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摘  要：综述了铝锂合金研发历程及成分设计的发展阶段，重点阐述了 Al-Cu-Li 系铝锂合金中主合金化元

素 Cu、Li 含量对时效析出相类型、力学性能及耐腐蚀性能的影响规律及影响机理，详细论述了微合金化元

素 Zr、Mn、Mg、Ag、Zn、稀土和 In 等对 Al-Cu-Li 系铝锂合金力学性能、耐腐蚀性能及微观组织包括再

结晶、时效析出相类型与分布密度的影响。结合笔者课题组研究结果，提出了高强铝锂合金及耐腐蚀铝锂

合金两种类型铝锂合金的成分设计思路。 
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    铝锂合金是指在铝及铝合金中添加 Li 而形成

的一类铝合金。在铝合金中每添加 1.0%的 Li，可

使铝合金密度降低 3%，刚度提高 6%[1]。新型铝锂

合金不仅具有低密度、高弹性模量、高比强度和高

比刚度的优点，同时还兼具低疲劳裂纹扩展速率、

较好的高温及低温性能等特点[2]。因此，铝锂合金

是未来非常有竞争力的一类航空航天材料，欧美及

俄罗斯等国均十分重视新型铝锂合金的研制和开

发。铝锂合金主要包括 Al-Mg-Li 及 Al-Cu-Li(或

Al-Li-Cu)两个系列。Al-Mg-Li 系主要为俄罗斯(前

苏联)发展的铝锂合金系列，包括 1420、1421、1423、

1424 等铝锂合金，其中 Mg 和 Li 均为主合金元素。

其他铝锂合金如 2197、2195、2050、2055、1460、

1469、2090、8090 等则基本为 Al-Cu-Li 系铝锂合

金，Cu 和 Li 均为其主合金元素，该系列铝锂合金

是现阶段开发新型铝锂合金的主要体系。 

    铝锂合金的研究和开发至今已有 80 多年历史，

其发展可分为三个阶段，相应的铝锂合金产品也明

确划分为三代[2−3]，而且第三代铝锂合金在航空及

航天工业上已经获得广泛应用。自 2010 年以来，

美国铝业公司(Alcoa)、加拿大铝业公司(Alcan)、美

国宇航局(NASA)、空客等铝合金生产企业及应用部

门均提出了发展第四代铝锂合金的构想。其中超高

强度是第四代铝锂合金的目标性能之一，即在抗疲

劳性能、弹性模量基本不降低的前提下，进一步提

高其强度和断裂韧性[4]。国内中南大学、航天材料

及工艺研究所跟踪了这一发展趋势，已在国家攻关

项目的支持下，开发了相应的超高强铝锂合金并进

行了工业化试制。 

    强度提升一直是铝锂合金最主要的发展方向

之一。纵观铝锂合金的发展历史，铝锂合金高强化

经历了以下三个成分设计阶段。第一个成分设计阶

段是高主合金化元素含量阶段，主要采取以下两种

方法：1) Li 在铝中的固溶度极限为 4.2%(约 14%)， 
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前期主要通过提高主合金化元素 Li 含量至 2%以上

甚至更高，增加时效析出相 δ′相(Al3Li)的分数[5−6]；

2) 适当提高 Al-Cu-Li 系铝锂合金中的 Cu 含量，析

出新的时效强化相 T1 相(Al2CuLi)，产生 δ′和 T1 相

的复合强化[7]。 

    第二个成分设计阶段是Mg+X(X=无、Ag或Zn)

微合金化阶段。20 世纪 80 年代末，澳大利亚学者

POLMEAR 等在 Al-4.0Cu-0.3Mg-0.4Ag 铝合金中加

入不同含量 Li(0，0.13%，0.5%，1.0%，2.5%)，发

现随 Li 含量增加，其时效硬化效应并不顺序增加；

Li 含量增加至 2.5%，其时效硬化效应下降[8]。之后，

Alcoa 研究人员在 Al-2.6Cu-2.1Li 合金中同时添加

少量 Mg 和 Zn，发现合金的强度和韧性有较大幅度

提高[9]。上述现象的发现标志着铝锂合金的成分设

计进入了第二个阶段，即在 Al-Cu-Li 系铝锂合金中

通过 Mg/Mg+Ag/Mg+Zn 微合金化来实现铝锂合金

强度的进一步提升。根据上述原理，Alcoa 相继开

发了 Mg+Ag 微合金化的 Weldalite 049 系列高强铝

锂合金，以及Mg+Zn微合金化的 2099、2199及 2070

铝锂合金。国内也于“十一五”、“十二五”期间，

由中南大学、北京航空材料研究院、航天材料及工

艺研究所、西南铝业(集团)有限责任公司联合开发

了 Mg+Zn 微合金化的 2A97 铝锂合金。 

    铝锂合金的第三个成分设计阶段可总结为

Mg+Ag+Zn 多元复合微合金化阶段。2012 年，Alcoa

推出了 Mg、Ag、Zn 共同复合微合金化的 2060 铝

锂合金及 2055 铝锂合金；其中 2055 铝锂合金具有

超高强度，其典型 T8 态抗拉强度达到 640 MPa。

同时，国内中南大学、航天材料及工艺研究所、西

南铝业(集团)有限责任公司在 Mg+Ag+Zn 多元复合

微合金化的基础上，通过调整 Cu、Li 含量，开发

了一种新型超高强铝锂合金[10−13]。 

 

1  Al-Cu-Li 系铝锂合金中主要时效

析出相的强化效果 
 

    作为可热处理强化铝合金，Al-Cu-Li 系铝锂合

金的主要时效强化相包括 T1 相、δ′相和 θ′相 

(Al2Cu)。T1 相为平衡相，晶体结构为密排六方结构，

其晶格常数分别为：a=0.4965 nm，c=0.9345 nm[14]。

T1 相呈圆盘状，在铝基体{111}Al 面析出，与铝基体

半共格，其取向关系为：(0001)T1
//(111)Al，[1010]T1

// 

[110]Al
[14−16]。铝锂合金中 T1 相在铝基体[112]Al 入射

方向的选区衍射(SAED)谱及相应透射电镜(TEM)

