2021 年 4 月 April 2021

DOI: 10.11817/j.ysxb.1004.0609.2021-36513

掺氟化钙硅灰石玻璃陶瓷的析晶动力学

司 伟,张笠楠

(大连交通大学 材料科学与工程学院, 大连 116028)

摘 要: 以废玻璃与钙铝黄长石为主要原料,添加氟化钙通过反应析晶烧结法制得掺氟化钙硅灰石玻璃陶 瓷。采用 X 射线粉末衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、差式扫描量热分析(DSC)等 对其进行表征,根据样品在不同升温速率下的差热曲线,分别采用 FWO、Kissinger、Friedman 和 K 值法对 其进行析晶动力学的研究。结果表明:样品主晶相为硅灰石,颗粒呈板条状。四种动力学分析方法计算出 掺氟化钙硅灰石玻璃陶瓷的析晶活化能分别为 117.4、102.8、110.5、100.4 kJ/mol,结果较为接近。与未掺 氟化钙的硅灰石玻璃陶瓷相比,掺入少量的氟化钙即可降低硅灰石玻璃陶瓷的析晶活化能,说明氟化钙有利于玻璃相的黏性流动,具有较强的促进玻璃析晶能力,有助于硅灰石玻璃陶瓷的制备。

关键词: 硅灰石; 玻璃陶瓷; 氟化钙; 析晶动力学

文章编号: 1004-0609(2021)-04-1019-08 中图分类号: TQ174 文献标志码: A

引文格式: 司 伟,张笠楠. 掺氟化钙硅灰石玻璃陶瓷的析晶动力学[J]. 中国有色金属学报, 2021, 31(4): 1019–1026. DOI: 10.11817/j.ysxb.1004.0609.2021-36513

SI Wei, ZHANG Li-nan. Crystallization kinetics of wollastonite glass ceramics doped calcium fluoride[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1019–1026. DOI: 10.11817/j.ysxb.1004.0609.2021-36513

玻璃陶瓷中晶相的矿物组成与玻璃相的化学 组成及它们的数量决定了玻璃陶瓷的性质,故玻璃 陶瓷兼具玻璃与陶瓷的优点:既具有较低的热膨胀 系数、较高的机械强度,又具有显著的抗风化、耐 腐蚀能力与良好的抗热震性能^[1],可应用于电子、 化工、机械、建筑、装饰等诸多领域^[2-3]。

国内外对于玻璃陶瓷的析晶机理研究主要集中在高温熔融后退火制得的玻璃陶瓷^[4]。高温熔融 法制备的玻璃陶瓷需要首先配制出合适组分的玻 璃原料,通过加入晶核剂,在高温下使玻璃组分受 控晶化制得相应的玻璃陶瓷^[5]。姚树玉等^[6]在 1510 ℃制成了基础玻璃。将基础玻璃在1100 ℃烧 结制备了 CaO-Al₂O₃-SiO₂ 系粉煤灰玻璃陶瓷,该玻 璃陶瓷的主晶相为硅灰石,计算得到析晶活化能为 591.5 kJ/mol; SALMAN 等^[7]以 Na₂O-K₂O-CaO- SiO₂-F 玻璃作为母相玻璃,在 1400~1450 ℃熔融, 并在 500 ℃退火,制得具有生物活性的主晶相为硅 灰石的玻璃陶瓷; 陈媛媛等^[8]采用传统熔体冷却法 制备了掺 Yb 的 NaF-CaF₂-Al₂O₃-SiO₂ 玻璃,并制备 透明氟氧化物微晶玻璃,该系统玻璃主晶相为氟化 钙,析晶活化能为 345.8 kJ/mol。

反应析晶烧结法无需指定原料组分,只需使用 废玻璃粉或其他固体废弃物为原料,加入合适的析 晶促进剂,即可在较低温度下生成玻璃陶瓷^[9]。该 材料具有较好的力学性能,有的甚至可以钻孔、车 削加工^[10],完全可作为环保材料应用到建材领 域^[11-13]。在低温烧结时玻璃的黏度较高,流动性较 差,研究其特殊的析晶行为与特点尤为重要,对于 反应析晶烧结制备玻璃陶瓷的析晶动力学研究具 有非常重要的理论价值与意义^[14]。

