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Abstract: The maximum Mode I and Mode II stress intensity factors (SIFs), KI,kmax(θ) and KII,kmax(θ) (0°<θ<360°), of 
inclined parallel multi-crack varying with relative positions (including horizontal and vertical spacings) are calculated 
by the complex function and integration method to analyze their interacting mechanism and determine the strengthening 
and weakening zone of SIFs. The multi-crack initiation criterion is established based on the ratio of maximum 
tension−shear SIF to predict crack initiation angle, load, and mechanism. The results show that multi-crack always 
initiates in Mode I and the vertical spacing is better not to be times of half crack-length for crack-arrest, which is in 
good agreement with test results of the red-sandstone cube specimens with three parallel cracks under uniaxial 
compression. This can prove the validity of the multi-crack initiation criterion. 
Key words: interaction mechanism; multi-crack initiation criterion; initiation prediction; multiple cracks; stress 
intensity factor 
                                                                                                             

 

 

1 Introduction 
 

In rock mass engineering, arbitrary cracks and 
joints existing in natural rocks usually initiate and 
propagate, and result in failure. Fracture failure is 
one of the most serious and harmful disasters. 
Research of multiple cracks interaction has become 
a hot issue and attracted more and more attention. 

Currently, there are mainly two research 
methods for multiple cracks interaction: 
experimental and theoretical study. Uniaxial and 
biaxial compression tests have been adopted to 
study the effect of crack geometric parameters on 
stress and failure mode. Results showed that more 
secondary cracks occur when the vertical and 
horizontal spacings of double cracks are small 
under uniaxial compression loading [1]. The crack 
initiation stress is obviously lower than the peak 
strength when the inclined angle of double cracks 
with respect to the horizontal line was larger than 
45° [2,3]. When the inclined angle of the five 

parallel cracks is about 25°, the compressive 
strength reaches its minimum value [4,5]. In 
addition, the extension trajectory of cracks could be 
recorded by either naked eyes [6,7] or digital 
speckle correlation method (DSCM) and acoustic 
emission (AE) techniques [8−10] during tests. 
Results showed that the failure modes could be 
classified as five basic modes: tensile failure 
through the crack origin plane, tensile failure along 
the crack plane, shear failure along the crack plane, 
mixed-mode failure, and splitting failure, depending 
on the geometric parameters of nine equal-length 
parallel cracks. Also, the triaxial compression test 
was conducted to study the stress−strain curves of 
red sandstone samples with double cracks [11],  
but it is not convenient to observe the crack 
propagation process because the specimen was 
enclosed in a triaxial loading chamber. Due to the 
limit of experiments, the effects of multiple cracks 
geometric parameters on the initiation mechanism 
have not been systematically analyzed. Therefore, 
it’s necessary to seek the theoretical method for  
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calculating stress intensity factor (SIF) and 
establishing a multi-crack fracture criterion. 

Many researchers used different theoretical 
methods to calculate SIF of multiple cracks and 
study the interacting mechanism. For example, the 
boundary collocation method was used to calculate 
SIF of the single edge crack [12], the single central 
crack [13], and double edge cracks [14] in a finite 
two-dimensional plate. Complex variable method 
was adopted by BENTHEM and KOITER [15], and 
SNEDDON and LOWENGRUB [16] to solve some 
special multi-crack problems such as collinear, 
parallel, or star cracks. The pseudo-tension method 
is also widely applied. HORRI and NEMAT- 
NASSER [17,18] utilized the pseudo-tension 
method to calculate the SIF of double cracks and 
KACHANOV [19−21] simplified this method to 
estimate the SIF of double-crack by the 
superposition technique. Based on KACHANOV’s 
method, ZHU et al [22] investigated the interaction 
of two offset parallel cracks with different level 
intervals, vertical intervals, and crack lengths and 
indicated three kinds of interaction: reinforcing, 
shielding, and null. Besides, LI et al [23] improved 
the accuracy of KACHANOV’s method by only 
considering the effect of the linearly varying 
component (neglecting the non-uniform 
component). CHEUNG et al [24] adopted the 
Fredholm integral equation solution and weighted 
residual method to calculate the SIF of dual cracks. 
On the whole, current studies are mostly focused on 
the Mode I (KI(0)) and Mode II (KII(0)) SIFs of 
multiple cracks along the original crack plane. But 
multiple cracks do not always initiate and propagate 
in their original plane, e.g., the occurrence of wing 
cracks. 

