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ABSTRACT

A new non-quadratic orthotropic yield function is developed in the present paper. It does not have those

limitatioins which existing non-quadratic anisotropic yield functions have, such as being usable only for the

plane stress problems and in-plane isotropic sheet metals, and that the directions of principal stress or the ex-

ponent in yield function can not be arbitrary. etc. Furthermore all of the material constants involved in this

yield function can be determined by performing only uniaxial tension test.

This yield function contains three new parameters, of which each one is present for one principal plane of

anisotropy. Their values can be, generally, selected to equal 3. Other methods to determine the value of these

parmeters are discussed and given in this paper.

From the regression estimate for the yield stress in five directions of several kinds of titanium metal sheet,

it is obtained that the suitable value of exponent in yield function for titanium sheets is 6 or 8. This is con-

firmed from the use for several plastic deformation problems of titanium sheets.
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1 INTRODUCTION

As is well known, Hill’s quadratic func-

tion'overstimated the influence of anisotropic

property of material' . And so during the

1970s there were several anisotropic yield func-

tions"™™

proposed one after another by several
authors. A common characteristic of all these
proposed yield functions is to adopt the non-
quadratic functions instead of quadratic func-
tions.

But, just as Hosford has recently pointed
out'”, all non-quadratic yield functions have
their own limitations.Very recent literature' *!

which resolved the problem to accommodate

planar anisotropy is not perfect because the
methods are still limited to the two-dimen-
sional state of stress.

The purpose of the present work is to
search for the form of non-quadratic yield
function which can accommodate both the
orthotropy and the triaxial stresses in order to
meet the practical needs of scientific research
and production.

2 FORM OF YIELD FUNCTION FOR
THREE DIMENSIONAL STATE OF
STRESS

The yield function proposed by the pres-
ent paper is
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where x, y, z are the directions of the principal
axes of anisotropy, F, G, H, L, M, N are
anisotropic parameters, m is the exponent in
yield function, b,,, b,., b, are three new

parameters, and ¢; is the equivalent stress.

oy

3 TWO DIMENSIONAL STATE OF
STRESS

The material constants in Eq.(1) can be
determined under the simple state of stress.
For this reason, now consider the two-dimen-
sional state of stress as follows:

3.1 Form of the Yield Function for Two-
dimensional State of Stress

Substituting ¢,= 7., = 7,,= 0 into Eq.(1)
and replacing b, by b, we obtain
f=F +31.)2 +Glo) +31.)% +

Hlo, —0,)* +b7) ]2 +2N())? —

% (F+G+H) o] =0 @

3.2 Corresponding Flow Rules

On the basis of plastic potential theory

!19, the flow rules cor-

and Drucker’s postulate’
responding with the yield function in the form

of Eq.(2) can be derived as follows:
de, =mdi {Go (6> +3¢0)2 ' +H(o —

oMo, —a ) +be 15

de, =mdi{Fo (o} +30.) '~ H(o —

o o, —0) +b72 15"}

—de —de, = —mdilGo (o" +

3022 4 Fo (o) +320)7 ']

dy, =mdi (3> +322)7 ' 4366 +

3% 4 bHIG, 0 ) +
b B NG )Ty e 6)
and the equivalent strain increment is

de, =2mdi/BF+G+Hs" '] @
where d/ is a positive multiplier dependent on
the deformed level. The equivalent stress can be
obtained from Eq.(2) as follows:

1 2 7
o =[ I {Plo, +3 )%+

s
6 +37)} +Hle —a ) +
be' 1F 4N ) ©
3.3 Determination of Ratios Between Aniso-

tropic Parameters

Assuming that the uniaxial tensile speci-
mens are prepared along the directions of
principal axis of anisotropy, i.e., x, y as well as
the 45(° ) direction the tests are performed.
For the specimens in the 0( ) or 90( ° ) direc-
tions, only 6,50 or 6,50, and so from Eq.(3)
itis obtained that

y,=de, /de, =H/G

} (6a)

Yy =de, /de, =H/F

For the specimen in the 45( ° ) direction,
here 6,=0,=1,,= 0,5/ 2 and the width strain
increment of the specimen would be

de, = (de, +de) /2—dy /2

Thus, introducing the value of 7,5, we can
obtain
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m—1 m/2

IN _F+G
S @, — 12

-b (6b)

It can be seen that Eq.(6b) as well as
Eq.(2) and (1) reduces to Hill’s old yield func-
tion if m is equal to 2.

