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Abstract: In order to solve the problems of excess ovality and cross-section distortion of longitudinally submerged arc 
welding pipes after forming, a new three-roller continuous setting round process was proposed. This process can be 
divided into three stages: loading stage, roll bending stage and unloading stage. Based on the discretization idea, the 
mechanical model of the primary statically indeterminate problem of the longitudinally submerged arc welding pipes at 
the roll bending stage was established, and the deformation response was obtained. The simulation and theoretical 
results show that there are three positive bending regions and three reverse bending regions along the circumference of 
the pipe. The loading force of each roller shows growth, stability and downward trend with time. The error between the 
theoretical fitting curve and the simulated data point is very small, and the simulation results verify the reliability of the 
theoretical calculation. The experimental results show that the residual ovality decreases with the increase of the 
reduction, and the reduction of the turning point is the optimum reduction. In addition, the residual ovality of the pipe is 
less than 0.7% without cross-section distortion, which verifies the feasibility of this process. 
Key words: longitudinally submerged arc welding pipes; three-roller continuous setting round; statically indeterminate 
problem; mechanical model; ovality; optimum reduction 
                                                                                                             

 

 

1 Introduction 
 

The longitudinally submerged arc welding  
(LSAW) pipe is a typical large thin-walled pipe and 
is used in various industrial fields. Similarly, 
thin-walled pipes are also essential lightweight 
components in the aerospace industry. Scholars 
have done more and more extensive researches on 
thin-walled pipes. JUNIOR et al [1] studied a 
failure analysis of elastic-plastic thin-walled pipes 
under a combination of internal pressure and axial 
load (monotonic or alternating). HOSSEINI et al [2] 
evaluated an energy absorption capacity of the 
Al5083 thin-walled tube and also studied       
the microstructure, mechanical properties, and 

anisotropy coefficients in the peripheral and axial 
directions. CHEGENI et al [3] used experimental 
and numerical methods to study the influence of 
corrosion depth and corrosion shape on the 
performance of corroded thin-wall steel pipes under 
the combined action of internal pressure and four- 
point bending load. ZHAO et al [4] proposed a 
more direct assessment for welded clad pipes based 
on a modified reference strain method, and by using 
the strain-controlled boundary condition, various 
pipe and weld geometrical shapes were considered 
in the analysis matrix. BAYKASOĞLU et al [5] 
researched optimum design of square thin-walled 
pipe with novel lattice structure under axial impact 
loading by using a compromise programming  
based on the multi-objective crash worthiness 
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optimization procedure. HUANG and ZHANG [6] 
studied an indentation mode of thin-walled pipes 
under the three-point bending condition, established 
a theoretical model for the stress response of 
thin-walled pipes, and verified the correctness of 
the theoretical prediction through experiments and 
simulation. JIANG et al [7] analyzed a numerical 
control rotating-drawing bending method for 
thin-walled pipe with a large diameter to thickness 
ratio, which was of great significance to enrich the 
bending forming process of large diameter-to- 
thickness ratio thin-walled (LDTRTW) pipe. TAO 
et al [8] proposed a modified Johnson−Cook (JC) 
model by conducting uniaxial tensile tests on large 
diameter thin-walled (LDTW) Ti–6Al–4V tubes 
and this model had high prediction accuracy. YU  
et al [9] studied an elastic−plastic secondary 
indeterminate problem of thin-walled pipe and 
verified the reliability of theoretical calculation 
through numerical simulation. LI et al [10] 
proposed and realized a sequential multi-objective 
optimization of LDTW Al-alloy tube bending under 
uncertainties and verified it by the experimental 
design and the finite element method. 

With the increasing demand for LSAW pipes 
in various fields, more stringent requirements have 
been put forward for the quality and performance of 
pipes. Ovality is one of the important standards for 
evaluating the quality of pipes. However, due to the 
heterogeneous stress distribution of pipes, the 
ovality will increase and cross-section distortion 
will occur during the process of transportation and 
long-term placement, so pipes have to be set round. 
ZHAO et al [11,12] analyzed a process of 
expansion and setting round and gave the 
relationship between residual ovality and expanding 
amount. Based on the basic assumptions of pure 
bending with small deformation, ZHAO et al [13] 
theoretically proved an equivalence between curved 
beams over-bending straightening and straight 
beams pure bending. It laid a theoretical and 
experimental foundation for the process of over 
bending straightening. ZHAN et al [14,15] 
established a pipe-end ovality intelligent 
measurement system, and they also set up an 
intelligent over-bending setting round control 
system. YU et al [16] proposed a reciprocating 
bending uniform curvature theorem and verified it 
experimentally. At the same time, YU et al [17−19] 
presented a three-roller setting round process and 

carried out theoretical analysis and experimental 
research on the process. HUANG et al [20] carried 
out simulation and experiments on the three-roller 
external setting round process for thin-walled pipes, 
compared the experimental results with the 
simulation results, and found that the residual 
ovality was less than 0.2%. 