To understand the interaction mechanism of 
multiple cracks better, fracture criteria need to be 
established for predicting crack initiation. In  
classic fracture mechanics, there are mainly three 
types of mixed-mode fracture criteria: stress-based 
fracture criterion [25−27], strain-based fracture 
criterion [28], and energy-based fracture   
criterion [29−31], where the fracture mode (tensile 
or shear) is considered to be the same as the loading 
form. However, for brittle materials, the tensile 
strength is much smaller than its shear strength and 
thus the tensile (Mode I) fracture usually occurs 
even under pure shear loading. These fracture 

criteria can better predict Mode I fracture under 
arbitrary loading conditions (pure tensile, pure  
shear, and mixed-mode) but not the true shear 
(Mode II) fracture for brittle materials. Thus, a new 
fracture criterion of maximum tension−shear SIF 
ratio is proposed [32] to judge both Mode I and 
Mode II fracture of single crack for brittle materials. 
The criterion judges whether the crack is the tensile 
or shear failure by the ratio of maximum SIF at 
360o along the crack tip. It is promising to be 
applicable to multiple cracks. 

In this work, the maximum Mode I and Mode 
II SIFs, KI,kmax(θ) and KII,kmax(θ) (0°<θ<360°), of 
inclined parallel multi-crack under uniaxial 
compression varying with the relative positions 
(including horizontal and vertical spacing) are 
calculated by the complex function and integration 
method to analyze their interacting mechanism, in 
order to determine strengthening and weakening 
zone of SIF. The initiation criterion of multi-crack 
is established based on the ratio of maximum 
tension−shear SIF for predicting the crack initiation 
(including initiation angle and load). Theoretical 
prediction results are verified by the uniaxial 
compression test of rock specimen with multi- 
crack. 
 
2 Multiple cracks theory 
 
2.1 SIF calculation formula of multiple cracks 

Figure 1 shows an infinite plate of multiple 
cracks ( k=1, 2, …, K) under uniform compressive 
and shear stresses at infinity ( ,x   y   and 

xy yx   , let the tensile stress be positive and the 
compressive stress be negative). It is assumed that 
all cracks are non-closed. Set a global rectangular 
coordinate system (xoy) and a local rectangular 
coordinate system (xkokyk) at the centers of the kth 
crack (ok), where x axis is the horizontal direction 
and xk axis is along the direction of the kth crack. 
Let ak and αk denote the half-length of the kth crack 
and the inclined angle with respect to the x axial. 
The anti-clockwise direction of αk is defined to be 
positive. 

For SIF calculation of multi-crack, the remote 
uniform stresses ( ,x   ,y   xy yx   ) applied to 
the infinite plate of multi-crack can be equivalent to 
the uniform surface stresses (pk and qk) applied to 
each crack (Fig. 1): 
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Fig. 1 Infinite plate containing k cracks 
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The actual normal and tangential stresses   

(Pk, Qk) existing on the surface of each crack are 
unknown, called as pseudo tractions [17,33]. The Pk 
and Qk can be regarded as the integration of the two 
pairs of self-balancing surface forces (P, Q), as 
shown in Fig. 2. In order to investigate the 
multi-crack interaction, it needs to first determine 
the normal and tangential tractions ( c

y , c
xy ) of an 

arbitrary point z (z=x+iy) in any direction (angle α), 
which is caused by two pairs of self-balancing 
surface forces (P, Q) at any point (s, 0) of a single 
crack, respectively. 
 

 

Fig. 2 Single crack under two pairs of self-balancing 

normal and tangential forces on crack surface 

 
The stresses can be expressed in the form of 

the complex variable method as follows: 
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According to Muskhelishvili plane elastic 
mechanics solution [24], there are 
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When P=1 and Q=0, there is 
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where fnn and fnt indicate the normal and tangential 
tractions of any point z in any direction (angle α), 
caused by a pair of self-balancing unit normal 
forces (P=1) at any point (s, 0) on the crack surface, 
respectively. 

When P=0 and Q=1, there is 
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where ftn and ftt indicate the normal and tangential 
tractions of any point z in any direction (angle α), 
caused by a pair of self-balancing unit normal 
forces (Q=1) at any point (s, 0) on the crack  
surface, respectively. 

Considering the multi-crack interaction and 
superposition principle, the total normal and 
tangential stresses of any crack surface (k) are equal 
to the sum of Pk(sk) and Qk(sk) acting on the kth 
crack itself and additional pseudo tractions caused 
by Pl(sl) and Ql(sl) acting on the other crack 
surfaces (l≠k). Therefore, the interacting surface 
normal and tangential stresses of any crack (Pk(sk) 
and Qk(sk)) can be calculated by solving the 
Fredholm integral equations [24]: 
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where pk(sk) and qk(sk) are obtained by Eq. (1). 

The kernel function f can be calculated by 
Eqs. (6) and (7). Its subscript has a clear physical 
meaning, e.g., fnt,lk(sl, sk) means the effect of unit 
normal force at a point (sl, 0) of the lth crack on the 
normal force at a point (sk, 0) of the kth crack. 

Mode I and Mode II SIFs of any crack ( k=1, 
2, …, K) on its original plane (θ=0°) KI,k(0) and 
KII,k(0) can be determined by substituting Pk(sk) and 
Qk(sk) into the following equations [24] and making 
calculation program by Mathematica software: 
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where the superscript “±” of K represents the left (+) 
and right (−) tips of the crack. 
 