34  Expressions for Flow Rules in Principal
Stress Coordinate System

Supposing that o, and o, are the two
in-plane principal stresses, and that ¢, has the
greater algebraic value, « is the angle between
g, and the 0( ° ) direction. In addition, intro-
ducing a ratio x to express the relative level of
a,to gy, ie.

x=0./ o, (0, >0,) @)

Introducing the transformation relation-
ships between the stresses and after arrange-
ment, we obtain

“, =D[7,,B? +yWA% +(Q1 —x)C]ia, ®)

where

A=[3-2x+3x" +2(1 — x")cos2a —
(1—x)"cosdal / 4

B=[3—2x+3x" —2(1 — x")cos2e —
(1—x) cosdal / 4

e

¥ e
C={y,7(cos 21+Zsm 20)? ©

X

(0 F0)0s =1
[/o mz 45 14750

&)ekin" 21— 0"

1
D={3/[20p, + 75 +7,7,0)}"

In addition. if the strain components in
principal stress coordinate system are ex-
pressed by dg;, de, and dy,,, introducing the
transformation relationships between the

strains and after arrangement, we obtain

" n -
de, ={20y,BZ +7,47 +(1—x)CI ™ x

de }/ D {y,[1 +cos2a+ (1 —x) x

sinZZu]A' z +7,[1 —cos2a +
i
(1—x)sin’20 x B 7 +2C}
m = m—1
={ReB? +i,47 +I-CI " X
de,} / D{yglx(1 = cos2a) — (1 —x) x
s
sin®2004 2 +7,[x(1+ cos2e) —
m=2
(1—x)xsin’2B 2 —2C}
o 5 it
= —{2ly,B7 +7,47 +(1—x)C 7 x
de_}/ D{y,[1 + x + (1 — x)cos2a] x

n-2
42 +7y[1+x—(1—x)cos2a] x

m-2

BA)
m - m-1
=+ {2y, B? +9,42 +(—x)C] " x
dy .}/ Dy, [1+ x — 21 — x)cos2a] x

m=2
A7 =y [1+x+2(1 = x)cos2a] x

-2

B 7 —2E} sin2« (10)
where

E={llyyit s = D—2p4 % (%)%] x

: m-2 b 2
(sin20) = Z«/ny%(l ~a )cos 20 +

=2
%sinZZa)Ar}(l — )" 'cos2a (11)

3.5 Determination of m-Value

From the calculation based on the theory
of crystal slipping, Hosford obtained that the
best value of m is 6 or 8 for bee and fec metals,
respectively!). OFf course, m-value may also be
calculated from experimental data. A method
of calculating developed by the author is stat-
ed below.

3.6 Selection of b-Value

Up to now, the condition of planar
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isotropy is represented by that 7,=745="7¢="7.
If we examine the present yield function, the
yield stress at an arbitrary direction can be cal-
culated from Eq.(8) and (9) as follows:

7o (1 +7,) 1
e e a2
18" +y,4" "+ C
A =1+ sin’acos2x
B=1-cos’ acos2x
C=yny%(cos22d+%sin22u)5 +
13)

&) hin" 20
Substituting y,= 7,5= y9= 7 into the
above equation, we obtain

&)=+ / (B
aﬂ

ms2

+A"'/Z+7

m/2

((00522a+%sin22m) +0 -

(%)m“]sinmh}fsin"h} 14)
where 4, B were given by Eq.(13). It is seen
that, unless m= 2, the denominator after the
equal sign is not always equal to 1+7 except
when o =0, 45 and 90( ° ). Obviously, in the

range of 0~ 90(° ), the maximal values of

(6/ 6. —1) and their orientations are relative
to the b-value. The calculated results for some
b-values are listed in Table 1.