As for the solution of statically indeterminate 
problems and the comparison of various solution 
methods, scholars [21−25] have made a detailed 
research and verified it through simulation and 
experiments. CAO and DING [21] studied a 
statically indeterminate problem of 3R2T parallel 
mechanisms, and the correctness of the theoretical 
results was verified by the finite element model. 
NAYAK and SAHA [22] investigated a growth law 
of the elastic leading edge in the elastic state of 
ultra-static non-uniform rod. They also realized the 
solution algorithm by using MATLAB 
computational simulation software and verified the 
formula for some simplified problems. GHUKU 
and SAHA [23] put forward a semi-analytical 
method for the solution of a statically indeterminate 
non-uniform bar problem and realized the solution 
algorithm by utilizing MATLAB computational 
simulation software. TAN et al [24] presented a 
method for analysis of statically indeterminate 
trusses under mechanical-thermal-assembly 
loadings. The method not only overcame the 
traditional geometric method to solve the defects of 
compatible equations, but also had the advantages 
of simple process, good generality and so on. 
LÓPEZ et al [25] designed an innovative test 
system to develop shear failure before and after 
yielding of the flexural reinforcement in both 
statically determinate and indeterminate structures. 

Based on the characteristics of three-roller 
setting round and LSAW pipes, a new method of 
setting round is put forward, namely, three-roller 
continuous setting round process. In the process, 
three rollers are placed outside the pipe. By 
controlling the reduction and rotating speed of the 
three rollers and the feeding speed of the push plate, 
the forward and rotary movement of the pipe is 
realized. This process can be divided into three 
stages: loading stage, roll bending stage and 
unloading stage. Based on the discretization idea, 
the mechanical model of the primary statically 
indeterminate problem of the pipe in the roll 
bending stage is established, and the deformation 
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response is obtained. Through numerical simulation, 
the theoretical model is verified, and the 
deformation behavior of the setting round process is 
described. The influence of this process parameters 
on the residual ovality is studied by experiments. 
Additionally, this process is especially suitable for 
setting round of thin-walled pipes with large length 
to diameter ratio and small thickness to diameter 
ratio. 
 
2 Three-roller continuous setting round 

process 
 

As shown in Fig. 1, the process can be divided 
into three stages on average: loading stage, roll 
bending stage and unloading stage. The three stages 
are evenly distributed in the whole setting round 
process. 
 

 
Fig. 1 Three-roller continuous setting round process 

 
Three identical rollers are placed 

symmetrically in space and the pipe is placed 
among the three rollers. The actuating motor drives 
the two lower rollers to rotate synchronously and 
uniformly, so that the pipe rotates under the friction 
of two lower rollers. Then the upper roller also 
starts to rotate under the action of pipe friction, at 
the same time, the push plate drives the pipe 
moving forward to achieve the whole movement 
process. During the process of setting round, each 
micro-section of the pipe alternately experiences 
three positive bending regions and three reverse 
bending regions, that is, the reverse bending regions 
in contact with each roller and the positive bending 
regions between adjacent rollers. Moreover, both 
ends of each roller are provided with a taper. The 
taper of the loading end ensures that the pipe is 
smoothly bitten among the three rollers under the 
push of the push plate. The taper of the unloading 
end is to make sure that the pipe is smoothly 
unloaded after experiencing multiple reciprocating 
bending, so that the curvature of the pipe is unified. 
The roll bending stage is a straight section to ensure 
that the pipe produces elastic−plastic deformation at 

this stage. 
The rollers tapers of the loading end and the 

unloading end are as follows, respectively: 
 

max 1 p
j

g

3(2 2 )H a D
α

L

 
                   (1) 

 
max

x
g

6H
α

L
                              (2) 

 
where αj is the roller taper of the loading end (rad); 
αx is the roller taper of the unloading end (rad); Hmax 
is the maximum reduction allowed for the pipe 
setting round (mm); a1 is the long axis radius of the 
pipe (mm); Dp is the outer diameter of the pipe 
(mm); Lg is the length of the roller (mm). 

As shown in Fig. 2, each roller loads the same 
distance toward the center of the pipe, and each 
roller stroke is the reduction, which is recorded as 
 
H=R1+R−Hj                             (3) 
 
where H is the reduction (mm); R1 is the radius of 
the roller (mm); R is the radius of the pipe (mm); Hj 
is the distance between the center of the roller and 
the center of the pipe after loading (mm). 
 

 
Fig. 2 Loading parameter diagram 

 
3 Theoretical analysis 
 

In the whole continuous setting round process, 
the maximum bending curvature, minimum bending 
curvature and maximum loading force all are 
generated at the roll bending stage. Therefore, the 
theoretical analysis in this work mainly focuses on 
the roll bending stage, as shown in Fig. 3. 
 