2.2 Initiation criterion of multiple cracks 

For judging multi-crack initiation, it needs to 
calculate the interacting Mode I and Mode II SIFs 
of any crack (k=1, 2, … , K) in any direction 
(0°<θ<360°) based on the KI,k(0) and KII,k(0) on its 
original plane [32]: 
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The maximum values of KI,k(0) and KII,k(0) at 
θIC and θIIC, KI,kmax(θ) and KII,kmax(θ), can be  
obtained, respectively. 

According to the criterion of maximum 
tension−shear SIF ratio for the single crack [32], the 
multi-crack initiation criterion can be established by 
substituting the interacting SIF of multi-crack: 
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where KIC and KIIC are Mode I and Mode II fracture 
toughnesses, respectively. 
 
3 Calculation of three parallel cracks 

under uniaxial compression 
 
3.1 Calculation model of three parallel cracks 

Take the infinite plate of three equal-length 
(2a=30 mm) parallel cracks (α=45°) under remote 
uniform compressive stress as the calculation 
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example. There are two cases for change of the 
horizontal and vertical spacings: (1) Fixing the 
lower crack A1B1 and the upper crack A3B3, moving 
the middle crack A2B2 (which is equivalent to the 
case of fixing the middle crack A2B2 and moving  
the lower crack A1B1 and the upper crack A3B3);   
(2) Fixing the lower crack A1B1 and the middle 
crack A2B2 and moving the upper crack A3B3 (which 
is equivalent to the case of fixing the upper crack 
A3B3 and moving the lower crack A1B1 and the 
middle crack A2B2). Let Ds and D′s denote the 
horizontal spacing (along the crack direction) of 
center-point connecting lines between A2B2 and 
A1B1, A3B3 and A1B1, respectively. Let Dh and D′h 

denote the vertical spacing (perpendicular to the 
crack direction) of center-point connecting lines 
between A2B2 and A1B1, A3B3 and A1B1, respectively. 
Effects of crack relative positions on interacting SIF 
are analyzed as follows. 
 

 
Fig. 3 Three parallel cracks 

 
3.2 Effects of crack relative positions on 

interacting SIF 
(1) Change of Ds 
Let Dh=20 mm, D′h=40 mm, D′s=0 with only 

change of Ds (in term of Ds/a). Figure 4 illustrates 
the effects of Ds on the normalized Mode I and 
Mode II SIFs (in term of KI,kmax(θ)/K0

Imax(θ) and 
KII,kmax(θ)/K0

IImax(θ)) of each crack-tip for multi- 
crack. KI,kmax(θ) and KII,kmax(θ) are the maximum 
values of KI,k(0) and KII,k(0) at θIC and θIIC. K0

Imax(θ) 
and K0

IImax(θ) are the maximum values of Mode I 
and Mode II SIFs of the single crack with the  
same length (2a=30 mm) and inclined angle 
(α=45°), and they can be determined by the 
calculation method in Ref. [32]. Define 

KI,kmax(θ)/K0
Imax(θ)<1 (or KII,kmax(θ)/K0

IImax(θ)<1) as 
weakening-interaction, and KI,kmax(θ)/K0

Imax(θ)>1 (or 
KII,kmax(θ)/K0

IImax(θ)<1) as strengthening-interaction, 
and KI,kmax(θ)/K0

Imax(θ)=1 (or KII,kmax(θ)/K0
IImax(θ)=1) 

as non-interaction. 
 

 

Fig. 4 Effects of horizontal spacing Ds on SIFs of all 

crack-tips: (a) KI,kmax(θ)/K0
Imax(θ); (b) KII,kmax(θ)/K00

Imax(θ) 

 
For the Mode I SIF, when Ds is 0 (central 

points of the three cracks are co-line), KI,kmax(θ)/ 
K0

Imax(θ) of points A1 and A3 is equal to 1 and 
KI,kmax(θ)/K0

Imax(θ) of point A2 is within 1.0-1.1, 
meaning that there is very few crack interaction. 
KI,kmax(θ)/K0

Imax(θ) values of points A1, A2 and A3 are 
all decreased first when Ds/a is in the range of 0-1 
(i.e., weakening-interaction of cracks is increased) 
and then increased for Ds/a larger than 1 (i.e., 
weakening-interaction of cracks is decreased). 
Finally, they tend to be stable values (KI,kmax(θ)/ 
K0

Imax(θ)=1) when Ds/a becomes quite larger, i.e., the 
middle crack A2B2 is far away from the lower crack 
A1B1 and the upper crack A3B3 without any 
crack-interaction. Differently, KI,kmax(θ)/K0

Imax(θ) of 
points B1, B2, and B3 is less than 1 when Ds/a is 0 
(with weakening effect). It increases when Ds/a is 
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less than 1 (i.e., weakening-interaction of cracks is 
decreased). Then, KI,kmax(θ)/K0

Imax(θ) of points B1 
and B2 increases and that of point B3 decreases (i.e., 
weakening-interaction of cracks is increased) for 
Ds/a larger than 1. Finally, it also tends to be stable 
value (KI,kmax(θ)/K0

Imax(θ)1) when Ds/a becomes 
quite larger. 