It is seen that, in the ranges of listed m,
and b-values, the maximal (¢ / 9. —1) values
are generally not very great except b= 0. It is
also seen that, if the accuracy for planar
isotropy is required, it is not very good to take
the b-value as a certain constant to be inde-
pendent of 7 and m. For this reason, the pres-
ent paper proposes two models to determine
the b-value as follows
mo1 @y F ) —1) 2

b=k :
Yo¥s (15s)
gt
ot b, =41 —=)=
7
b =4— (16)

The first model can not be used for the
case where y,5< 1 (or y< 1). The maximal val-
ues of (¢/ o,—1) and their orientation calcu-
lated using a variable b-value are listed in Ta-
ble 2.

It is seen that, in the practical ranges of m
and y-value, the described accuracy for planar
isotropy is enough if the b-value is selected
from Eq.(16) and the maximal (¢ / 6,—1) value

Table 1 Maximal Values of (5 / 7~1) Calculated By Eq.(14)

m 6 (bco) 8 (fcc)
b 0 3 4 0 3 4
(/o dir./ (e/a di./ (o/c, dir./ (6/0, dir./ (s/0, dir./ (c/a, Dir./
D% ) =DA% D % /% () =D/% () ~D/% (°)
05 1296 kbR 280 BT vl L o s
4 ’ 724 i 65.0 . ¥ 76.6 : 63.5 ) 63.8
211 274 18.6 280
1.0 4.60 -0.23 -2.22 3.37 —0.57 -2.65 as
68.9 62.6 714 62.0
220 29 209 245
20 9.10 138 -1.52 7.50 134 —184
68.0 66.1 69.1 655
2.1 2.1 216 251
30 1197 2325 —116 above 10.41 240 —141 above
619 65.9 68.4 649
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Table 2 Maximal Values of (¢ / 7,~1) Calculated With A Variable b-Value
b Eq.(15) Eq.(16)
m 6 8 6 8
, @/ dn/ /e dn/ = (/g dn/ (/s di/
v \ 5 b 2 2 Gl by -

-0/% (%) V=% ) -N/% (°) s )
30.5 298

05 unsuited for < 1 155 026 117 095
595 60.2
211 186 194 169

10 0 460 00237 278 025 259 036
68.9 714 706 71
238 20 2.0 27

20 317 087 336 024 339 026 329 045
66.2 68.0 670 663
24.1 2.1 28 251

30 349 055 361 0.09 359 022 35 042
659 67.9 662 64.9

is less than 0.5% except a few cases.

But, it is only a theoretical assumption
that 7,
py. For this reason, if we want to represent the

745 = V00 €xpresses the plannar isotro-

real behavior of sheet metal more accurately,
the b-value can also be determined by intro-
ducing additional experimental data.

The above discussions are in progress for
the planar case. Obviously, owing to the fact
that the b-value may be flexibly selected, the
three b-values in eq.(1) are fully unnecessary to
keep the same value and may be selected from
respective conditions. If nothing needs to be
considered, for convenience, the b-value may
be selected to be 3,
coefficient in front of other shearing stresses in
Eq.(1).

as the same as the

4 CALCULATION OF m-VALUE
b-VALUE OF TITANIUM SHEETS

AND

The trade-marks and mechanical proper-
ties of several kinds of titanium sheet investi-
gated in the present work are listed in Table 3.

As stated above, the yield stress in differ-
ent directions can be predicted using Eq.(12).
Supposing that g; is the experimental data of
yield stress, n is the number of experimental
data points, o,,[ = (6,120,5+049) / 4] is an av-

erage value of the experimental data and
SD(= Y [(6=0)*/ n]'/*/ o) is the relative
root mean square deviations between the pre-
dicted values, o, and the experimental data.
Obviously, the calculated SD-value depends on
the selected m-value and b-value. In order to
decrease the influence of experimental error of
each experiment on the predicted results, we
take Eq.(12) as a regression estimate model
and carried out calculation using those data
listed in Table 3 (here n=>5). The calculated re-
sults are listed in Table 4.