3.1 Static analysis 

According to the deformation characteristics of 
the roll bending stage, ignoring the influence of 
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inertial force, the static analysis is performed at the 
roll bending stage. Since the three-roller continuous 
setting round process is a small deformation 
problem, according to the symmetry of the bending 
deformation of LSAW pipes at the roll bending 
stage, one-third thin-walled circular pipe is selected 
as the research object. The mechanical model of the 
roll bending stage is illustrated in Fig. 4. 
 

 
Fig. 3 Schematic diagram showing roll bending stage of 

three-roller continuous setting round process 
 

 

Fig. 4 Mechanical model of one-third circular pipe 
 

According to the static equilibrium equation, 
the following can be obtained as 
 

0,x  Fa+Fbcos60°=(F/2)cos30°          (4) 

0,y  Fbsin60°+(F/2)cos60°=F/2         (5) 
 

Thus, 
 

a b

3

6
F F F                             (6) 

 
where F is the loading force of roller (N); Fa is the 
horizontal cross-section force at position A (N); Fb 
is the horizontal cross-section force at position    
B (N). 

According to Eqs. (4)−(6), the outer bending 

moment of arbitrary micro-section of the pipe-wall 
can be obtained as 
 

a

3
sin (1 cos )

2 6

F
M M R FR      , 0≤θ≤2/3π 

 (7) 

where θ is the angle between arbitrary micro- 
section of the pipe-wall and the axis y (rad); M   
is the outer bending moment with an angle of θ 
from the axis y (Nmm); aM  is the outer bending 
moment of the upper cross-section (Nmm); R is the 
geometric neutral layer radius of the circular pipe 
(mm). 
 
3.2 Elastic−plastic analysis 
3.2.1 Basic assumptions 

(1) Pure bending assumption: Because the 
bending process is a small deformation process,   
it is considered to conform the pure bending 
deformation characteristics. 

(2) Neutral layer coinciding assumption: The 
strain neutral layer, stress neutral layer and 
geometric neutral layer always coincide during the 
deforming process. 

(3) Bilinear hardening material model 
assumption: Effects of initial strain and change of 
material properties are neglected. 

(4) Plane section assumption: Arbitrary plane 
section remains plane after deforming and no 
aberrance occurs. 

(5) Uniaxial stress state assumption: Any 
particle on the pipe is uniaxially stretched or 
compressed during the deforming process. 

According to the basic assumption (3), the 
relationship between strain (ε) and stress (σ) is 
 

s
0

s s

s
0

,      

= ,               

, <

D
E

E
E E

D
E


  

 
  


  

  

   



 

            (8) 

 

0 s1
D

E
    

 
                          (9) 

 
where σs is the yield stress (MPa); E is the elastic 
modulus (GPa); D is the plastic modulus (MPa). 

According to the basic assumption (4), the 
strain distribution on the pipe-wall micro-section is 
linear: 
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0Kw K w                              (10) 
 
where K0 is the initial curvature of the geometric 
neutral layer (mm−1), K0=1/R; K is the curvature of 
the geometric neutral layer after loading (mm−1); w 
is the distance from any particle on the pipe-wall to 
the geometric neutral layer (mm). 
3.2.2 Relationship between bending curvature and 

inner bending moment 
According to the basic assumption (4), the 

maximum strain on the pipe-wall cross-section 
occurs on the outer surface: 
 

max 0( )
2

t
K K                          (11) 

 
where t is the thickness of pipe-wall. 

As can be seen from the basic assumption (3), 

when s
max E


  , the cross-section of the curved 

beam is in an elastic state, so the elastic limitation 
bending curvature of the positive and reverse 
bending can be expressed as 
 

e s
Plim 0

2
K K

tE


                         (12) 

 
e s
Rlim 0

2
K K

tE


                         (13) 

 
where e

PlimK  is the elastic limitation curvature of 

positive bending (mm−1); e
RlimK  is the elastic 

limitation curvature of reverse bending (mm−1). 
According to the basic assumptions (2)−(5), 

the relationship between inner bending moment and 
bending curvature can be obtained: 
 

2 2
0 0 s

0

e
lim

e e
0 lim lim

2 2
0 0 s

0

e
lim

( ) ,
4 3

d ( ),

( ) ,
4 3

P

R P

R

B t B w
DI K K

    K K

M w A EI K K  K K K

B t B w
DI K K

    K K





  





 



 


  


 
    

   





  

 (14) 

s
s

0( )
w

E K K





                        (15) 

 
where Mθ is the inner bending moment (Nmm); Kθ

 

is the bending curvature (mm−1); B is the width 
(mm); I is the elastic moment of inertia (mm4); ws is 
the height from the elastic−plastic demarcation 
point to the geometric neutral layer (mm). 