For the Mode II SIF, KII,kmax(θ)/K0
IImax(θ) values 

of all crack tips are nearly unchanged as Ds 
increases (KII,kmax(θ)/K0

IImax(θ)=0.9−1). Furthermore, 
two crack-tips of each crack (A1 and B1, A2 and B2, 
A3 and B3) have almost the same values of 
KII,kmax(θ)/K0

IImax(θ), because the moving of the 
middle crack A2B2 along the crack direction (i.e., the 
direction of shear stress) has little effect on the 
shear stress field. In addition, KII,kmax(θ)/K0

IImax(θ) of 
points A1 and A3 is slightly smaller than 1 and that 
of point A2 is larger than 1 when Ds is 1. Therefore, 
the effect of Ds on Mode II SIFs of all crack tips 
could be neglected. 

To sum up, when Ds changes, the 
strengthening zones of SIFs appear when the 
horizontal spacings are Ds/a=2.3−4.3 for the bottom 
crack (A1B1), Ds/a=1−4 for the middle crack (A2B2), 
and Ds/a=0.3−1 for the upper crack (A3B3), 
respectively. KI,kmax(θ)/K0

Imax(θ) values of points   
A1, A2 and A3 are minimum when Ds/a is 1 (i.e., 
Ds/(2a)=0.5) and KI,kmax(θ)/K0

Imax(θ) values of points 
B1, B2 and B3 have peak values when Ds/a is 2. This 
means that KI,kmax(θ)/K0

Imax(θ) of all crack-tips 
reaches its maximum or minimum value when the 
horizontal spacing (Ds) is equal to times of half 
crack-length. 

(2) Change of D′s 
Let Dh=20 mm, D′h=40 mm and Ds=0 with 

only change of D′s (in term of D′s/a). Figure 5 
illustrates the effects of D′s on the normalized Mode 
I and Mode II SIFs (in term of KI,kmax(θ)/K0

Imax(θ) 
and KII,kmax(θ)/K0

IImax(θ)) of each crack-tip. 
For the Mode I SIF, KI,kmax(θ)/K0

Imax(θ) values 
of points A1, A2 and A3 are nearly equal to 1 when 
D′s is 0, indicating that there is almost no 
crack-interaction. When D′s/a is in the range of 
0−0.3, KI,kmax(θ)/K0

Imax(θ) values of points A1, A2 and 
A3 all increase (i.e., strengthening-interaction of 
cracks is increased), and they decrease when D′s/a is 
in the range of 0.3−1. KI,kmax(θ)/K0

Imax(θ) of points A1 
and A3 increases and that of point A2 decreases for 
D′s/a larger than 1. Finally, the value tends to be 
stable (KI,kmax(θ)/K0

Imax(θ)=1) when D′s/a becomes 

quite larger, i.e., the upper crack A3B3 is far    
away from both the lower crack A1B1 and the 
middle crack A2B2 without any crack-interaction. 
Differently, KI,kmax(θ)/K0

Imax(θ) values of points B1, 
B2 and B3 are less than 1 (with weakening effect) 
when D′s is 0. They all increase when D′s/a is in the 
range of 0−1 (i.e., weakening-interaction of cracks 
is decreased). KI,kmax(θ)/K0

Imax(θ) of points B1 and B3 

increases and that of point B2 decreases (i.e., 
weakening-interaction of cracks is increased) for 
D′s/a greater than 1. Finally, it also tends to be stable 
value (KI,kmax(θ)/K0

Imax(θ)1) when D′s/a becomes 
quite larger. 
 

 
Fig. 5 Effects of horizontal spacing D′s on SIFs of all 

crack-tips: (a) KI,kmax(θ)/K0
Imax(θ); (b) KII,kmax(θ)/K0

IImax(θ) 

 
For the Mode II SIF, KII,kmax(θ)/K0

IImax(θ) values 
of all crack tips are nearly unchanged as D′s 
increases (KII,kmax(θ)/K0

IImax(θ)=0.9−1). Furthermore, 
two crack-tips of each crack (A1 and B1, A2 and B2, 
A3 and B3) have almost the same values of 
KII,kmax(θ)/K0

IImax(θ), because the moving of the upper 
crack A3B3 along the crack direction (i.e., the 
direction of shear stress) has little effect on the 
shear stress field. In addition, KII,kmax(θ)/K0

IImax(θ) of 
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points B1, B2 and B3 is slightly less than 1 when D′s 
is 0. KII,kmax(θ)/K0

IImax(θ) of points B1 and B3 is 
slightly less than 1 and that of point B2 is nearly 
equal to 1 when D′s/a is 0.3. Therefore, the effect of 
D′s on Mode II SIF of all crack tips could be 
neglected. 