基金项目:国家自然科学基金资助项目(51308086);辽宁省自然科学基金指导计划资助项目(20180550569);辽宁省教育厅资助项目 (JDL2019024);大连市青年科技之星资助项目(2016RQ051) 收稿日期: 2020-02-19;修订日期: 2020-11-29

通信作者: 司 伟,教授,博士; 电话: 0411-84107583; E-mail: siwei@djtu.edu.cn

在研究析晶动力学的过程中,人们较多的采用 FWO、Kissinger、Friedman 和*K*值法中的一种或两 种同时进行研究,从而获得更准确的分析。 DOHARE 等^[15]采用 Flynn-Wall-Ozawa(FWO)和 Kissinger-Akahira-Sunose(KAS)法研究非等温条件 下 Se_{98-x}Ag₂In_x (*x*=0, 2, 4, 6)的玻璃化转变和析晶动 力学:张圣斌等^[16]采用差热分析的方法研究金渣-钢渣-钛渣复合微晶玻璃的析晶动力学,利用 Kissinger 和 Ozawa 法分析了金渣-钢渣-钛渣复合 微晶玻璃的析晶机理。结果表明:随着金渣添加量 的增加,析晶活化能*E*逐渐降低。BARANOWSKA 等^[17]采用 Friedman 法分析了掺 Eu³⁺的生物微晶玻 璃的析晶动力学。

在先前研究中可发现,添加氟化钙制备氟闪石 玻璃陶瓷可使析出的氟闪石晶体与玻璃基体结合 致密,从而提高氟闪石玻璃陶瓷的硬度,氟化钙的 加入可大大促进晶体的析出及生长^[18-19]。本文以废 玻璃与钙铝黄长石为主要原料,添加氟化钙通过反 应析晶烧结法制得掺氟化钙硅灰石玻璃陶瓷。根据 样品在不同升温速率下的差热曲线,分别采用 FWO、Kissinger、Friedman 和*K*值法对其进行析晶 动力学研究。

1 实验

1.1 掺氟化钙硅灰石玻璃陶瓷的制备

以普通废弃的窗玻璃为主要原料,清洗干净 后,用铁棒捣碎,充分研磨后,过孔径 125 µm 筛 子,制成玻璃粉。其主要成分如下: 71.8% SiO₂, 12.9% Na₂O, 9.5% CaO, 4.6% MgO, 0.9% Al₂O₃, 0.3% K₂O(质量分数)。将 72%玻璃粉、20%钙铝黄 长石粉、8%氟化钙(质量分数)研磨均匀,滴入 3~5 滴 6% PVA (质量分数)水溶液作为黏结剂,在 1.47×10⁵ N 压力下压制成*d* 15 mm×5 mm 的试样, 干燥后,在 900 ℃烧结 2 h,制得掺氟化钙的硅灰 石玻璃陶瓷。

1.2 掺氟化钙硅灰石玻璃陶瓷的表征

使用 Empyrean X 射线衍射仪测定样品晶 相,管压: 40 kV, Cu K_α (λ=0.15406 nm)。使用 JSM-6360LV型扫描电子显微镜及 Oxford-INCA 光 电子能谱仪(加速电压为 20 kV)、JEM-2100F型高 分辨透射电子显微镜(加速电压为 200 kV)观察样品 的形貌,测定颗粒的元素组成。使用 SDT 2960 Simultaneous型差热-热重联用分析仪,分别在 15、 20、25、30 K/min 的升温速率下进行实验,测试温 度 400~1200 K。

2 结果与讨论

2.1 掺氟化钙硅灰石玻璃陶瓷的物相特征

掺氟化钙硅灰石玻璃陶瓷的晶相结构见图 1。 由图1可以看出,制备的玻璃陶瓷主晶相为硅灰石 (Wollastonite, CaSiO₃, JCPDS 42-0550), 表明钙铝 黄长石与玻璃粉发生反应析晶,生成硅灰石晶体。 同时次晶相为钙铝黄长石(Gehlenite, Ca₂Al₂SiO₇, JCPDS 35-0755),说明产物中仍有少量未发生反应 析晶的钙铝黄长石。图1中还观测到少量的氧化铝 (Alumina, α-Al₂O₃, JCPDS 82-1468)衍射峰存在, 且并未发现氟化钙的晶相。在先前的研究中^[18],加 入8%氟化钙(质量分数)后,以废玻璃粉与钙铝黄长 石为原料在 850 ℃烧结 2 h,获得的产物只含有枪 晶石和氟化钙。因此可推断在本实验烧结温度 900 ℃条件下,已发生部分氟元素挥发的情况,余 下的氟元素通过扩散进入到新生成的硅灰石晶体 中,所以样品中没有出现氟化钙的衍射峰,也没有 枪晶石(Ca₄Si₂O₇F₂)生成。

