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Abstract: In order to investigate the effect of microvoids on the mechanical behavior of casting magnesium alloy, a spherical 
void−cell model of the material was presented. The velocity and strain fields of the model were obtained from the assumption that the 
material matrix is homogeneous and incompressible. The hardening and softening functions, which respectively reflect the 
deformation-hardening and void-softening behaviors of the material, were presented and introduced to an endochronic constitutive 
equation for describing the mechanical behavior of the material including microvoids. The corresponding numerical algorithm and 
finite element procedure were developed and applied to the analyses of the elastoplastic response and the porosity of casting 
magnesium alloy ZL102. The computed results show satisfactory agreement with experimental data. 
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1 Introduction 
 

Due to lightweight, being easily shaped and 
recycled, casting magnesium alloys are predestined for 
light-weight constructions of components in automotive 
industry, for example, steering wheels, door structures 
and oil sumps[1−2]. However, because the solidified 
casting magnesium alloys will contract, they inevitably 
contain a certain amount of microscopic voids. As the 
microscopic voids grow under loading, the walls or 
ligaments between the voids thin down and ductile 
fracture may occur due to the coalescence of the 
voids[3−4]. The investigations on the evolution of the 
voids and its effect on the mechanical properties of the 
material are significant to make more efficient use of the 
materials. Great effort has been made in the analyses of 
the void evolution and the corresponding mechanical 
properties of materials[3−7]. It has been found that the 
microvoids usually distribute randomly in materials, and 
void growth plays an important role in material 
properties[7−9]. A feasible method used frequently for 
the investigation on the void evolution and the material 
properties involving void evolution is based on the 
analysis of a representative void−cell model of materials. 

In this aspect, GURSON[9] made a pioneering 
contribution. He assumed that the void−matrix aggregate 
of a ductile material including microvoids could be 
represented with circular-cylindrical or spherical 
void−cell models. With the models the constitutive 
relationship of materials was obtained. TVERGAARD 
and NEEDLEMAN[10] extended Gurson model to 
account for the final failure of materials at a realistic 
value of void volume fraction. FAN et al[11] put forward 
a formulation of constitutive relations to describe the 
mechanical behavior of void-damaged materials based 
on a finite element analysis. SIRUGUET and 
LEBLOND[12] modeled the effect of the inclusions on 
the void growth in a porous ductile metal. BAASER and 
GROSS[13] analyzed the growth of the microvoids in a 
crack tip of a ductile material loaded by a remote KI field. 
HORSTEMEYER et al[14] investigated the internal- 
state-variable rate equations in continuum framework to 
model void nucleation, growth, and coalescence in a cast 
Al-Si-Mg alloy. In this work, the mechanical behavior of 
a casting magnesium alloy containing numerous 
microvoids was investigated through the method 
combining microscopic and macroscopic analyses. 
Firstly, a spherical void−cell model of the material was 
presented. Based on the analysis on the model, the  
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deformation-hardening and void-softening functions 
were given. Then, they were introduced to an 
endochronic elastoplastic constitutive equation in order 
to obtain the constitutive description involving void 
evolution of the material. Lastly, the corresponding finite 
element procedure was developed. It was applied to 
investigate the elastoplastic behavior and the porosity of 
casting magnesium alloy ZL102.  
 
2 Constitutive description and void evolution 

equation 
 

Fig.1 shows a representative volumetric element 
(RVE) of a casting magnesium alloy material, in which 
many microvoids are included. Vs is solid volume of the 
element; Vv is the void volume and V is the total volume. 
Furthermore, the RVE can be simplified as a spherical 
void−cell model as shown in Fig.2[9]. The radii of the 
void and the cell are a and b, respectively. The radius of 
an arbitrary point in the matrix of the void−cell model is 
r. Suppose the matrix of the model is homogeneous and 
incompressible. The global axis 3 coincides with the 
local spherical axis and the deformation is 
axisymmetrical. In the case, there are following 
relationship for the microscopic strain field ijE& . 
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Fig.1 Material element with voids 
 

 
Fig.2 Spherical void-cell model 

Then the boundary velocity field can be obtained in 
a spherical coordinate system: 
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The corresponding microscopic strain-rate field ijε&  
in the matrix can be expressed as  
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Furthermore, the microscopic intrinsic time measure 

is denoted by ζ, which is defined as the Euclidean norm 
of the deviatoric increment of microscopic strain[15]. 
Due to the assumption of incompressibility of the matrix, 
one has 

2121 )dd()dd(d ijijijij εεεεζ =′′=                 (4) 

where ijε ′d  is the increment of microscopic deviatoric 
strain. The intrinsic time scale can be defined as  