To sum up, KI,kmax(θ)/K0
Imax(θ) and KII,kmax(θ)/ 

K0
IImax(θ) of each crack always have a peak point 

when D′s/a is 1. By comparing Fig. 4 with Fig. 5, it 
is easy to find that the values of KII,kmax(θ) of all 
cracks are all less than those of KI,kmax(θ) whether 
the upper crack A3B3 moves or the middle crack 
A2B2 moves. It is indicated that Mode II fracture is 
hard to occur when the horizontal spacing (along 
the crack direction) of cracks varies. 

(3) Change of Dh 
Let Ds=0, D′s=0, D′h=40 mm with only change 

of Dh (in term of Dh/a). Figure 6 illustrates the 
effects of Dh on the normalized Mode I and Mode II 
SIFs of each crack-tip. 

For the Mode I SIF, all of the crack-tips A1, A2, 
A3 and B1, B2, B3 have similar tendencies with the 
 

 
Fig. 6 Effects of vertical spacing Dh on SIFs of all 

crack-tips: (a) KI,kmax(θ)/K0
Imax(θ); (b) KII,kmax(θ)/K0

IImax(θ) 

change of Dh, since the three central points of the 
three cracks are always colinear and the effects on 
the two-tips of each crack are almost the same. 
Differently, KI,kmax(θ)/K0

Imax(θ) values of points A1, 
A2, A3 are always larger than 1 (i.e., strengthening- 
interaction) while those of points B1, B2, B3 are 
always less than 1 (i.e., weakening-interaction). 
When Dh/a is less than −5, KI,kmax(θ)/K0

Imax(θ) values 
of all crack tips tend to be stable, since the middle 
crack A2B2 is far away from the lower crack A1B1. 
When Dh/a is in the range from −5 to −1, they all 
increase, and when Dh/a varies from −1 to 0, they 
all decrease, because the middle crack A2B2 is 
gradually close to the lower crack A1B1. When Dh/a 
increases from 0 to 1, KI,kmax(θ)/K0

Imax(θ) values of 
points A1, A2, A3 and B3 increase while those of 
points B1 and B2 decrease. When Dh/a is in the range 
of 1−2, KI,kmax(θ)/K0

Imax(θ) values of points A1, A2, B1 
and B2 increase while those of points A3 and B3 

decrease. When Dh/a increases from 2 to 3, 
KI,kmax(θ)/K0

Imax(θ) values of points A1, A3, B1 and B3 
increase while those of points A2 and B2 decrease, 
because A2B2 begins to keep away from A1B1 and 
close to A3B3. KI,kmax(θ)/K0

Imax(θ) values of all 
crack-tips also tend to be stable for Dh/a greater 
than 3, since the middle crack A2B2 is far away from 
the upper crack A3B3. 

For the Mode II SIF, KII,kmax(θ)/K0
IImax(θ) of 

cracks A1B1 and A2B2 nearly have the same 
fluctuation characteristics as KI,kmax(θ)/K0

Imax(θ),  
but the crack A3B3 has different fluctuation 
characteristics of KII,kmax(θ)/K0

IImax(θ). They all tend 
to be stable when Dh/a becomes quite larger. 
Furthermore, two crack-tips of each crack (A1 and 
B1, A2 and B2, A3 and B3) have almost the same 
values of KII,kmax(θ)/K0

IImax(θ). 
To sum up, when Dh changes, strengthening 

zones of SIFs appear when the vertical spacings 
(Dh/a) are in the range from −4 to −1 for the bottom 
(A1B1) and upper cracks (A3B3), and from −5 to −1 
for the middle (A2B2) crack. Thus, the strengthening 
zone is from −4 to −1 for all cracks. When Dh/a is 
equal to 1 or −1, the SIFs of the crack tips have the 
peak values. KI,kmax(θ)/K0

Imax(θ) and KII,kmax(θ)/ 
K0

IImax(θ) of both the cracks A2B2 and A3B3 reach the 
peak values (i.e., dangerous case) at Dh/a=2 and 
Dh/a=3, respectively, i.e., the interacting of multi- 
crack is the strongest when the vertical spacing is 
equal to times of half crack-length. The study of the 
strongest interacting zone is of great significance 
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for cracking arrest in engineering. 
(4) Change of D′h 
Let Ds=0, D′s=0, Dh=20 mm with only change 

of D′h (in term of D′h/a). Figure 7 illustrates the 
effects of D′h on the normalized Mode I and Mode II 
SIFs of each crack-tip. 
 