暗场(DF)像照片如图 1(a)，(b)所示。 

θ′相为亚稳相，晶体结构为四方结构，其晶格

常数分别为：a=0.404 nm，c=0.58 nm(根据 Silcock 

模型)[16]。θ′相呈圆盘状，在铝基体{100}Al 面析出，

与铝基体半共格，与基体的取向关系为：(100)θ′// 

(100)Al，[001]θ′//[001]Al
[16]。铝锂合金中 θ′相在铝基

体[100]Al入射方向的SAED谱及相应TEM-DF照片

如图 1(c)，(d)所示。 

    δ′相为亚稳相，晶体结构为立方超点阵晶体结

构(L12)，其晶格常数为 a=0.405 nm。δ′相为球状相，

与铝基体共格，其共格关系为 (100)δ′//(100)Al，

[001]δ′//[001]Al 
[16]。铝锂合金中 δ′相在铝基体[100]Al

入射方向的 SAED 谱及相应 TEM-DF 照片如图

1(e)，(f)所示。 

上述三种时效析出相强化机理与强化效果不

同。T1 相与铝基体半共格，在欠时效时位错可以切

过，而峰时效及过时效时主要为绕过强化机制；θ′

相与铝基体半共格，欠时效至时效阶段均以绕过强

化机制为主；δ′相与铝基体共格，欠时效阶段以切

过强化机制为主，但峰时效后 δ′相长大，其强化方

式转变为绕过机制[17]。 

在{111}Al 面上析出的直径为 D、厚度为 T(D＞＞ 

T)的 T1 相与交截的{111}Al 滑移面之间的二面角为

70.53，在{111}Al 滑移面上 T1 相的投影及有效间距

λ如图 2 所示。而{100}Al面上析出的直径为 D、厚

度为 T(D＞＞ T)的 θ′相与{111}Al 滑移面之间的二面

角则为 54.74，在{111}Al 滑移面上 θ′相的投影及有

效间距 λ如图 3 所示[18−19]。 

假定球状析出相转变为圆盘状析出相时，单

位体积内析出相数密度及单个析出相体积不变，

NIE 等分别基于切过强化机制和绕过强化机制计

算了 T1 相及 θ′相强化效果与球状析出相 δ′相强化
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效果的比值((plate)/(sphere))随长宽比(Aspect 

ratio)变化的关系曲线，如图 4 所示[18−19]。在两种

强化机制作用下，T1 相及 θ′相强化效果均显著大

于 δ′相，而且 T1 相及 θ′相强化效果均随其长宽比

增加而逐渐增大；同时，在相同的长宽比条件下，

{111}Al 晶面上析出的圆盘状 T1 相引起的强化效果

大于{100}Al 晶面上析出的圆盘状 θ′相。另外，T1

相长宽比通常大于 θ′相长宽比。综合而言，铝锂合

金主要时效析出相强化效果顺序为：T1 相＞θ′相＞

δ′相。 

 

 

图 1  Al-Cu-Li 系铝锂合金 SAED 谱及时效析出相 TEM-DF 照片 

Fig. 1  SAED patterns and TEM-DF images of Al-Cu-Li alloys. (a) [112]Al SAED pattern; (b) T1 precipitate, Al112   

direction; (c) [100]Al SAED pattern; (d) θ′ precipitate, Al100   direction; (e) [100]Al SAED pattern; (f) δ′ precipitate, Al100   

direction 
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图 2  {111}Al面上析出 T1相示意图及其在{111}Al滑移面上的投影[18] 

Fig. 2  Plate-shaped T1 precipitates at {111}Al plane (a) and their projection on {111}Al slip plane (b) 

 

 

图 3  {100}Al面上析出 θ′相示意图及其在{111}α滑移面上的投影[18] 

Fig. 3  Plate-shaped θ′ precipitates at {100}Al plane (a) and their projection on {111}Al slip plane (b)[18] 

 

 

图 4  基于切过机制及绕过机制时圆盘状 T1相及 θ′相强化效果与球状 δ′相强化效果的比值((plate)/(sphere))随长宽

比变化的关系曲线[19] 

Fig. 4  Variation of ratio ((plate)/(δ′)) with aspect ratio for plate-shaped T1 and θ′ precipitates, calculated assuming (a) 

shearing mechanism of shearable particles and (b) by-passing mechanism of shear-resistant particles[19] 
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2  Cu 和 Li 主合金化元素 
 

2.1  Cu、Li 含量对 Al-Cu-Li 系铝锂合金析出相的

影响 

    Cu、Li 均为 Al-Cu-Li 系铝锂合金的主合金元

素。铝锂合金中随 Cu 含量增加，相应地 Li 含量会

有所降低。总体而言，从第二代铝锂合金发展至第

三代铝锂合金，其 Cu 含量从 1.0%~2.0%增加至

2.5%~4.5%，而 Li 含量则从 2.5%降低至 1.5%甚至

以下。图 5 所示为部分典型 Al-Cu-Li 系铝锂合金

Cu、Li 含量。 
 

 

图 5  部分典型 Al-Cu-Li 系铝锂合金的 Cu、Li 含量 
Fig. 5  Cu and Li concentrations of some typical Al-Cu-Li 
series of alloys 
 