According to the Cardano formula and 
Shengjin formula, the roots of Eq. (14) is 
determined, so Kθ can be expressed as (the 
derivation is shown in appendix) 
 
K   
 

2 3

3

2 3 2
s3

0

0

2 2
s s
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2 3
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2 3
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0 1

2 2 3

, 0
2 2 3 3 6

2cos
3

, 0
3 3

,
6 6

2 2 3

,
2 2 3 3

q q p

Btq q p a
K  Δ M

m
a

K  Δ

M Bt Bt
K M

EI

q q p

q q p a
K  Δ










 


              



            

    
   
     

   

         
   

          
   

2
s

1
1

1
0 1

0
6

2cos
3

, 0
3 3

Bt
M

m
a

K  Δ






















 
 
 
 
 

  

            

 

(16) 
 
where  

2
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4
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
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q p
Δ
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   

. 

 
3.3 Discrete analysis 

According to the above static analysis and 
elastic−plastic analysis, aM  is an unknown 
variable, so the static bending of the roll bending 
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stage is an indeterminate problem. However, the 
relationship between the outer bending moment and 
bending curvature cannot be determined by using 
the existing static equilibrium conditions and the 
relationship between the inner bending moment and 
bending curvature. Therefore, it is necessary to seek 
other conditions. 

By using the idea of geometric discretization, 
one-third of the circular pipe is uniformly divided 
into N equal parts along the circumference, in other 
words, one-third of the circular pipe is composed of 
N pipe-wall elements with the same geometric 
parameters and connected by nodes. As shown in 
Fig. 5, from the origin of the coordinate system, 
each element serial number is ①, ②, ③... , the 
node serial number is 0, 1, 2... N. Taking the node i 
(i≤N) as the origin of coordinate, and taking the 
tangential direction and the normal direction of the 
geometric neutral layer of the pipe at the node i as 
the xi axis and yi axis, thus the local follow-up 
coordinate system is established. 
 

 

Fig. 5 One-third discrete circular pipe 

 
As shown in Fig. 6, the pipe-wall element i is 

taken as the research object. Under the local 
coordinate system xi−1oi−1yi−1, the coordinate 

1 1
0 0( ,  )i i

i ix y   of the node i before loading can be 
represented as 
 

1
0 0

1
0 0

sin( ) 

(1 cos( ))

i
i i

i
i i

x R

y R









  


  
                 (17) 

0

2

3i N
 

                               (18) 
 
where 1

0
i
ix   is the initial x-coordinate of the node i 

in the coordinate system xi−1oi−1yi−1 (mm); 1
0

i
iy   is 

the initial y-coordinate of the node i in the 

coordinate system xi−1oi−1yi−1 (mm); 0i  is the 
initial angle between the pipe-wall cross-section 
where the node i is located and the axis yi−1 (rad). 
 

 
Fig. 6 Pipe-wall element before and after loading 

 
After loading, the coordinate is 1 1( , )i i

i ix y  , 
which is expressed as 
 

 

1

1

1
sin( ) 

1
1 cos( )

i
i i

i

i
i i

i

x
K

y
K









  

   


                 (19) 

 
where 1i

ix   is the loaded x-coordinate of the node i 
in the coordinate system xi−1oi−1yi−1 (mm); 1i

iy   is 
the loaded y-coordinate of the node i in the 
coordinate system xi−1oi−1yi−1 (mm); Ki is the 
curvature of the pipe-wall element i after loading; 
∆θi is the angle between the pipe-wall cross-section 
where the node i is located and the axis yi−1 after 
loading (rad). 

According to the basic assumption (1), the 
length of the pipe-wall element remains unchanged 
before and after deformation, the following can be 
obtained: 

0

1
i i

i

R
K

                             (20) 

In order to obtain the final contour curve of the 
deformed pipe-wall cross-section, the coordinates 
of each node should be unified according to the 
relationship among the local coordinate systems. 
Therefore, according to the definition of the local 
coordinate system, the coordinate value ( , )i i

i ix y  is 

0

0

i
i

i
i

x

y

 



                               (21) 

According to Eqs. (17)−(20), the coordinates 
of each node are unified into the local coordinate 
system x0o0y0, and the iterative formula can be 
expressed as 
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1 1 1
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 
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   

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          (22) 

1

1 0
1

i

i iR K 


                            (23) 

 
where θi−1 is the angle between the pipe-wall 
cross-section where the node i−1 is located and the 
axis y0 after loading (rad). 
 