 

Fig. 7 Effects of vertical spacing D′h on SIFs of all 

crack-tips: (a) KI,kmax(θ)/K0
Imax(θ); (b) KII,kmax(θ)/K0

IImax(θ) 

 
For the Mode I SIF, all of the crack-tips A1, A2, 

A3, B1, B2 and B3 almost have similar tendencies 
with change of D′h. Differently, KI,kmax(θ)/K0

Imax(θ) 
values of points A1, A2 and A3 are always larger than 
1 (i.e., strengthening-interaction) while those of 
points B1, B2 and B3 are always less than 1 (i.e., 
weakening-interaction). When D′h/a is less than −4, 
KI,kmax(θ)/K0

Imax(θ) values of all crack tips tend to be 
stable, since the upper crack A3B3 is far away from 
the lower crack A1B1. When D′h/a is in the range 
from −4 to −1, KI,kmax(θ)/K0

Imax(θ) of point B2 
decreases while that of all other points increases. 
When D′h/a varies from −1 to 0, KI,kmax(θ)/K0

Imax(θ) 
of point B2 increases while that of all other points 

decreases. When D′h/a increases from 0 to 1, 
KI,kmax(θ)/K0

Imax(θ) values of points A1, A2, A3 and B3 
increase while those of points B1 and B2 decrease. 
When D′h/a is in the range from 1 to 2, 
KI,kmax(θ)/K0

Imax(θ) values of points A1, A2, B1 and B2 
increase while those of points A3 and B3 decrease. 
This is because when D′h/a varies from −4 to 0, the 
upper crack A3B3 is gradually close to the lower 
crack A1B1 and the middle crack A2B2. When D′h/a is 
0, the crack A3B3 coincides with the crack A1B1; 
when D′h/a is in the range of 0−2, A3B3 begins to 
keep away from A1B1 and close to A2B2. 
KI,kmax(θ)/K0

Imax(θ) values of all crack-tips tend to be 
stable for D′h/a larger than 2. 

For the Mode II SIF, the cracks A1B1 and A3B3 
have the same fluctuation characteristics of 
KII,kmax(θ)/K0

IImax(θ) as those of KI,kmax(θ)/K0
Imax(θ), 

but the crack A2B2 has different fluctuation 
characteristics of KII,kmax(θ)/K0

IImax(θ). They all tend 
to be stable when D′h/a becomes quite larger. 
Furthermore, two crack-tips of each crack have 
almost the same values of KII,kmax(θ)/K0

IImax(θ). 
To sum up, when D′h changes, strengthening 

zones of SIFs appear when the vertical spacings 
(D′h/a) are from −3 to −1 for the bottom crack 
(A1B1), from −3 to 2 for the middle crack (A2B2) and 
from −4 to 1 for the upper crack (A3B3). Thus, the 
strengthening zone of all cracks is D′h/a from −3 to 
−1. Therefore, the vertical spacing of multi-crack is 
better not to be times of half crack-length for 
crack-arrest. In addition, the values of KI,kmax(θ) are 
always larger than those of KII,kmax(θ) and therefore 
the tensile (Mode I) fracture is more likely to occur 
than the shear (Mode II) fracture. When Dh/a or 
D′h/a tends to zero (i.e., two cracks would coincide 
with each other), the value of SIF fluctuates greatly. 
It is indicated that the change of the multi-crack 
number would result in the fluctuation of SIF. 

Figure 8 shows calculation results of KII(0) 
compared with those in Refs. [23,34]. They agree 
very well (with an error of less than 5%), indicating 
that Eq. (10) is valid and feasible. 
 
3.3 Initiation prediction of three parallel cracks 

For predicting the initiation parameters of the 
three equal-length (2a=20 mm) parallel cracks 
(α=45°) in the infinite plate under remote uniform 
compressive stresses, red sandstone was adopted as 
rock material and its basic mechanical parameters 
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are listed in Table 1, including compressive strength 
σc, tensile strength σt, elastic modulus E, Mode I 
and Mode II fracture toughness KIC and KIIC. 
 

 

Fig. 8 Normalized KII(0) versus d/a 

 
Table 1 Mechanical parameters of red sandstone 
σt/ 

MPa 
σc/ 

MPa 
φ/ 
(°) 

E/ 
GPa 

KIC/ 
(MPaꞏm1/2) 

KIIC/ 
(MPaꞏm1/2)

3.75 65 33.5 9.08 0.47 1.22 

 
Based on the analytic results (i.e., the 

interaction among cracks is related to times of half 
crack-length), two groups of three-crack relative 
position parameters were selected for predicting 
initiation (Table 2). In the first group, D′s (D′s=0), Dh 

(Dh=15 mm), and D′h (D′h=30 mm) are unchanged 
and Ds is equal to times of half crack-length 
(a=10 mm). In the second group, Ds (Ds=0), 
D′s (D′s=0) and D′h (D′h=30 mm) are unchanged and 
Dh is equal to times of half crack-length 
(a=10 mm). 
 