It is seen that, for the titanjum metal
sheets, when the m-value is selected to be 6~ 8
and the b-value is calculated from Eq.(15) or
(16) the calculated results are relatively good.
And, it is unsuitable to select b to equal zero,
the calculated results in this way are nearly the
same as those where m =2.

5 CONCLUSIONS

(1) The non-quadratic orthotropic yield
function proposed in the present paper is
usable and accurate, and the material con-
stants involved in this function can be deter-
mined by performing only uniaxial tension
test.

(2) The three new parameters involved in
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Table3 7-Value and 6, of Investigated Titanium Sheets

] 6,,/ Mpa
Materials 07 tugpk /et 45/ 6157 907 0/ 225/ 45/ 615/ 90/
()it (O YRR o SO o I (o I ) (R )

TA2M, 08mm 2350 224 317 330 4089 4246 4305 4374 4403
TA2M, 10mm 205 2.0 270 293 3473 3512 3606 3832 3878
TA2M. L5mm 1.73 2.53 3717 373.6 3795 395.2 402.1
TA2M, 20mm 2.60 3.15 397.2 409.9 418.7 420.7 482.6
TCIM, 0.8mm  2.06 213 2.95 2.87 548.2 5384 523.7 537.4 544.3
TCIM, 1.0 mm 1.22 1.78 516.8 531.5 5443 574.7 582.5
TCIM, LSmm 135 210 5119 5335 584.5
TCIM, 20mm 0.69 0.78 1.92 175 622.7 6129 620.8 654.1 667.8
TC3M. 1L0mm 160 190 248 225 7711 7789 8113 8525 8652

Table4 The Relative Root Mean Deviations S,% Between the Predicted Results and
the Experimental Data for the Yield Stress of Titanium Sheets
m 2 6 8 10
b PRy > 0 b 5 3 0 5 5 8. O
TAM, 08mm 323 242 2.38 246 555 246 237 247 495 251 238 245 417
TA2M. 1.0mm 533 383 377 385 599 393 384 393 556 403 391 397 499
TAZM, LSmm 210 191 191 206 477 231 231 243 440 247 244 251 375
TA2M, 20mm 287 245 245 268 596 246 246 272 534 248 248 268 455
TCIM, 08mm 583 091 108 177 488 087 102 164 404 124 133 190 546
TCIM, 10mm 522 3.66 358 357 464 382 3.69 367 431 396 378 377 404
TCIM, 1.5mm 699 450 4.50 450 450 4.62 462 462 462 474 474 474 474
TCIM, 20mm 894 070 108 1.17 314 094 109 109 240 125 152 167 393
TC3M. 10mm 595 403 400 408 575 408 404 411 532 415 408 412 485
3 4646 2441 2475 26.14 45.18 2549 2544 26.68 4094 26.83 26.66 27.81 4048

1. b, and b,is determined from Eq.(15) and (16). respectivelys
2. For the TCIM. 1.5mm sheet there are only three experimental data in 0, 45 and 90( ° ):
50 Sps not relative to the -value:

3. The best results and next results are expressed by the boldfaced types.

this function can have unequal value, which Oxford at the Clarendon Press: 1950. 317-340.

can be determined from additional experimen- 2 Lerson, F. R.. Trans ASM. 1964, 57 620-631.

tal data or from Eq. (15) or (16), or selected to 3 Gotoh, M.. Int J Mech Sci. 1977, 19: 505-520.

be 3. 4 Hosford, W. F.. In: Proc 7th North Am Metal Conf
(3) The suitable value of the exponent m, SME, Dearborn, Michigan, USA.1971,191-196.

in yield function for titanium sheet is 6~ 8, 5 Bassani, J. L.. Int J Mech Sci. 1977, 19: 651-660.

and 6 is much better. The suitable b-value can 6 Hill, R. In. Math Proc Camb Phil Soc.. 1979, 85

be determined from Eq. (15) or (16), both are 179-191.

about the same. And, it is unsuitable to select 7 Hosford, W. F.. In: Proc. 15th IDDRG Congr. ASM,
the b-value to be zero. Dearborn, Michigan, USA, 1988, 163-170.
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