3.4 Solution of statically indeterminate problem 

Because the static bending is a primary 
statically indeterminate problem, a compatibility 
equation of deformation is required to solve it. 
Depending on the continuity and symmetry of the 
bending deformation, the pipe-wall cross-section 
where the node 0 is located is always 120° from the 
yN axis during the deformation process, and then, 
 

1

2

3

N

i
i




                              (24) 

 
By substituting Eqs. (18) and (20) into 

Eq. (24), the compatibility equation of deformation 
can be obtained as follows: 
 

1

N

i
i

N
K

R

                             (25) 

 
When the deformation of the pipe is large 

enough, the outer-wall of the pipe will fit with the 
surface of each roller, so the pipe cross-section is 
divided into two regions: non-attaching-roller 
region and attaching-roller region. In the 
non-attaching-roller region, the curvature of the 
outer-wall of the pipe cannot be greater than the 
surface curvature of each roller, because the 
pipe-wall element is restrained by each roller. In the 
attaching-roller region, since the pipe-wall element 
and each roller have been fitted, the outer-wall 
curvature of the pipe is equal to the surface 
curvature of each roller. Thus, after loading, the 
curvature Ki of geometric neutral layer of the pipe 
needs to meet the following condition: 
 

1

2

2iK
R t




                            (26) 

 
The load increment method is used to solve the 

relation among the loading force F of each roller, 
the bending curvature K, and reduction H. The 
loading force of each roller is evenly divided into 
several loading increments and applied step by step. 

And in each increment step, parameters such as 
bending curvature and node coordinates of each 
element are solved iteratively. It is supposed that 
the loading increment of each step of each roller is  
f, and the number of loading increment steps is k. 
According to Eq. (7), the bending moment of the 
pipe-wall element i can be obtained as follows: 

a

3
sin (1 cos )

2 6i

k
i i

fk
M M R fkR         (27) 

2

3i

i

N
 
                                (28) 

 
where 

i

kM  is the outer bending moment of the 
pipe-wall cross-section where the node i is located 
after loading k times (Nmm); θi is the angle 
between the pipe-wall cross-section where the node 
i is located and the axis y (rad). 

Since the inner and outer bending moments of 
arbitrary cross-section of the pipe are equal in the 
deformation process, namely, 
 

i
M M                               (29) 
 

Combined with Eqs. (16), (27), (28) and (29), 
the geometric neutral layer curvature of the 
pipe-wall element after loading can be obtained as 
follows: 
 
Ki=φ((Ma, F))                          (30) 
 
where  is the iteration error. 

When the loading force of each roller is  
known, Eqs. (24), (25) and (30) constitute a system 
of nonlinear equations for N+1 elements about Ma 
and Ki(i=1, 2, …, N) composed of N+1 equations. 
Furthermore, in each incremental step, Eqs. (24) 
and (25) are used as the discriminant conditions to 
carry out one-dimensional iterative search solution 
for Ma. The initial iteration value of Ma is set to  
zero, and λ is the iteration step, as shown in Fig. 7. 
 
4 Numerical simulations 
 
4.1 Finite element model 

By using ABAQUS 6.10 software packages, 
the finite element model of three-roller continuous 
setting round process is established, as shown in 
Fig. 8. Then, two sets of pipes of different materials 
with the thickness of 2 mm are selected. The 
geometrical dimensions and material properties of 
pipes and rollers are shown in Tables 1 and 2. Since 
the main research object of the process is thin- 
walled metal pipes, the pipe is set to a deformable  
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Fig. 7 Program flow of mechanical model 

 

 
Fig. 8 Finite element model of three-roller continuous 

setting round process 

 
body. Also considering the symmetry of the 
deformation condition, one-third of the pipe is 
modeled. And the pipe is discretized by using the 
8-node linear hexagonal incompatible module 
elements (C3D8I). In addition, because the strength 
and stiffness of each roller are much greater than 
those of the pipe, it is set as analytical rigid. Finally, 
the contact property between the outer surface of 

the pipe and the outer surface of each roller is 
defined as face-to-face contact. The sliding formula 
is finite sliding. The tangential property is a penalty 
function, and the friction coefficient is 0.18. 
 
Table 1 Geometric dimensions of pipes and rollers 

DP/mm 
L/

mm
Dg/ 
mm 

αj/ 
rad 

αx/ 
rad 

Lg/
mm

120, 140, 160 600 120 0.022 0.015 600

L−Length of pipe; Dg−Diameter of roller 
 
Table 2 Material performance parameters of pipes 

Material E/GPa σs/MPa D/MPa 

ST12 179 189 1500 

304 234 294 2842 

ST12− ST12 stainless steel; 304−304 stainless steel 

 
4.2 Results and discussion 
4.2.1 Deformation behavior 

As can be seen from Fig. 9, there are six 
regions along the circumference of the pipe, namely 
three positive bending regions and three reverse 
bending regions, which are evenly distributed on 
the entire pipe cross-section. 
 