Table 2 Relative positions of three parallel cracks (D′s=0, 

D′h=30 mm, α=45°) 

Group Specimen Ds/mm Dh/mm 

1 

1 0 

15 

2 10 

3 20 

4 30 

5 40 

2 

1 

0 

−20 

2 −10 

3 10 

4 20 

5 30 

Take Specimen 1 in Group 1 as an example for 
illustrating how to predict the crack initiation. 
Firstly, Mode I and Mode II SIFs of each crack-tip 
were calculated by Eq. (10), and these SIFs were 
substituted into Eq. (13) to obtain the initiation  
load, initiation angle, and fracture mechanism of 
each crack-tip. And then, the actual initiation tip  
(A2) can be determined according to the minimum 
initiation load of the crack-tip (Table 3). The 
prediction results of all specimens are listed in 
Table 4. It is seen that the initiation load is changed 
less with the increase of the Ds/a and the initiation 
mechanism of multi-crack is Mode I. 
 

Table 3 Prediction results of initiation parameters of 

Specimen 1 in Group 1 

Crack 
tip 

Tip initiation 
load/MPa 

Initiation 
angle/(°) 

Fracture 
mode 

A1 30.75 −128.09 Mode Ⅰ

B1 32.35 −125.81 Mode Ⅰ

A2 28.58 −128.29 Mode Ⅰ

B2 30.60 −125.68 Mode Ⅰ

A3 30.75 −128.08 Mode Ⅰ

B3 32.34 −125.81 Mode Ⅰ

 

Table 4 Prediction results of multi-crack initiation 

parameters 

Group
No.

Specimen
No. 

Initiation 
load/ 
MPa 

Initiation 
tip 

Initiation 
angle/

(°) 

Fracture 
mode

1 

1 28.58 A2 −128.29 Mode I

2 30.29 A2 −127.3 Mode I

3 29.52 B2 −52.00 Mode I

4 29.30 B2 52.53 Mode I

5 29.29 A2 52.54 Mode I

2 

1 28.14 A2 −125.98 Mode I

2 26.35 A2 −122.31 Mode I

3 29.58 A2 −128.62 Mode I

4 27.41 A2 −124.54 Mode I

5 29.86 A2 52.73 Mode I

 
4 Test verification 
 
4.1 Test arrangement 

The red sandstone from Wuding County, 
Chuxiong city of Yunnan province, China, was 
chosen as rock material. Its basic mechanical 
parameters are given in Table 1.  
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The DNS100 electro-hydraulic servo universal 
testing machine (Fig. 9(a)) was adopted for the 
uniaxial compression test with a maximum loading 
force of 1000 kN. The displacement loading rate 
was 0.1 mm/s. During the tests, stress−strain curves 
of all specimens were recorded for determining the 
crack initiation load. After the tests, fracture 
trajectories of all specimens were analyzed to 
obtain the multi-crack initiation angle. Figure 9(b) 
shows a cuboid specimen (100 mm × 100 mm × 
20 mm) with three equal-length (2a=20 mm) 
parallel cracks (α=45°). The relative positions of the 
three cracks are given in Table 2. 
 

 

Fig. 9 Uniaxial compression test: (a) Test machine;    

(b) Loading status 

 
4.2 Results and analysis 

Figure 10 shows the stress−strain curve of 
Specimen 1 as an example. It is divided into four 
stages (which is consistent with Refs. [35,36]): 
initial compaction (OA, where the slope is gradually 
increased), linear elastic deformation (AB, where 
the slope is constant), nonlinear deformation (BC, 
where the slope is gradually decreased) and post- 
peak failure (CD). The crack initiation load can be 
determined by the distinguishing point (B) of linear 

elastic deformation and nonlinear deformation. 
Fracture trajectories of the red sandstone 

specimens are shown in Figs. 11 and 12. It can be 
found that the cracks first initiate at one crack tip, 
then propagate stably, and finally link up until 
failure. For example, the tip A2 of Specimen 1 
initiates first, and then tips A1, B1, B2 and B3 begin 
to initiate. After that, the tips A2 and B3 are 
connected and finally the tips A1 and B2 are 
connected until failure. It is worth noting that the 
initiation of the secondary crack is accompanied  
by the propagation of main cracks, due to the 
redistribution of crack-tip stress caused by the 
initiation of the wing crack. 
 

 

Fig. 10 Stress−strain curve of Specimen 1 

 
Table 5 lists the test results of crack initiation 

parameters for all specimens. The fracture 
mechanism of all red sandstone specimens in 
uniaxial compressive is tensile (Mode I) fracture. 
By comparing Table 5 with Table 4, it can be 
concluded that the test results are in good 
agreement with the prediction results, which can 
verify the validity of the interacting mechanism and 
the multi-crack initiation criterion. 