图1 样品的 XRD 谱

Fig. 1 XRD pattern of sample

本实验中掺氟化钙硅灰石玻璃陶瓷的产物,与 未掺氟化钙,只添加 20%钙铝黄长石粉、80%玻璃 粉反应烧结制备玻璃陶瓷的产物一致,因此,推断 二者的反应过程类似,可能同样发生了如下过程:

$$Ca_2Al_2SiO_7 + SiO_2 \longrightarrow 2CaSiO_3 + Al_2O_3$$
(1)

根据兰氏化学手册^[20],结合该反应过程的热力 学计算, ΔG_{1173} =-175.189 kJ/mol $<0^{[21]}$,说明在该 反应温度下,能够发生(1)式所示的固相反应。

掺氟化钙硅灰石玻璃陶瓷的扫描电镜照片见 图 2(a)。可以看出析出的晶体数量较多,呈板条状, 长度为 4~5 μm。分别对 P₁、P₂处进行 EDS 分析(见 图 2(b))。P₁处颗粒呈片状,含有 Ca、Al、Si、O、 Na 元素,P₂处颗粒呈板条状,只含有 Ca、Si、O 元素(Au 元素为喷金所致)。结合 XRD 分析表明, 片状颗粒应为钙铝黄长石,而析出的板条状晶体为 硅灰石。

图 2 样品的 SEM 像及 EDS 谱 Fig. 2 SEM image(a) and EDS spectra(b) of sample

进一步对样品进行透射电镜及高分辨透射电 镜观察(见图 3)。图 3(a)所示为样品的透射电镜照 片,可以清晰看到样品呈现两种颗粒,一种为玻璃 基质中析出的板条状颗粒,其直径约 420 nm,另一 种为片状颗粒。对两种颗粒进行高分辨透射电镜分 析见图 3(b)。经计算,图 3(a)中板条状颗粒的晶面 间距 *d*=0.297 nm,与硅灰石的(222)晶面间距的 *d* 值一致,另一种片状颗粒的晶面间距 *d*=0.284 nm, 与钙铝黄长石的(211)晶面间距的 *d* 值一致。进一步 对硅灰石颗粒进行选区电子衍射分析(SAED)(见图 3(b)中插图),可以看出,析出的硅灰石为单晶,衍 射花样排列规则,说明样品的晶型较好。

在不同升温速率下测定原料混合粉末的 DSC 曲线如图 4 所示。由图 4 可以看出,在前驱体分解

图 3 样品的 TEM 像以及 HRTEM 像和 SAED 照片 Fig. 3 TEM image(a), HRTEM image(b) and SAED photographs(c) of sample

Fig. 4 DSC curves of sample at different heating rates

过程中有一个明显的吸热峰,随着升温速率增加, DSC 曲线上析晶峰温度逐渐增加。通过动力学数据 可获得玻璃陶瓷析晶过程晶体生长的信息,有必要 对其进行详细研究。

2.2 FWO 法计算

FWO 法的基本公式为^[22]

$$\lg \beta = \lg \frac{AE}{RG(\alpha)} - 2.315 - 0.4567 \frac{E}{RT}$$
(2)

通过 FWO 方法可得到 lg β -1/T 曲线图, 图中 直线的斜率为-0.4567*E*/*R*。根据式(2)可计算出掺氟 化钙硅灰石玻璃陶瓷的析晶活化能 *E*。根据图 4 及 表 1 中的数据绘制 lg β -1/T 图,如图 5 所示。由图 5 获得转化率分别为 0.3、0.4、0.5、0.6 时的直线斜 率分别为-6.1085、-6.3768、-6.4916、-6.8110,根 据斜率计算得到的 *E* 值分别为 111.2、116.1、118.2、 124.0 kJ/mol,其平均值 *E*=117.4 kJ/mol。

2.3 Kissinger 法计算

Kissinger 法的基本公式为^[23]

$$d \lg(\beta / T_m^2) = [-E/(2.303R)]d(1/T_m)$$
(3)