 

Fig. 9 Distribution of equivalent stress at roll bending 

stage (Material: 304, t=2 mm) 

 
Similarly, it can be seen from Fig. 10 that the 

residual stress of each micro-section of the 
unloaded pipe is relatively small and varies between 
8.4 and 60.3 MPa, and the distribution of the 
residual stress is relatively uniform. Additionally, 
the main reason for the residual stress in the pipe 
after unloading is that the deformation degrees of 
the inner and outer layers of the pipe are 
inconsistent during the reciprocating bending 
process. The residual stress is the key to judge the 
quality of pipes, that is, the smaller the residual 
stress is, the better the quality of a pipe is. 
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Fig. 10 Distribution of equivalent stress in unloading 

stage (Material: 304, t=2 mm) 

 
The equivalent stress of 5 nodes along the 

thickness direction of the pipe is extracted at the 
two stages of roll bending and unloading, as can be 
seen from Fig. 11. During the roll bending stage, 
the equivalent stress gradually decreases from the 
inner layer (Node 1) and outer layer (Node 5) to the 
geometric neutral layer (Node 3) of the pipe, and 
the equivalent stress is symmetrically distributed 
about the geometric neutral layer. During the 
unloading stage, the equivalent stress of the pipe 
inner and outer layers decreases significantly and is 
slightly different from that of the geometric neutral 
layer, indicating that there is no stress concentration 
and the residual stress of the pipe is very small after 
unloading. 
 

 
Fig. 11 Distribution of equivalent stress along thickness 

direction (Material: 304, t=2 mm) 

 
The equivalent stress of outer circumferential 

nodes of the pipe is extracted at the two stages of 
roll bending and unloading, as shown in Fig. 12. 
During the roll bending stage, the equivalent stress 
of the pipe shows a waveform distribution along the 
circumferential direction with six peaks 
corresponding to each bending region. The 

equivalent stress decreases from the center of each 
bending region to both sides of the pipe. Since the 
contact between the pipe and the roller is linear, the 
reverse bending region is smaller than the positive 
bending region. Furthermore, after the pipe is 
unloaded, the loading force of each roller on the 
pipe is gradually reduced, and the equivalent stress 
of each node of the pipe tends to be similar and 
fluctuates about 50 MPa. 
 

 
Fig. 12 Distribution of equivalent stress along 

circumferential direction (Material: 304, t=2mm) 

 
The distribution of the maximum and 

minimum principal stresses at the roll bending stage 
is shown in Fig. 13, and the results are shown in 
Table 3. Positions A and C are located in the reverse 
bending region, and the maximum principal stress 
is generated in the inner layer of the pipe (Nodes 
2494 and 3076), while the minimum principal stress 
is generated in the outer layer of the pipe (Nodes 
3313 and 3895), respectively. Position B is in the 
positive bending region, and the maximum and 
minimum principal stresses are generated in the 
outer layer of the pipe (Node 3576) and the inner 
layer of the pipe (Node 2757), respectively. 
Therefore, the absolute values of the maximum and 
minimum principal stresses at each position of the 
pipe are basically equal, proving that the 
deformation characteristics of the pipe are 
consistent with the pure bending characteristics. 

Figure 14 shows the change of loading force of 
each roller with time. This process has a total of 
600 s. 0−200 s is the loading stage, when t=75 s, 
three rollers start to contact with the pipe, and   
the loading force of each roller increases     
gradually. 200−400 s is the roll bending stage, 
during 250−350 s, the loading force of each roller 
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Fig. 13 Distribution of maximum (a) and minimum (b) 

principal stresses (Material: 304, t=2 mm) 

 

Table 3 Maximum and minimum principle stresses 

Position 
Node 

ID 

Principle stress/MPa 

Maximum Minimum 

A 
2494 +331 − 

3313 − −332 

B 
3576 +343 − 

2757 − −349 

C 
3076 +330 − 

3895 − −333 

 
reaches the maximum value and shows a stable 
trend. 400−600 s is the unloading stage, the loading 
force of each roller gradually decreases, and when 
t=525 s, the roller begins to separate from the pipe. 
In a word, the loading force of each roller increases, 
stabilizes and decreases with time. At the same  
time, the absolute value of the loading force of 
three rollers is basically the same, proving that the 
loading forces of three rollers are equal in the 
continuous setting round process. 

 

 

Fig. 14 Variation of loading force of each roller with 

time (Material: 304, t=2 mm) 
 
4.2.2 Comparison of theoretical and simulation 

results 
Built on the above theoretical model and finite 

element model, it is assumed that one-third of the 
circular pipe is composed of 1000 micro-pipe-wall 
elements, namely, N=1000. Then through 
theoretical analysis and numerical simulation, the 
calculation results of the horizontal cross-section 
force, bending moment, bending curvature and 
loading force of each roller are obtained. 

Figure 15 shows the relationship between 
horizontal cross-section force and bending moment 
in the theoretical analysis. It can be seen from 
Fig. 15 that, for different pipe-wall thicknesses, the 
horizontal cross-section forces Fa and Fb increase 
with the increase of the reduction H, and the turning 
point of two curves is the elastic−plastic 
demarcation point. Additionally, the bending 
moments Ma and Mb gradually increase with the 
increase of H, and gradually approach to the 
constant value, which indicates the beginning of the 
roll bending stage. The greater the thickness of the 
pipe, the greater the horizontal cross-section force 
and bending moment. 