    Al-Cu-Li 系铝锂合金可能的主要时效强化相包

括 T1 相、δ′相和 θ′相，在时效过程中还可能形成 GP

区、δ′/GP/δ′复合相及 δ′/θ/δ′复合相。然而，Cu、Li

含量的差别将导致 Al-Cu-Li 系铝锂合金析出相组

成产生显著差异。 

表 1 所示为不同 Cu、Li 含量铝锂合金的主要

时效析出相组成。当铝锂合金中 Cu 含量较低    

(＜2.0%)而 Li 含量较高时，其主要时效析出相为 δ′

相，如 8090 铝锂合金(1.0~1.6Cu，2.2~2.7Li)[20]。随

Cu 含量增加至 2.5~3.0%，在析出 δ′相的基础上，

还会形成另一种主要时效析出相 T1 相，此时合金的

主要强化相组成为 δ′+T1 相，如 2090 铝锂合金(2.4~ 

3.0Cu，1.9~2.6Li)[22]。当 Cu 含量为 2.5%~3.0%而

Li 含量降低至约 1.5%~2.0%时，T1 相比例增加，而

δ′相比例减少，合金的主要强化相组成为 T1+δ′，如

2099 铝锂合金(2.4%~3.0%Cu、1.6%~2.0%Li)[24]。

当 Cu 含量增加而 Li 含量进一步降低时，合金的主 

表 1  不同 Cu、Li 含量铝锂合金主要时效析出相 

Table 1  Main aging precipitates of Al-Li alloys with 

various Cu and Li concentrations 

Alloy Cu Li 
Main aging 
precipitates 

8090[20] 1.0−1.6 2.2−2.7 δ′ 

1441[21] 2.0 1.9 δ′ 

2090[22] 2.4−3.0 1.9−2.6 δ′+T1 

1460[23] 2.6−3.3 2.0−2.4 δ′+T1+θ′ 

2099[24] 2.4−3.0 1.6−2.0 T1+ 

2197[25] 2.5−3.1 1.3−1.7 T1+θ′ 

2198[26] 2.9−3.5 0.8−1.1 T1+θ′ 

2050[27] 3.2−3.9 0.7−1.3 T1+θ′ 

2195[28] 3.7−4.3 0.8−1.2 T1+θ′ 

2055[29] 3.2−4.2 1.0−1.3 T1+θ′ 

2060[30] 3.4−4.5 0.6−0.9 T1+θ′ 

 

要强化相组成为 T1+θ′相，如 2195、2050、2198、

2055 等铝锂合金[25−30]。上述表明 Al-Cu-Li 系铝锂

合金中主要时效析出相组成与其 w(Cu)/w(Li)密切

相关，高 w(Cu)/w(Li)有利于增加 T1 相和 θ′相比例，

而低 w(Cu)/w(Li)则导致较高的 δ′相比例。 

    实际上，当 Al-Cu-Li 系铝锂合金中 Cu、Li 含

量适当以及特定时效工艺时，其时效强化相组成更

加复杂，三种时效析出相 T1、θ′及 δ′相比例均较高，

并可能同时存在大量 GP 区，形成 GP/δ′/GP 复合相，

如 T8 态时效含 3.1%Cu 和 2.1%Li 的 1460 铝锂合金

(见图 6)[23]。 

    Cu/Li 比不同还导致铝锂合金中析出序列的差

异。JO 等[31]总结了不同 w(Cu)/w(Li)铝锂合金 T6

态时效析出序列，认为在不同 w(Cu)/w(Li)铝锂合金

中时效析出序列为如下： 

    w(Cu)/w(Li)＞4.0：SSSS→GP 区→θ″相→θ′相

→θ相； 

    w(Cu)/w(Li)=2.5~4.0：SSSS→GP 区→GP 区+δ′

相→θ″相+δ′相→θ′相+δ′相→δ′相+T1 相→T1 相； 

    w(Cu)/w(Li)=1.0~2.5：SSSS→GP 区+δ′相→θ′

相+δ′相→δ′相+T1 相→T1相； 

    w(Cu)/w(Li)＜1.0：SSSS→δ′相+T1 相→T1 相。

(SSSS 指过饱和固溶体) 

w(Cu)/w(Li)还影响合金铝锂合金 T8 态时效时

最主要强化相 T1 相析出的孕育期。DECREUS 等[32]

采用小角度中子散射(Small-angle neutron scattering, 
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SANS)技术研究了 2196 铝锂合金及 2198 铝锂合金

T8 态时效升温及保温(155 ℃)时的析出过程。在

Cu/Li 比较高的 2198 铝锂合金中，保温 1.5 h 时即

可观察到 T1 相析出的第一个各向异性 X 射线散射

条纹(见图 7(a))，而 Cu/Li 比较低的 2196 铝锂合金

保温 3~7 h才出现 T1相析出的第一个各向异性X射

线散射条纹(见图 7(b))，即说明 Cu/Li 比较高时，

T1 相析出孕育期较短[32]。 
 

 
图 6  T8 态时效 1460 铝锂合金 SAED 谱及 TEM 照片[23] 
Fig. 6  SAED patterns and TEM images of T8-aged 1460 Al-Li alloy: (a) DF image, T1 precipitates, Al112   direction;   
(b) DF image, δ′ precipitates, Al100   direction; (c) DF image, δ′ and GP/δ′/GP composite precipitates, Al100   direction; 
(d) bright field (BF) image, θ′ precipitates and GP zones, Al100   direction 

 

 
图 7  T351 态 2198 及 2196 铝锂合金升温及保温不同时间的 SAXS 图像[32] 
Fig. 7  Sequence of SAXS images for 2198 and 2196 Al-Li alloys in T351 temper during heating ramp (at 140 ℃ and 155 ℃) 
and aging at 155 ℃ for different times, showing formation of characteristic streaks of T1 precipitate: (a) 2198 alloy; (b) 2196 
alloy 
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    除此之外，w(Cu)/w(Li)不同可导致铝锂合金晶

界析出相种类和分布的差异[33]。在高 w(Cu)/w(Li)

铝锂合金中，晶界可析出较密集的 T1 相(见图 8(a))；

w(Cu)/w(Li)降低，晶界含 Cu 的 T1 相减少(见图 8(b))

且形成粗大不连续 δ相(见图 8(c))。 
 

 
图 8  不同 Cu、Li 含量 Al-xCu-yLi-0.4Mg-0.35Mn-0.12Zr
合金 T6 峰时效时晶界区域扫描透射电子显微镜(STEM)
照片[33] 
Fig. 8  STEM images of grain boundary area in T6 
peak-aged Al-xCu-yLi-0.4Mg-0.35Mn-0.12Zr alloys with 
different Cu and Li concentrations[33]: (a) 3.82Cu-0.91Li;    
(b) 2.78Cu-1.68Li; (c) 1.08Cu-2.43Li 

2.2  Cu、Li 含量对 Al-Cu-Li 系铝锂合金性能的  

影响 

    通过改变时效析出相的组成，Cu、Li 含量的差

异进一步影响其力学性能。研究发现，Al-Cu-Li 系

铝锂合金强度随 Cu 含量增加而增加[10−11]；但在 Cu

含量一定时，其硬度、强度并不完全随 Li 含量增加

而顺序提高，甚至可能导致硬度和强度降低[8, 11]。 

李劲风等[10−11]采用 Cu、Li 总摩尔分数结合

x(Cu)/x(Li)，系统分析了 Cu、Li 含量对 Al-Cu-Li

系铝锂合金强度的影响规律。当 x(Cu)/x(Li)基本一

致时，随 Cu、Li 总摩尔分数增加，时效析出相分

数增加，相应地铝锂合金强度提高。当 Cu、Li 总

摩尔分数基本一致时，铝锂合金强度随 x(Cu)/x(Li)