)]()(/[dd fFz ηζζ=                           (5) 
 
where F(ζ) is the hardening function which reflects the 
hardening behavior of the material subjected to plastic 
deformation; η(f) is the softening function which reflects 
the softening behavior of the material due to void growth 
during plastic deformation; f is current void volume 
fraction of the material. For simplicity, F(ζ) and η(f) are 
given the following simple forms without considering the 
strain-rate effect: 
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where β1, β2, γ1 and γ2 are material constants, which can 
be determined from the curve of a uniaxial experiment. 
Substituting Eq.(5) into the incremental form of 
endochronic elastoplastic constitutive equation[16], 
which can describe the constitutive behavior of materials 
without a yield surface with favorable precision, yields 
the following incremental constitutive equation involving 
void evolution: 
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sij denotes the microscopic deviatoric stress; zn is the 
intrinsic time scale after nth increments of loading and 

)( n
r
ij zs  represents rth component of sij at zn; Cr and αr 

(r=1, 2, 3) are material constants, and G is the elastic 
shearing modulus. By setting 
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one can derive the following expression of the 
incremental form of the endochronic constitutive 
equation involving void evolution: 

zBeAs ijijij ∆+∆=∆ p                           (10) 

If the effect of the voids is not considered (f=0, 
η(f )=1), one can prove that Eq.(10) reduces to the 
incremental form of the constitutive equation given by 
PENG and FAN[16]. Moreover, the Chaboche’s 
constitutive law for back stress can also be obtained as a 
special case when η(f )=1 and F(ξ) is constant. 

Assuming homogeneous matrix, the 
homogenization principle[9] can be used in the transition 
between microscopic and macroscopic quantities. Letting 
Φ and φ  be the macroscopic and the microscopic 
potential functions, respectively, the macroscopic 
stresses can be expressed as[9] 
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Substituting Eqs.(3) and (10) into Eq.(11), the 

macroscopic constitutive equation of casting magnesium 
alloy can be obtained. 

The void volume fraction may change during 
material deformation, which is contributed by both the 
growth of existing voids and the nucleation of new voids, 
i.e., 

nucleationgrowth fff &&& +=                         (12) 

Keeping in mind that the matrix is incompressible, 
the increment of the void volume fraction due to the 
growth of void can be given by 
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The new voids, nucleated either by cracking of the 
particles or by decohesion of the particle/matrix interface, 
can be described with the following equation 

ζ&& Λf =nucleation                              (14) 

where Λ follows a normal distribution with mean value 
ζN and standard deviation sN. Λ is given as  
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where sN=0.1; fN=0.4; ζN=0.2. The addition of the void 
nucleation term would more fully reflect the effect of the 
void evolution on material behavior and improve the 
predictive ability of the constitutive relation. 
 
3 Application and verification 
 

The corresponding numerical algorithm and FE 
procedure were developed based on the presented 
constitutive equation. They were applied to the analyses 
of the relationship between the stress and strain as well 
as the porosity of the notched cylindrical specimen of 
casting magnesium alloy ZL102. The size of the 
specimen is shown in Fig.3. The upper right quarter of 
the specimen was taken for the analyses due to the 
symmetry of the problems (Fig.4). The eight-node 
isoparametric element with 2×2 Gaussian points was 
adopted. The axial displacement was imposed at the end 
of the specimen with the incremental step of 0.02 mm. 
Fig.5 shows the contours of the void volume fraction at 
different applied strains. It can be seen from Fig.5 that 
the voids firstly occur at the notch root where the strain 
is relatively large. The porosity takes its maximum in the 
region near to the notch root and decreases with the 
increase of the distance away from the notch root. Figs.6 
and 7 show the distributions of the axial stress and the 
 

 
Fig.3 Cylindrical tensile specimen with notch (Unit: mm) 
 

 
Fig.4 Finite element mesh of specimen 
 

 
Fig.5 Contours of void volume fraction: (a) εa=0.014; (b) 
εa=0.026 
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porosity along the notch line, where d is the distance 
from the surface to the center of the smallest cross 
section of the specimen. Fig.6 shows that the maximum 
axial stress arises at the notch root, but the maximum 
stress considering voids is larger than that without 
considering voids. Fig.7 shows that the maximum 
porosity also appears at the notch root of the specimen 
and agrees well with the experimental results. 
 

 
Fig.6 Distributions of axial stresses along notch line 
 

 
Fig.7 Distribution of void volume fraction along notch line 
 
4 Conclusions 
 

1) The representative volumetric element of the 
casting magnesium alloy material including many 
microvoids is simplified as a spherical void−cell model. 
The microscopic velocity and strain fields of the model 
are given. 

2) The intrinsic time scale of the material that can 
reflect the deformation-hardening and the void−softening 
behaviors of the material is presented. 

3) The presented intrinsic time is introduced to 
endochronic elastoplastic constitutive equation, and the 
constitutive description of casting magnesium alloy 
considering void evolution is obtained. 

4) The corresponding numerical algorithm and FE 

procedure are developed. They are applied to the 
analyses of the relationship between the stress and strain 
as well as the porosity of the notched cylindrical 
specimen of casting magnesium alloy ZL102. The 
analytical results are in agreement with experimental 
data. 
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