式中: $T_{\rm m}$ 为峰值温度。根据 Kissinger 法,使用 $\lg(\beta/T_{\rm m}^2)$ 对 $1/T_{\rm m}$ 作图,图中直线的斜率为 -E/(2.303R)。根据公式(3)即可求得反应活化能 *E*。 根据表 2 中的数据绘制吸热峰的 $\lg(\beta/T_{\rm m}^2) \sim 1/T_{\rm m}$ 图 (见图 6)。使用 Kissinger 法计算得到的活化能 *E* 为 102.8 kJ/mol,相关系数 *r* 为 0.9974。

表 1	FWO 法计算的相关数值	

 Table 1
 Related values calculated by FWO method

α	$\beta/(K \cdot min^{-1})$	T/K
	15	1019
0.2	20	1039
0.5	25	1059
	30	1079
	15	1037
0.4	20	1057
0.4	25	1076
	30	1096
	15	1056
0.5	20	1075
0.5	25	1095
	30	1115
	15	1073
0.6	20	1093
0.0	25	1114
	30	1133

Fig. 5 Relationship for $\lg \beta - 1/T$ at different conversion rates

2.4 Friedman 法计算

Friedman 法的基本公式为^[24]

 $\ln[\beta(d\alpha/dT)] = \ln[Af(\alpha)] - E/(RT)$ (4)

根据 Friedman 法,通过确定晶型转变分数和外 推温度法可以确定起始温度。使用 $\ln[\beta(d\alpha/dT)]$ 对 1/T 作图,图中直线的斜率为-E/R。根据式(4)可计 算得到活化能 *E*。在不同升温速率下各转化率对应 的温度是不同的,如表 3 所示。根据表 3 中的数据 绘制转化率 α 与时间 *T* 的直线图,如图 7 所示。

Kissinger 法计算的相关数值 表 2

Table 2 Related values calculated by Kissinger method			
$\beta/(K \cdot min^{-1})$	$T_{\rm m}/{ m K}$	$T_{\rm m}^{-1}/10^{-3}~{\rm K}^{-1}$	$lg(\beta/T_m^2)$
15	1055.17	0.948	-4.870
20	1074.96	0.930	-4.762
25	1093.26	0.915	-4.679
30	1112.10	0.900	-4.614

不同升温速率下的 $lg(\beta/T_m^2) \sim 1/T_m$ 图 图 6 Fig. 6 Relationship for $lg(\beta/T_m^2) \sim 1/T_m$ at different heating rates

表3	Fri	ledman 法计算的相天数值
Table	3	Related values calculated by Friedman method

	5		
α	$\beta/(K \cdot min^{-1})$	T/K	
	15	1019	
0.2	20	1040	
0.5	25	1059	
	30	1079	
	15	1037	
0.4	20	1057	
0.4	25	1076	
	30	1096	
	15	1056	
0.5	20	1075	
0.3	25	1095	
	30	1115	
	15	1073	
0.6	20	1093	
0.0	25	1114	
	30	1133	

由图 7 可知,升温速率为 15、20、25 和 30 K/min 时,对应的 $d\alpha/dT$ 值分别为 0.0055、0.0056、0.0054、 0.0055。以 ln[β (d α /dT)]对 1/T 作图(见图 8)。由图

8 可知,转化率为 0.3、0.4、0.5、0.6 所对应的直线 斜率分别为-12.614、-13.118、-13.580、-13.834。 由此计算得到相应的活化能 E 分别为 104.9、109.1、 112.9、115.0 kJ/mol, 其平均值为 110.5 kJ/mol。由 图 8 获得转化率为 0.3、0.4、0.5、0.6 所对应的直 线截距即为ln[Af(α)]值分别为 9.91、10.18、10.40、 10.43, 其平均值为 10.23。

Fig. 7 Relationship for $\alpha - T$ at different heating rates

图 8 不同转化率下的 $\ln[\beta(d\alpha/dT)] \sim 1/T$ 图 Fig. 8 Relationship for $\ln[\beta(d\alpha/dT)] \sim 1/T$ at different conversion rates