According to the displacement results of the 
finite element method, the initial open crack is still 
open under compression before the crack initiates 
(μ=0). Take Specimen 1 in Group 1 (100 mm×  
100 mm×20 mm) with three equal-length parallel 
cracks (length 2a=20 mm and width t=1.5 mm) as 
example. Figure 13 shows nephogram of y-direction 
displacement (δy) at the peak stress σU=40.97 MPa, 
where DMX and SMN are the maximum and 
minimum displacement. Table 6 lists δy and its 
projected displacement (δt) onto vertical direction  
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Fig. 11 Fracture trajectories of red sandstone specimens with different Ds: (a) Ds/a=0; (b) Ds/a=1; (c) Ds/a=2;        

(d) Ds/a=3; (e) Ds/a=4 
 

 

Fig. 12 Fracture trajectories of red sandstone specimens with different Dh: (a) Dh/a=−2; (b) Dh/a=−1; (c) Dh/a=1;     

(d) Dh/a=2; (e) Dh/a=3 

 

Table 5 Test results of crack initiation parameters for all 

specimens 

Group 
No. 

Specimen 
No. 

Initiation 
load/ 
MPa 

Initiation 
tip 

Initiation 
angle/ 

(°) 

Fracture
Mode

1 

1 28.52 A2 −133 Mode I

2 29.24 A2 −133 Mode I

3 28.17 B2 −51 Mode I

4 32.15 B2 49.5 Mode I

5 28.25 A2 50 Mode I

2 

1 24.35 A2 −128 Mode I

2 27.303 A2 −127 Mode I

3 30.595 A2 −117 Mode I

4 27.365 A2 −129 Mode I

5 31.125 A2 55 Mode I

 

Fig. 13 Nephogram of y-direction displacement 

 

of the original crack (δt=δysin45°) of each crack tip. 
It can be seen that all δt ≤t, indicating that the initial 
crack is still open before the crack initiates. Similar 
results can be also obtained from other rock 
specimens. 
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Table 6 Displacement of each crack tip 

Crack tip Tip No. δy/mm δt/mm 

A1 

1 −0.377 −0.267 

2 −0.296 −0.209 

B1 

3 −0.820 −0.580 

4 −0.681 −0.482 

A2 
5 −0.536 −0.379 

6 −0.438 −0.310 

B2 
7 −1.03 −0.729 

8 −0.929 −0.657 

A3 
9 −0.779 −0.551 

10 −0.642 −0.454 

B3 
11 −1.18 −0.838 

12 −1.09 −0.776 

 
5 Conclusions 
 

 (1) The maximum Mode I and Mode II SIFs 
KI,kmax(θ) and KII,kmax(θ) (0°<θ<360°) of the inclined 
parallel multi-crack under uniaxial compression 
varying with the relative positions (including 
horizontal and vertical spacing) are calculated by 
the complex function and integration method to 
analyze their interacting mechanism. The accuracy 
of this method is validated by comparing the test 
results obtained with the approximate method and 
the Kachanov method. 

(2) The multi-crack initiation criterion is 
established based on the ratio of maximum 
tension−shear SIF in order to predict the multi- 
crack initiation angle, load, and mechanism. It   
can provide a theoretical basis for safety  
assessment and crack-arrest design in rock mass 
engineering. 

(3) The horizontal and vertical spacings have 
greater effect on KI,kmax(θ) than on KII,kmax(θ). The 
SIF strengthening zones of all cracks appear only 
when the vertical spacings are Dh/a from −4 to −1 
and D′h/a from −3 to −1. It is better not to let the 
vertical spacing of multi-crack equal to times of 
half crack-length for avoiding the strengthening 
zone and possible fracture. The initiation load 
changes less with the increase of the Ds/a and the 
initiation mechanism of multi-crack is Mode I. 

(4) The test results of the red-sandstone cube 
specimens with three parallel cracks under uniaxial 
compression agree well with the prediction results 
and can prove the validity of the multi-crack 
initiation criterion. 
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摘  要：采用复变函数和积分方法，计算多条平行斜裂纹的最大 I 型和 II 型应力强度因子 KI,kmax(θ)和 KII,kmax(θ) 

(0°<θ<360°) 随裂纹相对位置(包括垂直间距和水平间距)的变化值，分析多裂纹相互作用机理，并得到应力强度因

子的强化区和弱化区。基于最大拉−剪应力强度因子比，建立多裂纹起裂判据，并预测裂纹起裂角、起裂荷载和

起裂机理。预测结果表明：多裂纹起裂机理为 I 型；为便于止裂，多裂纹之间的垂直间距不宜等于裂纹半长的倍

数。预测结果与单轴压缩下三平行裂纹的红砂岩立方体试件试验结果吻合较好，验证多裂纹起裂准则的有效性。 

关键词：相互作用机理；多裂纹起裂判据；起裂预测；多裂纹；应力强度因子 
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