Figure 16 shows the distribution of bending 
curvature and bending moment obtained by 
theoretical calculation along the one-third circular 
pipe. The result shows that the whole pipe has three 
positive bending regions and three reverse bending 
regions, which is consistent with the simulation 
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Fig. 15 Variation of horizontal cross-section force and 

bending moment with reduction (Material: 304; Fa=Fb, 

Ma=Mb) 
 

 

Fig. 16 Distribution of bending curvature and bending 

moment of one-third pipe (Material: 304) 
 
results of Fig. 9. As can be seen from Fig. 16, for 
different thicknesses, when K>1/R and M>0, the 
region where the pipe is located is the reverse 
bending region. On the contrary, when K<1/R and 
M<0, the region where the pipe is located is the 

positive bending region. Furthermore, the 
maximum bending curvature Kmax appears in the 
center of the pipe in contact with the roller, and the 
minimum bending curvature Kmin appears in the 
center of the region between any two rollers. 

The changes of the maximum bending curvature 
Kmax and minimum bending curvature Kmin with the 
reduction H are shown in Fig. 17. As can be 
observed in Fig. 17, at the beginning, the maximum 
bending curvature of the pipe increases linearly 
with the increase of the reduction. When the 
maximum bending curvature increases to the 
position of the elastic−plastic demarcation point, 
the outer-wall of the pipe begins to contact with the 
roller until the maximum bending curvature of the 
pipe increases slowly and gradually becomes stable. 
The minimum bending curvature decreases with the 
increase of the reduction. In addition, the decrease 
speed of the minimum bending curvature is almost 
equal to the increase speed of the maximum 
bending curvature, which proves that the plastic 
deformation occurs simultaneously in the positive 
and reverse bending regions. 
 

 
Fig. 17 Variation of maximum and minimum bending 

curvatures with reduction (Material: 304) 

 
Figure 18 shows the loading outline of 

one-third pipe obtained by theoretical calculation 
and numerical simulation. According to the 
curvature distribution of the loaded pipe as shown 
in Fig. 18, there are three positive bending regions 
and three reverse bending regions in the whole pipe 
cross-section. The theoretical fitting curve outline is 
in good agreement with that of the simulated curve 
outline after unloading. 

Figure 19 shows the relationship between   
the loading force of each roller and the reduction  
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Fig. 18 Outline of one-third pipe after loading (Material: 

304, t=2 mm) 

 

 
Fig. 19 Relationship between loading force of each roller 

and reduction (Material: 304, t=2 mm) 

 
obtained by theoretical calculation and numerical 
simulation. As can be seen from Fig. 19, the loading 
force of each roller increases with the increase of 
the reduction. The pipes with the thickness of 2 and 
1.5 mm begin to produce plastic deformation under 
the reduction of 1.5 and 2.0 mm respectively, 
indicating that the reduction required for plastic 
deformation decreases with the increase of 
pipe-wall thickness. The error between the 
theoretical fitting curve and the simulated data point 
is very small, which indicates that the simulation 
results verify the reliability of the theoretical 
calculation. 
 
5 Experimental 
 
5.1 Materials 

ST12 and 304 stainless steel plates are made 
by rolling machine with the thickness of 2 and 

1.5 mm and outer diameter of 140 and 160 mm, 
respectively. Then each pipe is pressed to form an 
oval. The pipe with different initial ovalities can be 
obtained by changing the pressure. 

 
5.2 Experimental process 

Firstly, under the preset process parameters, 
the pipe is placed on the setting round equipment, 
and the cylinder supports the balance of the pipe to 
be setting round. Then, the actuating motor is 
controlled by the numerical control system to drive 
the lower rollers to rotate at a constant speed 
synchronously, so as to ensure the rotation of the 
pipe in the process of continuous setting round. 
Meanwhile, the upper roller also starts to rotate 
under the action of the friction force of the pipe. At 
the same time, the actuating motor (located inside 
of the equipment pedestal) on the linear sliding 
platform module is controlled to ensure that the 
pipe can advance at a uniform speed under the 
action of the push plate, so as to complete the whole 
continuous setting round process. The experimental 
equipment is shown in Fig. 20. 

 

 

Fig. 20 Experimental equipment 

 
The coordinates of points around the outer 

diameter of the pipe after unloading are obtained by 
using CMM, and the lattice data are imported into 
UG software for fitting. By substituting the data of 
the long axis and short axis of the pipe into Eq. (31), 
the residual ovality (δ) of the pipe can be 
calculated. 
 

p

2( )
100%

a b

D
 
                       (31) 

 
where a is the long axis radius of the pipe (mm); b 
is the short axis radius of the pipe (mm). 
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5.3 Results and discussion 
It can be seen from Fig. 21 that the residual 

ovality of the pipe gradually decreases with the 
increase of the reduction. Moreover, the reduction 
when the decreasing trend of residual ovality begins 
to flatten is selected as the optimum reduction of 
the pipe. That is, for ST12 pipes and 304 pipes with 
an outer diameter of 140 mm and a thickness of 
2 mm, the optimum reductions are 1.5 and 2.0 mm, 
respectively (δ0 is the initial ovality). 
 