2.5 K 值法计算

K值法的基本公式为^[21]

$$\ln(T_{\rm p}^2/\alpha) = E/(RT_{\rm p}) + \ln E/R - \ln A \tag{5}$$

根据 K 值法,使用 $\ln(T_p^2/a)$ 对 $1/T_p$ 作图,图中 直线的斜率为 E/R, 根据公式(5)可计算得到活化能 E。不同升温速率 α 下,对应的峰值温度 T_p 、1/ T_p 、 $\ln(T_p^2/\alpha)$ 列于表 4。根据表 4 中的数据,绘制不同 转化率下的 $\ln(T_p^2/\alpha) \sim 1/T_p$ 图(见图9)。由图9可知,

直线的斜率为 12.081,相关系数 r=0.9960,计算得 到活化能为 100.4 kJ/mol。

采用 FWO、Kissinger、Friedman 和 K 值法计 算掺氟化钙硅灰石玻璃陶瓷的析晶活化能分别为 117.4、102.8、110.5、100.4 kJ/mol。其中,Kissinger 法用于测定玻璃陶瓷的析晶活化能最佳^[6],误差最 小; K 值法测定的析晶活化能次之,而 Friedman 法 与 FWO 法测定的析晶活化能误差相对较大。但活 化能相差最大值不超过 15 kJ/mol,结果较为接近。 WAGSTAFF^[25]的研究表明,玻璃析晶动力学中的析 晶线速度和温度的关系是符合具有较小熔化熵ΔS₀ 的晶体长大模型的,有如下的关系式:

$$U = \frac{c}{\eta} \left[1 - \exp\left(\frac{\Delta H_0 \Delta T}{RTT_0}\right) \right]$$
(6)

式中: c 为常数; η 为黏度; ΔH_0 为熔化热; ΔT 为 过冷度; T、 T_0 为热处理温度、热力学析晶温度(熔 点)。

表4 K值法计算的相关数值

 Table 4
 Related values calculated by K value method

$\alpha / (\mathrm{K} \cdot \min^{-1})$	$T_{\rm p}/{ m K}$	$T_{\rm p}^{-1}/10^{-3}~{\rm K}^{-1}$	$\ln(T_{\rm p}^2/\alpha)$
15	1055.17	0.948	11.215
20	1074.96	0.930	10.964
25	1093.26	0.915	10.775
30	1112.10	0.899	10.627

Fig. 9 Relationship for $\ln(T_p^2/\alpha) \sim 1/T_p$ at different conversion rates

未掺氟化钙的硅灰石玻璃陶瓷采用*K*值法计算 析晶活化能为 261.99 kJ/mol^[21]。而本实验掺入少量 氟化钙的硅灰石玻璃陶瓷采用K值法计算的析晶活 化能为 100.4 kJ/mol。析晶活化能越低,从玻璃态 向晶态转变需要克服的势垒越低,意味着玻璃的析 晶能力越强。玻璃析晶时需要满足如下两个条件: 1) 合适的黏度(1×10³~1×10⁵ Pa·s);2) 玻璃熔体中 存在硅氧四面体单元,该单元结构与析出晶体类 似。本实验玻璃粉软化点是 704 ℃,在 900 ℃烧结 温度下,玻璃黏度可以满足析晶要求,但此时玻璃 熔体中有很多架状和层状结构,不易与钙铝黄长石 发生反应析晶。氟离子进入玻璃取代氧离子后,由 于使硅氧网络易于在 Si—F 键处断裂,进一步降低 玻璃黏度,使玻璃熔体中硅氧四面体重排成链状结 构,根据核前群理论,这些链状结构的硅氧负离子 团很容易析出,从而使析晶活化能大大降低。

3 结论

 以 72%废玻璃粉、20%钙铝黄长石及 8%氟 化钙为原料,采用反应析晶烧结法制备的掺氟化钙 硅灰石玻璃陶瓷主晶相为硅灰石,次晶相为钙铝黄 长石,颗粒呈板条状,长度为 4~5 μm,直径约 420 nm。

2) 采用 FWO、Kissinger、Friedman 和 K 值法 计算掺氟化钙硅灰石玻璃陶瓷的析晶活化能,其值 分别为 117.4、102.8、110.5、100.4 kJ/mol,结果较 为接近。

 3) 掺氟化钙的硅灰石玻璃陶瓷具有较低的析 晶活化能,说明氟化钙有利于玻璃相的黏性流动, 具有较强的促进玻璃析晶能力,有助于硅灰石玻璃 陶瓷的制备。

REFERENCES

- HERIYANTO, PAHLEVANI F, SAHAJWALLA V. Waste glass powder-innovative value-adding resource for hybrid wood-based products[J]. Journal of Cleaner Production, 2018, 195: 215–225.
- [2] YOON S D, LEE J U, LEE J H, et al. Characterization of wollastonite glass-ceramics made from waste glass and coal fly ash[J]. Journal of Materials Science & Technology, 2013, 29(2): 149–153.