增加而提高。如图 9 所示是在总结作者课题组关于

Al-(3.2~4.4)Cu- 

(0.8~1.5)Li-0.4Mg-0.4Ag-0.4Zn-0.1Zr 铝锂合金薄板

相同 T8 态近峰时效拉伸性能结果的基础上，建立

的强度(抗拉强度、屈服强度)与 Cu、Li 总摩尔分数

和 x(Cu)/x(Li)的关系，图中数字代表相应编号合金

的 x(Cu)/x(Li)。图 9 中线段 ab 左上部分，对应

x(Cu)/x(Li)为＞0.58，随 Cu、Li 总摩尔分数增加，

铝锂合金强度提高。在线段 ab 和 cd 之间部分，对

应 x(Cu)/x(Li)为 0.46~0.55，随 Cu、Li 总摩尔分数

增加，铝锂合金强度提高。在线段 cd 和 ef 之间，

对应 x(Cu)/x(Li)为 0.39~0.46，随 Cu、Li 总摩尔分

数增加，铝锂合金强度提高。另外，在 Cu、Li 总

摩尔分数相同(近)时，随 x(Cu)/x(Li)例增加，强度

有增加的趋势，如 7#铝锂合金与 9#铝锂合金。 

上述强度变化与不同 Cu、Li 含量改变时效析

出相组成及其比例有关。微观组织观察表明(见图

10)，虽然 Cu+Li 总摩尔分数较高(17#合金，质量分

数为 3.45%Cu、1.48%Li)，但其 x(Cu)/x(Li)比较低，

易形成较多 δ′相，导致强化效果最好的 T1 相相对比

例降低(见图 10(a)和(b))；而即使 Cu、Li 总摩尔分

数较低(9#合金，质量分数为 4.46%Cu、1.03%Li)，

但高 x(Cu)/x(Li)比使 δ′相消失，强化效果更好的 T1

相和 θ′相相对比例增加(见图 10(c)和(d))。 

另外，不同 w(Cu)/w(Li)在影响晶界析出相类型

及分布的基础上，将导致其腐蚀性能的差异。研究

表明，随 w(Cu)/w(Li)降低，其晶间腐蚀(IGC)抗力

逐渐提高，如图 11 所示[33]。 
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图 9  Al-(3.2~4.4)Cu-(0.8~1.5)Li-0.4Mg-0.4Ag-0.4Zn-0.1Zr 铝锂合金薄板相同 T8 态近峰时效强度与 Cu、Li 摩尔总分

数和 x(Cu)/x(Li)的关系 

Fig. 9  Strength of T8 peak-aged Al-(3.2~4.4)Cu-(0.8~1.5)Li-0.4Mg-0.4Ag-0.4Zn-0.1Zr alloy sheet with different Cu and Li 

concentrations as function of total Cu and Li mole fraction and x(Cu)/x(Li) 

 

 
图 10  不同 Cu、Li 含量铝锂合金 SAED 谱及 TEM 像 

Fig. 10  TEM images of T8 aged Al-Li alloys with different Cu and Li concentrations: (a), (b) 17# alloy, Al-3.45Cu-1.48Li-X 

alloy[10]; (c), (d) 9# alloy, Al-4.46Cu-1.03Li-X alloy; (a), (c) DF images, T1 precipitate, Al112   direction; (b) DF image, δ′ 

and θ′ precipitates, Al100   direction; (d) BF image, θ′ precipitate, Al100   direction 
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图 11  时效不同时间 Al-xCu-yLi-0.4Mg-0.35Mn-0.12Zr 合金晶间腐蚀侧面形貌[33] 

Fig. 11  Typical sectional IGC morphologies of Al-xCu-yLi-0.4Mg-0.35Mn-0.12Zr with different Cu and Li concentrations[33] 

 

 

3  微合金化元素 
 

3.1  Zr、Mn 微合金化 

    Zr 是铝合金及铝锂合金中最重要的微合金化

元素之一，在 Al 中的固溶度极限约为 0.07%(摩尔

分数)。铝合金中添加 Zr 含量通常为 0.05%~0.16% 

(质量分数)，凝固时可形成 Al3Zr 初生相粒子，在

385~535 ℃退火过程中也可能形成 Al3Zr 弥散相

粒子[34]。Al3Zr 粒子与铝基体共格，对铝锂合金晶

粒组织控制具有十分重要的作用；660.8 ℃时通过

Al3Zr+L↔(Al)包晶转变，Al3Zr 初生相粒子可以

作为凝固形核点，提高凝固形核密度，细化铝锂合

金铸态晶粒组织；共格的 Al3Zr 弥散相粒子还能有

效阻碍晶界迁移及再结晶过程，并细化再结晶晶粒

组织[35−36]。如图 12 所示为不含 Zr 和含 0.12%Zr

元素的 Al-4.25Cu-0.85Li-X 铝锂合金冷轧薄板固

溶处理后的金相照片，不含 Zr 元素铝锂合金固溶

后再结晶晶粒尺寸显著大于含 Zr 元素的铝锂合

金。 

    Mn 在 Al 铝中的极限固溶度为 0.62%，658 ℃

通过 L↔ (Al)+Al6Mn 共晶转变形成 Al6Mn 粒子。

在含 Cu 的铝合金及 Al-Cu-Li 系铝锂合金中可形成

与基体半共格、呈板条状的 Al20Cu2Mn3 弥散相粒

子，其析出温度区间为 300~530 ℃[34]。研究表明，

铝锂合金中少量 Mn 形成的含 Mn 弥散相粒子可促

进再结晶、控制晶粒生长、分散共面滑移，使滑移

更加均匀，降低铝锂合金的各向异性[36−37]。 

    第三代 Al-Cu-Li 系铝锂合金如 2050、2198、

2196、2099、2197 中通常联合添加微量 Zr、Mn，

其添加量对再结晶程度具有明显的影响。研究表

明，在热轧 6 mm 厚度 2198 型铝锂合金中单独添加

微量 Zr 元素时，形成 Al3Zr 粒子弥散相粒子(见图

13(a)中细小白色粒子)阻碍固溶处理时的再结晶，
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降低其再结晶程度(见图 14(a))，相应再结晶机理为