 

Fig. 21 Effect of reduction on residual ovality 

 
Figure 22 shows the change of the residual 

ovality of 304 pipes with different initial ovalities 
under the optimum reduction. According to Fig. 22, 
under the optimum reduction, the difference 
between the residual ovality of the pipes with 
different initial ovalities is very small, indicating 
that the residual ovality is independent of the initial 
ovality. This result effectively proves that the 
reciprocating bending can eliminate the difference 
of the initial curvature and finally unify the 
curvature to the same direction and value [16]. 
 

 
Fig. 22 Effect of initial ovality on residual ovality 

The relative thickness of the pipe is defined as 
t/Dp. Figure 23 shows that the optimum reduction of 
the pipe decreases with t/Dp. And corresponding to 
the same relative thickness, the optimum reduction 
of 304 pipes is larger than that of ST12 pipes. In 
addition, Fig. 24 shows the forming effect of pipes 
after springback. 
 

 
Fig. 23 Effect of relative thickness on optimum reduction 

 

 
Fig. 24 Forming effect of ST12 (a) and 304 (b) pipes 

 

6 Conclusions 
 

(1) The three-roller continuous setting round 
process for LSAW pipes is proposed firstly, which 
can be divided into three stages: loading stage, roll 
bending stage and unloading stage. It is especially 
suitable for thin-walled metal pipes with large 
length to diameter ratio and small thickness to 
diameter ratio. 

(2) During the process, there are three positive 
bending regions and three reverse bending regions 
along the circumference of the pipe. The loading 
force of each roller shows an increasing, stable and 
decreasing trend with time. 

(3) The error between the theoretical fitting 
curve and the simulated data point is very small, 
and the simulation results verify the reliability of 
the theoretical calculation. The residual ovality of 
the pipes decreases with the increase of the 
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reduction, and the reduction of the turning point is 
the optimum reduction. The experimental results 
show that the ovality of pipes can be less than 0.7% 
without cross-section distortion, which verifies the 
feasibility of three-roller continuous setting round 
process. 
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Appendix 

According to Cardano formula and Shengjin 
formula, the roots of Eq. (14) is determined, and the 
process is as follows: 

(1) Positive bending elastic−plastic 
deformation 
 

2
3 2 s( )

4

M D E Bt
K K

DI IDE
 

    （ ）  
 

3
s

3

( )
0

3

D E B

IDE


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For the general cubic equation of a single 

variable: y3+ay2+by+c=0. Set y=x−a/3, then the 
form of x3+px+q=0 can be deduced. Therefore, 
according to Eq. (A1), it can be obtained that 
 

3 2 0y ay c                           (A2) 
 

Then, by substituting y=x−a/3 into Eq. (A2), 
we can get 
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When 2 3( ) ( ) 0,
2 3

q p
Δ    the rational 

number root can be obtained: 
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When 2 3( ) ( ) 0,
2 3

q p
Δ    the positive integer 

roots are required, then, 
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(2) Elastic deformation 
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(3) Reverse bending elastic−plastic 

deformation 
 

2
3 2 s( )

4

M E D Bt
K K

DI IDE
 

    （ ）  

 
3
s

3

( )
0

3

E D B

IDE


                    (A7) 

 
Similarly, we can get 

 
3 2

1 1 0y a y c                          (A8) 
 

Then, by substituting 1

3

a
y x   into Eq. (A8), 

we can get 
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When 2 31 1
1 ( ) ( ) 0,

2 3

q p
Δ    the rational 

number root can be obtained: 
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When 2 31 1
1 ( ) ( ) 0,

2 3

q p
Δ    and positive 

integer roots are required, then, 
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摘  要：针对大型直缝焊管成形后存在的椭圆度过大和截面畸变等问题，提出一种新的三辊连续矫圆工艺。该工

艺可分为三个阶段：加载阶段、辊弯矫圆阶段和卸载阶段。基于离散化的思想，建立大型直缝焊管辊弯矫圆阶段

的一次静不定问题的力学模型，得到矫圆过程中管材的变形响应。模拟和理论计算结果表明，管材截面沿周向存

在三个正向弯曲区域和三个反向弯曲区域；各辊载荷随时间呈现增长、稳定、下降趋势；理论拟合曲线与模拟数

据点之间的误差很小，仿真结果验证了理论计算的可靠性。实验结果表明，管材的残余椭圆度随压下量的增加而

减小，并且转折点处的压下量是管材的最佳压下量；此外，管材的残余椭圆度小于 0.7%，且无截面畸变，验证了

大型直缝焊管三辊连续矫圆工艺的可行性。 

关键词：大型直缝焊管；三辊连续矫圆；静不定问题；力学模型；椭圆度；最优压下量 
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