- [3] HAN L, SONG J, ZHANG Q, et al. Crystallization, structure and characterization of MgO-Al₂O₃-SiO₂-P₂O₅ transparent glass-ceramics with high crystallinity[J]. Journal of Non-Crystalline Solids, 2017, 481: 123–131.
- [4] JANG S W, KIM E S. Enhanced quality factor of wollastonite (0.9Ca_{0.9}Mg_{0.1}SiO₃-0.1CaMgSi₂O₆) glassceramics by heat-treatment method[J]. Materials Research Bulletin, 2015, 67: 239–244.
- [5] BERNDT S, GAWRONSKI A, PATZIG C, et al. Oriented crystallization of a β-quartz solid solution from a MgO/Al₂O₃/SiO₂ glass in contact with tetragonal ZrO₂ ceramics[J]. RSC Advances, 2015, 5(20): 15164–15171.
- [6] 姚树玉,姚玉随,韩 野,等. CaO-Al₂O₃-SiO₂系粉煤灰微 晶玻璃的析晶动力学及电子探针分析[J]. 硅酸盐学报, 2012, 40(1): 170-174.

YAO Shu-yu, YAO Yu-sui, HAN Ye, et al. Crystallization kinetics and electron probe microanalysis of CaO-Al₂O₃-SiO₂ glass-ceramics from coal fly-ash[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 170–174.

- [7] SALMAN S M, SALAMA S N, ABO-MOSALLAM H A. The crystallization behavior and bioactivity of wollastonite glass-ceramic based on Na₂O-K₂O-CaO-SiO₂-F glass system[J]. Journal of Asian Ceramic Societies, 2015, 48(3): 255–261.
- [8] 陈媛媛, 卢安贤. NaF-CaF₂-Al₂O₃-SiO₂微晶玻璃的析晶动 力学和显微组织[J]. 中国有色金属学报, 2009, 19(5): 887-893.
 CHEN Yuan-yuan, LU An-xian. Crystallization kinetics and microstructures of NaF-CaF₂-Al₂O₃-SiO₂ glass-ceramics[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 887-893.
- [9] SI W, XU H, SUN M, DING C, ZHANG W. Transformation mechanism of fluormica to fluoramphibole in fluoramphibole glass ceramics[J]. Advances in Materials Science and Engineering, 2016, 2016(7/8): 1–8.
- [10] ZHANG W, GAO H. Preparation of machinable fluoramphibole glass-ceramic from soda-lime glass and fluormica[J]. International Journal of Applied Ceramic Technology, 2008, 5 (4): 412–418.
- [11] VASILIKI S, ANNA K, ANTONIOS S, et al. Energy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ash[J]. Waste Managemet, 2019, 90: 46-58.

- [12] LV J, YANG H, JIN Z, et al. Lead extraction and glass-ceramics synthesis from waste cathode ray tube funnel glass through cooperative smelting process with coal fly ash[J]. Waste Managemet, 2018, 46: 687–696.
- [13] FAN C S, LI K C. Glass-ceramics produced from thin-film transistor liquid-crystal display waste glass and blast oxygen furnace slag[J]. Ceramics International, 2014, 40(5): 7117–7123.
- [14] NUERNBERG R, MONTEDO O R K. Crystallization kinetics of β-spodumene/cordierite-based glass-ceramics[J]. Materials Science Forum, 2016, 881: 83–88.
- [15] DOHARE C, MEHTA N. Iso-conversional approach for study of glass transition and crystallization kinectics of ternary glassy Se_{98-x}Ag₂In_x (x=0, 2, 4, 6) system[J]. Journal of Alloys and Compounds, 2014, 587: 565–572.
- [16] 张圣斌, 刘立强, 张亚洲, 等. 金渣--钢渣--钛渣微晶玻璃的析晶动力学研究[J]. 中国陶瓷, 2016(8): 43-46.
 ZHANG Sheng-bin, LIU Li-qiang, ZHANG Ya-zhou, et al. Research on crystallization kinetics of gold slag-steel slag-titanium slag glass-ceramics[J]. China Ceramics, 2016(8): 43-46.
- [17] BARANOWSKA A, LEŚNIAK M, KOCHANOWICZ M, et al. Crystallization kinetics and structural properties of the 45S5 bioactive glass and glass-ceramic fiber doped with Eu³⁺[J]. Materials, 2020, 13(6): 1281–1288.
- [18] 司 伟,丁 超,章为夷,等.氟化钙对钠钙玻璃反应析 晶制备玻璃陶瓷性能的影响[J]. 硅酸盐学报, 2012, 40(12): 1703-1707.
 SI Wei, DING Chao, ZHANG Wei-yi, et al. Effect of