SIBM(应变诱发晶界迁移)。而在此基础上添加微量

Mn，将形成较粗大的 Al20Cu2Mn3 弥散相粒子，同

时导致 Al3Zr 粒子数密度降低(见图 13(b))；热轧时

较粗大的 Al20Cu2Mn3 弥散相粒子增加其边缘基体

的变形程度，提高储能进而导致固溶处理时再结晶

程度增加(见图 14(b))，此时再结晶形核机理以 PSN 

(粒子激发形核)为主[37−39]。 
 

 
图 12  Al-4.25Cu-0.85Li-X 铝锂合金冷轧薄板固溶处理后金相照片 

Fig. 12  Metallographic images of cold-rolled Al-4.25Cu-0.85Li-X alloy sheets after solutionization: (a) Zr-free; (b) 

containing 0.12% Zr 
 

 

图 13  2198-T351 铝锂合金 6 mm 厚度板材 STEM-HAADF 照片[39] 

Fig. 13  STEM-HAADF images of 2198-T351 Al-alloy plates with 6 mm thickness[39]: (a) Containing 0.1Zr; (b) Containing 

0.1Zr-0.3Mn 
 

 

图 14  2198-T351 铝锂合金 6 mm 厚度板材表层 EBSD 照片[39] 

Fig. 14  EBSD maps showing grain structure morphologies at surface layer of 2198-T351 Al-alloy plates with 6 mm 

thickness[39]: (a) Containing 0.1Zr; (b) Containing 0.1Zr-0.3Mn 
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3.2  Mg、Ag、Zn 微合金化 

3.2.1  Mg、Ag、Zn 微合金化元素对时效析出相的

影响 

    Mg 是 Al-Cu-Li 系铝锂合金最主要的微合金化

元素之一，大多数第三代铝锂合金均添加一定量的

Mg。Ag、Zn 是第三代铝锂合金重要的微合金化元

素，并通常与 Mg 同时添加。Mg、Ag、Zn 添加显

著影响时效强化相的析出，特别是有利于促进 T6

态时效时 T1 相的析出。 

    图15所示分别为Al-3.5Cu-1.0Li-X(X代表Mn、

Zr 等微合金化元素)合金不添加 Mg、单独添加 Mg

及同时添加Mg+Ag时T6态(175 ℃)峰时效时TEM 
 

 
图 15  添加不同微合金化元素 Al-3.5Cu-1.0Li-X 铝锂合金 T6 峰时效时 TEM 照片[40−41] 

Fig. 15  TEM images of Al-3.5Cu-1.0Li-X alloys with different micro-alloying elements[40−41]: (a), (b) Mg-free; (c), (d) 

Containing 0.35Mg; (e), (f) Containing 0.35Mg+0.45Ag; (a), (c), (e) DF images, T1 precipitates, Al112   direction; (b), (d), 

(f) BF images, θ′ precipitates, Al100   direction 
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照片[40−41]。相比不添加 Mg(见图 15(a)和(b))，单独

添加 Mg(见图 15(c)和(d))及同时添加 Mg+Ag(见图

15(e)和(f))时均有利于铝锂合金中 T1 相析出分数增

加，同时导致 θ′相减少。 

    图16所示为不含Zn及含0.75%Zn的Al-2.7Cu- 

1.7Li-0.4Mg-X 铝锂合金 T6 峰时效时[100]Al SAED

谱及 TEM-DF 照片[42]。合金主要时效析出相均为 δ′

相及 T1 相。但添加 0.75%Zn 合金中 T1相析出密度

增加，同时 δ′相尺寸减小。 

研究表明，Mg+Ag+Zn 三元复合添加具有更大

的促进 T1 相析出的效果，是超高强铝锂合金微合金

化成分设计的主要方向[43−44]。综合文献分析表明，

Mg、Mg+Ag、Mg+Zn、Mg+Ag+Zn 微合金化均能

显著促进 Al-Cu-Li 系铝锂合金中 T6 态时效时主要

强化相 T1 相析出，其中以 Mg+Ag+Zn 三元复合添

加效果最好，Mg+Ag 和 Mg+Zn 效果次之。需要说

明的是，T8 态时效时预变形产生的位错能促进 T1

相形核，将部分减弱上述微合金化效果[44]。 

    对于 Mg+X(X=Ag、Zn)微合金化促进 T1 相时

效析出机理，研究人员进行了如下总结。 

T1 相与铝基体半共格，为减少形核阻力，T1

相将于位错、晶界、亚晶界等处优先析出，层错及

铝基体{111}Al 面上形成的 GP 区也是其重要的优先

形核位置[45−46]。合金中添加微量 Mg 后，由于 Mg

原子与空位(V)之间的结合能高，大量过饱和空位在

固溶淬火过程中易被 Mg 原子俘获形成 Mg-V 对，

并形成大量的 Mg-Cu-V 团簇，为时效过程提供大

量有效的可动空位，从而促进 GP 区的形成，继而 

 

 

图 16  不含 Zn 及含 0.75%Zn 的 Al-2.7Cu-1.7Li-0.4Mg-X 铝锂合金 T6 峰时效时[100]Al SAED 谱及 TEM-DF 照片[42] 

Fig. 16  SAED patterns and TEM-DF images of T6 peak-aged Al-2.7Cu-1.7Li-0.4Mg-X alloys with different micro-alloying 

elements[42]: (a), (b) Zn-free; (c), (d) Containing 0.75%Zn; (a), (c) [100]Al SAED patterns, DF images, δ′ precipitates, Al100   

direction; (b), (d) DF images, T1 precipitates, Al112   direction 
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促进 T1 相形核析出[46]。同时，Mg 能显著降低铝合

