model comparison indicates that the effect
of convection on solute diffusion is remarkable
compared with the ignorable effect of convection
on thermal diffusion, at low bath undercooling. At
high bath undercooling, the effect of convection is
very slight.

(3) Experimental comparison shows that the
present model can give a satisfying description to
the experimental data for the CuyNi;, alloy,
especially at low bath undercoolings, benefiting by
introducing the effect of forced convection on
solutal diffusion.
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