calcium fluoride on preparation of the glass-ceramics by reactive crystallization[J]. Journal of The Chinese Ceramic Society, 2012, 40(12): 1703–1707.

[19] 司 伟,丁 超,王 瑞,等.氟化物对氟闪石玻璃陶瓷 反应析晶的影响[J].稀有金属材料与工程,2018,47(S1): 259-263.

SI Wei, DING Chao, WANG Rui, et al. Effect of fluoride on the reactive crystallization of fluoramphibole glassceramics[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 259–263.

- [20] DEAN J A. 兰氏化学手册[M]. 北京:科学出版社, 2003.
 DEAN J A. Lange's chemistry handbook[M]. Beijing: Science Press, 2003.
- [21] SI W, DING C. An investigation on crystallization property,

thermodynamics and kinetics of wollastonite glass ceramics[J]. Journal of Central South University, 2018, 25(8): 1888–1894.

- [22] ANDRÉS A C, ANKA B, NICO Z. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme[J]. Fuel, 2014, 123: 230–240.
- [23] SI W, WANG X, TIAN D, et al. Kinetics of synthesis YAG nanocrystals by ultrasound and ultrasound-microwave-

assisted[J]. Journal of Wuhan University of Technology (Mater Sci Ed), 2016, 31(3): 548–552.

- [24] MAROTT A, SAIELLO S, BURI A. Remarks on determination of the Avrami exponent by nonisothermal analysis[J]. J Non Cryst Solids, 1983, 57(3):473–475.
- [25] WAGSTAFF F E. Crystallization and melting kinetics of cristobalite[J]. Journal of the American Ceramic Society, 1969, 52(12): 650–654.

Crystallization kinetics of wollastonite glass ceramics doped calcium fluoride

SI Wei, ZHANG Li-nan

(School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract: The wollastonite glass ceramics doped calcium fluoride was prepared by reaction crystallization sintering using waste glass and gehlenite as main raw materials, and adding a little calcium fluoride. X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and differential scanning calorimetry (DSC) were used to characterize the samples. According to the differential thermal curves of the samples at different heating rates, FWO, Kissinger, Friedman and k-value methods were used to study the crystallization kinetics. The results show that the main crystalline phase of the sample is wollastonite, which is presented a lath shape particle. The crystallization activation energies of wollastonite glass ceramics doped calcium fluoride calculated by four kinetic analysis methods are 117.4, 102.8, 110.5 and 100.4 kJ/mol, respectively. The results are close. Compared with the wollastonite glass ceramics without doped calcium fluoride, the crystallization activation energy of wollastonite glass ceramics can be reduced by adding a little of calcium fluoride, which shows that calcium fluoride is helpful to the viscous flow of glass phase. This can increase the ability to promote glass crystallization and help the preparation of wollastonite glass ceramics.

Key words: wollastonite; glass ceramics; calcium fluoride; crystallization kinetics

Foundation item: Project(51308086) supported by the National Natural Science Foundation of China; Project (20180550569) supported by the Liaoning Provincial Natural Science Foundation, China; Project(JDL2019024) supported by the Scientific Research Fund of Liaoning Provincial Education Department, China; Project(2016RQ051) supported by the Program of Science-Technology Star for Young Scholars by the Dalian Municipality, China

Received date: 2020-02-19; Accepted date: 2020-11-29

Corresponding author: SI Wei; Tel: +86-411-84107583; E-mail: siwei@djtu.edu.cn

(编辑 李艳红)