金的层错能，有利于层错形成，为 T1 相提供更多形

核位置，促进 T1 相的形核析出[46]。 

    当联合添加 Mg+Ag 元素后，检测到 Mg、Ag

元素可存在于 T1 相内部[47](见图 17(a))，也可偏聚

与 T1 相与基体的界面部位[48](见图 17(b))。根据上

述现象及原子之间的相互作用趋势，提出的 Mg+Ag

复合添加促进 T1 相析出的机理如下：由于 Mg、Ag

原子间的强相互作用，在淬火及时效早期，合金中

形成了 Mg-Ag 原子团簇；在随后的时效过程中，

Mg、Ag 原子与 Cu、Li 原子的相互作用促使 Cu、

Li 原子扩散到团簇周围，且 Cu 原子不断替代 Ag，

使团簇溶解形成更加稳定的三元 T1 相。即 Mg、Ag

原子在时效前期将作为桥梁促进 T1 相形核，但在时

效过程中 Mg、Ag 原子将逐渐排除出 T1 相
[47]。 

    关于 Mg+Zn 微合金化作用机理还有待进一步

探索。有研究认为 Mg+Zn 微合金化作用与 Mg+Ag

类似，并在 Mg+Zn 微合金化的 2099 铝锂合金 T1 相

内部发现 Mg、Zn 原子的富集[49]。作者课题组也发

现在 2099 铝锂合金 T1 相内部发现 Mg、Zn 的同时

富集(见图 17(c))。然而，也有研究认为 Zn 原子进

入 T1 相，占据 T1相中 Cu 原子位置，即 Zn 元素取 
 

 
图 17  不同微合金化 Al-Cu-Li 合金 T1相中元素分布 

Fig. 17  Element distribution through T1 precipitates in Al-Cu-Li alloy with different microalloying elements: (a) HRTEM, 

atom probe tomography (APT) and a composition profile through T1 precipitate in Al-1.68Cu-4.62Li-0.33Mg-0.1Ag (mole 

fraction, %) alloy aged at 200 ℃  for 1 h[47]; (b) 3DAP elemental map concentration depth profiles in 

Al-5.0Li-2.25Cu-0.4Mg-0.1Ag- 0.04Zr (mole fraction, %) aged at 180 ℃ for 200 min[48]; (c) HAADF and scanning element 

analysis mapping of 2099 Al-Li alloy after T6 aging at 175 ℃ 
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代 T1 相中 Cu 元素位置[50]。 

3.2.2  Mg、Ag、Zn 微合金化元素对性能的影响 

    通过促进 T1 相形核，加速时效响应过程，Mg、

Ag、Zn 微合金化将显著影响铝锂合金的力学性能。

表 2 所示为不添加 Mg、单独添加 Mg 及复合添加

Mg+Ag 的 Al-3.5Cu-1.0Li-X(X 代表 Mn、Zr 等微合

金化元素)铝锂合金冷轧薄板T6态(175 ℃)及T8态

近峰时效时的拉伸性能。相比不添加 Mg 元素时，

合金中单独添加 Mg 时，T6 峰时效时强度大幅度提

高；同时添加 Mg+Ag 时，其强度进一步大幅度提

高。T8 时效时强度变化表现出类似规律，但强度提

高幅度明显降低[40−41]。 

    表 3 所示为单独添加 0.25Mg 及复合添加

0.25Mg+0.75Zn 的 Al-2.6Cu-1.7Li-X(X 代表 Mn、Zr

等微合金化元素)铝锂合金挤压棒材 T6 态(175 ℃)

及 T8 态近峰时效时的拉伸性能 [51]。复合添加

Mg+Zn 时，对应峰时效抗拉强度和屈服强度均有所

提高。 

表 4 所示为 Al-3.7Cu-1.2Li-X(X 代表 Mn、Zr

等微合金化元素)中分别少量添加 Mg+Ag、Mg+Zn

及 Mg+Ag+Zn 后 T6(175 ℃)及 T8 峰时效时的拉伸

性能[43−44]。综合而言，Mg+X(X=无、Ag 或/和 Zn)

微合金化通过促进 T1 相析出，能有效提高 T6 态时

效时 Al-Cu-Li 系铝锂合金强度，其微合金强化效果

呈现如下规律：Mg+Ag+Zn＞Mg+Ag＞Mg+Zn＞

Mg。另外，T8 态时效时呈现相似的强化规律，但

微合金强化效果部分减弱。 

Ag、Zn 微合金化对铝锂合金腐蚀性能表现出

不同的影响效果。在铝锂合金腐蚀过程中，晶界同

时含 Cu、Li 析出相 T1 及 T2 相在腐蚀过程中存在电

化学极性转换机制。T1 及 T2 相电位较负，作为阳极

先发生腐蚀，其中活泼元素 Li 优先溶解后，导致腐

蚀后的 T1 相和 T2 相产生 Cu 元素富集并转化为阴

极，进而促进其边缘铝基体的阳极溶解[52−54]。铝锂 

 

表 2  Mg、Ag 微合金化 Al-3.5Cu-1.0Li-X 铝锂合金薄板 T6、T8 态峰时效时拉伸性能[41] 

Table 2  Tensile properties of T6 and T8 peak-aged Al-3.5Cu-1.0Li-X alloy sheets with micro-alloying elements of Mg and 

Ag[41] 

Micro-alloying  
element 

T8  T6 

σb/MPa σ0.2/MPa δ/%  σb/MPa σ0.2/MPa δ/% 

Mg-free 496 477 9  335 248 14 

0.35Mg 506 488 10  444 410 9 

0.35Mg+0.45Ag 562 547 9  522 506 8 

 

表 3  Mg、Zn 微合金化 Al-2.6Cu-1.7Li-X 铝锂合金挤压棒材 T6 及 T8 峰时效拉伸性能[51] 

Table 3  Tensile properties of T6 and T8 peak-aged Al-2.6Cu-1.7Li-X alloy bars with micro-alloying elements of Mg and 

Zn[51] 

Micro-alloying  
elements 

T8  T6 

σb/MPa σ0.2/MPa δ/%  σb/MPa σ0.2/MPa δ/% 

Mg 616 590 6  539 490 8 

Mg+Zn 625 601 6  559 499 7 

 

表 4  Mg、Ag、Zn 微合金化 Al-3.7Cu-1.2Li-X 铝锂合金冷轧薄板 T6、T8 态峰时效时拉伸性能[43] 

Table 4  Tensile properties of T6 and T8 peak-aged Al-3.7Cu-1.2Li-X alloy sheets with micro-alloying elements of Mg, Ag 

and Zn[43] 

Micro-alloying  
element 

T8  T6 

σb/MPa σ0.2/MPa δ/%  σb/MPa σ0.2/MPa δ/% 

Mg+Ag+Zn 647.2 609.4 7.3  613.1 558.1 6.3 

Mg+Zn 610.3 571.5 6.7  553.8 480.7 8.8 

Mg+Ag 617.3 570.7 9.1  582.2 527.5 7.5 
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合金中添加的 Zn 元素可进入晶界含 Cu、Li 析出相

(晶界 T1相及晶界其他含 Cu 相)，代替其部分 Cu 元

素(见图18(a))，降低析出相中不活泼元素Cu的含量，

在腐蚀过程中减弱上述电化学极性转换后促进边缘

铝基体阳极溶解的效果，进而提高其耐蚀性能[55−58]。

Ag 元素同样可进入晶界含 Cu、Li 析出相(见图

18(b))[59]，然而由于 Ag 元素电化学活性低于 Cu 元

素，将进一步加剧上述电化学极性转换后促进其边

缘铝基体阳极溶解的效果，进而降低其耐蚀性能。 

3.3  稀土微合金化 

    研究表明，稀土(RE)元素在铝合金中有细化晶

粒、阻碍再结晶、提高韧性及强度的效果，如 Sc

在Al-Mg系及Al-Zn-Mg系铝合金中具有细晶强化、

Al3(Sc,Zr)第二相强化及亚结构强化的作用[60−61]。然

而有不少研究发现，Sc、Ce、Er 等稀土元素在不同

Al-Cu-Li 系铝锂合金中具有不同的作用效果，既可

能提高铝锂合金强度，但也可能导致其强度降低，

如表 5 所示。 
 

 

图 18  HAADF-STEM 照片及晶界析出相元素面扫描照片 

Fig. 18  HAADF-STEM images and scanning element analysis mapping of grain boundary precipitates: (a) Zn containing 

alloy; (b) Ag containing alloy[59] 

 
表 5  微量稀土对 Al-Cu-Li 系铝锂合金强度的影响 

Table 5  Influence of small addition of RE elements on Al-Cu-Li alloy strength 

Alloy 
Element concentration ,w/% Strength variation 

compared to RE-free 
alloy Cu Li Mn Mg Ag Zn Zr RE 

2099+Sc[62] 2.6 1.6 0.3 0.3 − 0.7 0.1 0.1Sc Strength enhanced 

1460+Sc[63] 
3.0 2.0 − − − − 0.1 0.11Sc Strength enhanced 

3.0 2.0 − − − − 0.1 0.22Sc Strength lowered 

1469+Sc[64] 4.3 1.0 − 0.3 0.4 − 0.12 0.063Sc Strength lowered 

Al-Cu-Li+Sc[65] 

3.52 1.5 − − − − 0.12 0.11Sc Strength enhanced 

3.51 1.51 − − − − 0.12 0.15Sc Little difference 

3.50 1.52 − − − − 0.12 0.24Sc Strength lowered 

Al-Mg-Cu-Li+Sc[66] 1.5 1.0 − 4.0 − − 0.12 0.2Sc Strength enhanced 

Al-Cu-Li-Mg-Ag-Zr+Ce[67] 5.87 1.31 − 0.43 0.41 − 0.13 0.2Ce Strength enhanced 

Al-Cu-Li-Mg-Zn-Mn-Zr+Sc[68−69] 3.36 1.19 0.3 0.4 − 0.4 0.1 0.082Sc Strength lowered 

Al-Cu-Li-Mg-Ag-Zn-Zr+Ce[69−70] 4.24 1.26 − 0.4 0.4 0.45 0.12 0.11Ce Strength lowered 

Al-Cu-Li-Mg-Ag-Zn-Mn-Zr+Er[69, 71] 3.56 1.19 0.3 0.4 0.4 0.45 0.1 0.2Er Strength lowered 
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    微观组织分析表明，在添加微量 Sc、Ce、Er

等 RE 元素的 Al-(3.5-4.3)Cu-1.2Li-X 铝锂合金(X 代

表其它微合金元素)中，T1 相和 θ′相数量减少，即含

Cu 时效强化相 T1 相及 θ′相析出分数降低[68−71]。在

低 Li 含量 Al-Cu-Li 系铝锂合金(w(Cu)＞3.0%)中，

强化相以 T1 相和 θ′相为主；添加微量 Sc、Ce、Er

等 RE 元素后，RE 元素与 Cu 元素结合，在凝固及

退火过程中即分别形成 Al8Cu4Sc、Al8Cu4Ce 及

Al8Cu4Er 等第二相(见图 19)[69]，不能有效地形成

Al3Sc(或 Al3(Sc,Zr))等弥散粒子，减弱其细化晶粒、

阻碍再结晶及弥散强化的效果(见图 20(a))；同时，

难溶相 Al8Cu4Sc、Al8Cu4Ce 及 Al8Cu4Er 粒子含较

多Cu元素且固溶处理时不能溶解至固溶体基体中，

导致过饱和固溶体基体中 Cu 含量降低，相应时效

后析出的含 Cu 强化相 T1相及 θ′相减少，时效强化

效果降低。 

若铝锂合金中 w(Cu)/w(Li)降低，合金强化相以

δ′相为主，T1 相比例下降。同时，能更有效的形成

Al3(Sc,Zr)等弥散粒子，发挥阻碍再结晶的效果(见

图 20(b))[72]，因而在低 w(Cu)/w(Li)铝锂合金中微量

RE 元素具有有效的阻碍再结晶、提高强度的作用。 

在一定 w(Cu)/w(Li)铝锂合金中，强化相以 δ′

相为主，但同时存在一定量 T1 相时，微量 RE 元素

如 0.1%Sc 可以形成一定的 Al3(Sc,Zr)弥散粒子，并

弥补形成 Al8Cu4Sc 粒子的负面影响效果；但当 RE

元素如 Sc 含量增加至 0.2%以上时，将导致形成更

多的难溶 Al8Cu4Sc 粒子，Al3(Sc,Zr)弥散粒子的有

益作用并不能弥补形成较多 Al8Cu4Sc 粒子产生的

负面影响，结果导致铝锂合金强度降低[63]。综上所

述，RE 元素在 Al-Cu-Li 系铝锂合金中的微合金化

作用效果与其 Cu、Li 含量密切相关，高 Cu 含量铝

锂合金中应控制 Sc、Ce、Er 等 RE 元素的添加。 

 

 

图 19  Al-3.4Cu-1.2Li-X-0.082Sc 铝锂合金固溶处理后 SEM 背散射照片及难溶相粒子 EDS 分析[69] 

Fig. 19  SEM back scattered image (a) and EDS analysis of residual particles (b) of solutionized Al-3.4Cu-1.2Li-X-0.082Sc 

alloy[69] 

 

 

图 20  含 Sc 铝锂合金冷轧薄板固溶后金相照片[72] 

Fig. 20  Metallographic images of Sc containing Al-Li alloy sheet after solutionization[72]: (a) Al-3.4Cu- 1.2Li-X-0.1Sc alloy; 

(b) Al-1.5Cu-1.7Li-X-0.08Sc alloy 
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3.4  In 元素微合金化 

    研究表明，Al-Cu 合金中添加微量 In、Sn、Cd

元素，这些原子偏聚在析出相与基体的界面上，降

低界面能，从而加速 θ′相的析出，提高 Al-Cu 合金

的时效响应速度。同时，In 和 Sn 等微量元素所形

成的富 In 和富 Sn 粒子先于 θ′相形成，可作为 θ′相

非均匀形核的位置，从而促进 θ′相的析出。另外，

微量 In、Sn 的添加还能抑制 θ′相的粗化，提高 Al-Cu

合金的过时效性能[73−75]。 

    鉴于微量 In在Al-Cu合金中有益的微合金化效

果，研究人员进行了 In 元素在 Al-Cu-Li 系铝锂合

金中的微合金化效果研究。PAN 等[76−78]发现 0.2%~ 

0.5%In 微合金化的 Al-3.3Cu-0.8Li 铝锂合金 T6 态

时效(175 ℃)时大量析出一种均匀分布的、与铝基

体共格的稳定立方相 χ 相(Al5Cu6Li2)，并促进 θ′相

析出，提高铝锂合金强度。同时，由于 In 与空位

间的强相互作用使其在淬火态或时效早期捕捉了

大量空位，减少 T1 相形核所需的位错环，从而延缓 

T1 相形核析出；另外，该立方相 χ相同时含 Cu 和

Li 原子，与 T1 相析出呈竞争关系，χ相大量析出相

应地减少了 T1 相析出分数[4]。 

    GILMORE 等[79]发现 Al-4.2Cu-1.2Li-0.16Zr 合

金中添加 0.09%In 可促进 T6 态时效时 θ″相和 T1 相

析出，提高铝锂合金强度。WOO 等则发现在低 Cu

高Li含量的Al-2.5Cu-1.8Li合金中添加0.18%In时，

160 ℃进行 T6 态时效时可促进 T1相和 θ′相，而抑

制 δ′相析出，提高铝锂合金强度[80]。上述研究表明，

In 可以促进 Al-Cu-Li 合金 T6 态时效时 θ′相和 θ″相

析出；但如果形成立方相 χ 相(Al5Cu6Li2)，则抑制

T1 相析出；反之则促进 T1 相析出。但总体而言，关

于 In 在铝锂合金中的微合金化作用机理，尚待进一

步深入研究。 

    另外，在添加微合金化元素 Mg 的基础上再添

加微量 In，其微合金化作用并无叠加效果[77−78]。而

且 T8 态时效时，In 的微合金化作用效果明显减   

弱[77−78]。 

 

4  总结 
 

    从 20 世纪 70 年代以来，以成分设计为目的的

铝锂合金的合金化及微合金化研究已取得了长足

的进步，特别是现代先进检测手段的发展，铝锂合

金的微合金化研究工作取得了更大的进展。综合国

内外研究文献，结合笔者课题组成分设计研究成

果，可以总结以下两种类型铝锂合金成分设计思

路。 

    1) 对于高强铝锂合金的成分设计，可在采用

Mg+Ag、Mg+Zn 或 Mg+Ag+Zn 复合微合金化的基

础上，保证较高 Cu、Li 总摩尔分数的同时，提高

x(Cu)/x(Li)，通过增加 T1 相和 θ′相析出密度和比例，

达到铝锂合金高强度的目的。 

    2) 对于耐腐蚀铝锂合金的成分设计，一方面应

降低铝锂合金中 x(Cu)/x(Li)或 w(Cu)/w(Li)，减少晶

界含 Cu 析出相分数；另一方面，添加微合金化元

素 Zn，减少晶界含 Cu 析出相中的 Cu 含量，减弱

腐蚀过程中晶界析出相电化学极性转换后促进边

缘基体阳极溶解的作用。 

    航空工业和航天工业的飞速发展，对轻质高强

铝合金材料提出了迫切需求，可以预计我国将迎来

轻质铝锂合金的研究高潮。这些研究既包括成形、

焊接、热处理等方面的应用技术研究，也包括基于

不同应用背景和性能要求的成分设计研究。虽然铝

锂合金的合金化和微合金化研究已取得重要进展，

但基于未来铝锂合金成分设计发展的需要，笔者认

为 Al-Cu-Li 系铝锂合金还应该在以下几个方面开

展更深入的研究。① 针对航空工业对耐损伤铝锂

合金的需求，系统深入地开展(微)合金化元素对铝

锂合金耐损伤性能的影响规律及机理研究，开发高

耐损伤铝锂合金。② 进一步深入开展复合微合金

化，特别是 Mg+Zn 复合微合金化的作用效果及机

理研究。③ 开展稀土元素在不同成分铝锂合金中

的作用效果研究，包括力学性能、耐损伤性能，充

分发挥稀土元素的有益作用，并摒弃其有害作用。 
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Alloying and micro-alloying in Al-Cu-Li series alloys 

 

LI Jin-feng, NING hong, LIU Dan-yang, ZHENG Zi-qiao 
 

(School of Materials Science and Engineering, Central South University, Changsha 410083, China) 

 

Abstract: The research process of Al-Li alloys and their composition design development stages are summarized. 

The influence and corresponding mechanism of contents of main alloying elements Cu and Li on the aging 

precipitate types, mechanical properties and corrosion resistance of Al-Cu-Li series alloys are emphatically 

expounded. The effects of micro-alloying elements Zr, Mn, Mg, Ag, Zn, Rare earth (RE) and Indium (In) on the 

mechanical properties, corrosion resistance and micro-structures, such as recrystallization, type and population 

density of aging precipitates, are discussed in detail. Based on the reported literatures and the research results of 

our research group, the composition design ideas of two kinds of Al-Li alloys, high strength Al-Li alloys and 

corrosion resistant Al-Li alloys, are proposed. 

Key words: Al-Li alloy; alloying; micro-alloying; mechanical property; corrosion; microstructure 
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