2021 年 1 月 January 2021

DOI: 10.11817/j.ysxb.1004.0609.2021-39543

镍基合金 TLP 扩散焊接头中二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的性能

张永志¹,张红魁²,陈捷狮^{2,3,4},尹志康²,张泽强²,杨明远²
(1. 中国航发上海商用航空发动机制造有限责任公司,上海 201306;
2. 上海工程技术大学 材料工程学院,上海 201620;

3. 上海市激光先进制造技术协同创新中心,上海 201620;

4. 上海交通大学 材料科学与工程学院, 上海 200240)

摘要:采用基于密度泛函理论的第一性原理平面波赝势计算方法,计算了 Ni-M(B、Si、Zr 和 Hf)二元共晶 沉淀相(Ni₂B、Ni₃B、Ni₃B₂、Ni₂3B₆、Ni₃Si、Ni₅Zr 和 Ni₅Hf)的相稳定性、弹性常数、硬度及相应的电子结 构。相稳定性计算结果表明,二元共晶沉淀相结构稳定性变化趋势由高到低的顺序为 Ni₃Si、Ni₅Zr、Ni₂B、Ni₅Hf、Ni₃B、Ni₃B₂、Ni₂3B₆,这意味着降熔元素 Si 形成的 Ni₃Si 沉淀相稳定性强于降熔元素 B、Zr 和 Hf 形成的沉淀相。弹性力学计算表明,Ni₃B₂表现为很强的各向异性,Ni₂B、Ni₃B 和 Ni₃Si 表现出一定的各向 异性,而 Ni₂3B₆、Ni₅Zr 和 Ni₅Hf 则表现为较强的各向同性。二元共晶沉淀相 *B/G* 值均大于 1.75,这意味着 它们为延性相。硬度由小到大的趋势为 Ni₃B₂、Ni₂B、Ni₂B₆、Ni₂Zr、Ni₃B₄、Ni₂B₅、Ni₅Zr 4 和 Hf 5d 的原子轨道杂化强度密切相关。

关键词:二元共晶沉淀相;相稳定性;弹性常数;硬度;电子结构;第一性原理 文章编号:1004-0609(2021)-01-0084-12 中图分类号:TG146.411 文献标志码:A

引文格式: 张永志,张红魁,陈捷狮,等. 镍基合金 TLP 扩散焊接头中二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的性能[J]. 中国有色金属学报, 2021, 31(1): 84–95. DOI: 10.11817/j.ysxb.1004.0609.2020-39543 ZHANG Yong-zhi, ZHANG Hong-kui, CHEN Jie-shi, et al. Properties of Ni-M (B, Si, Zr and Hf) binary eutectic precipitates in TLP diffusion joint of nickel-base alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 84–95. DOI: 10.11817/j.ysxb.1004.0609.2020-39543

镍基合金具有较高的高温强度、蠕变强度和持 久强度,良好的高温抗氧化和抗腐蚀能力,以及优 异的抗疲劳性能和组织稳定性^[1-5],广泛应用于制 造工业燃气轮机涡轮叶片等热端部件,尤其镍基单 晶高温合金是制造航空发动机涡轮叶片的首选材 料^[5-6]。随着涡轮叶片内部冷却结构设计复杂,仅 采用精密铸造技术已不能满足要求,需与焊接技术 相结合。然而,随着合金中难熔合金元素(W、Re、 Ta、Mo)的添加,采用传统的熔焊方法,接头易出 现组织偏析、杂晶、脆性相和低熔点共晶相等缺陷, 并伴有热裂纹产生[7-10]。

瞬时液相扩散焊(Transient liquid phase, TLP)由 DUVALL等^[11]提出,此方法兼具高温钎焊和固相扩 散焊的特点^[7,10],其过程是将一种与基体成分相似 但添加降熔元素的中间层合金置于被连接基体之 间,加热到一定温度和保温一段时间,降熔元素扩 散到基体中,最终完成等温凝固。常用降熔元素有 B、Si、Hf和Zr,降熔元素易与基体Ni在接头中 出现共晶相,如采用B作为降熔元素对镍基高温合 金TLP连接时,在接头中发现树枝状Ni₂B^[12]、块

收稿日期: 2019-09-08; 修订日期: 2019-11-25

通信作者: 陈捷狮, 副教授, 博士; 电话: 021-67791474; E-mail: cjshbb@sjtu.edu.cn

基金项目:国家自然科学基金资助项目(51805316);中国博士后科学基金资助项目(2019M651491);上海市青年科技英才扬帆计划 资助项目(18YF1424900);上海市科学技术委员会科研计划资助项目(18511108600)

85

状 Ni₃B^[13-15]、细小块状 Ni₃B₂^[12, 15-17]和针状 Ni23B6^[12, 16-17]共晶沉淀相。当采用降熔元素 Si 时, 在接头中发现 Ni₃Si 共晶^[18]。而采用 Hf 和 Zr 时, 在接头中同样发现 NisHf 和 NisZr^[19-20]。研究发现, 这类共晶沉淀相的存在严重降低了焊接接头的综 合力学性能,如硬度、抗拉强度、蠕变等性能^[13-15]。 虽然众多学者通过试验研究方法发现这类共晶沉 淀相的存在,但关于其形成难易程度及力学性能鲜 有报道。因此,本文采用第一性原理方法,系统地 研究 B、Si、Hf 和 Zr 作为降熔元素与基体 Ni 形成 的共晶沉淀相,即 Ni₂B、Ni₃B、Ni₃B₂、Ni₂B₆、 Ni₃Si、Ni₅Hf 和 Ni₅Zr 的结构稳定性和力学性能。 从体系能量、电子结构和弹性性质等不同层面,探 究二元共晶沉淀相的结构稳定性、力学性质和相互 作用特性,旨在为镍基单晶合金 TLP 扩散焊中间层 合金设计提供理论指导。

1 计算模型与方法

7 种共晶沉淀相的晶胞模型如图 1 所示。其中 Ni₂₃B₆(*Fm*3*m*)、Ni₃Si(*Pm*3*m*)、Ni₅Hf(*Fm*3*m*)和 Ni₅Zr(*Fm*3*m*)为立方结构,Ni₃B₂(*P*4/*mbm*)和 Ni₂B (*I*4/*mcm*)为四方结构,而 Ni₃B(*Pnma*)为正交结构, 其结构参数见表 1。

采用基于密度泛函理论(Density-functional theory)的CASTEP(Cambridge sequential total energy

package)模块^[21],运用平面波赝势方法,将离子势 用赝势代替,电子波函数用平面波基函数线性展 开,电子交换关联函数采用 GGA(General gradient approximation)的 PW91(Perdew and Wang)形式^[22], 分别采用超软赝势(Ultrasoft)^[23]处理 Ni(3d⁸4s²)、 B(2s²2p¹)、Si(3s²3p²)、Zr(4d²5s²)和 Hf(5d²6s²)的价 电子。采用 Broyden-Fletcher-Goldfarb-Shanno (BFGS)^[24] 算法对各种超晶胞模型进行几何优化,以获得局域 最稳结构;平面波截断能 E_{Cu} 取 350eV,各相的布 里渊区 *K* 点积分用 Monkhorst-Pack 进行划分网格^[25], 其信息如表 1 所示。采用应力–应变近似^[26]计算弹 性常数。在自洽计算(SCF)时应用 Pulay 密度混合 法^[27],自洽收敛条件设为:总能量小于 1×10⁻⁵ eV/atom,每个原子上的力低于 0.3 eV/Å,公差偏移 小于 1×10⁻³Å,应力偏差小于 0.05 GPa。

2 结果与讨论

2.1 结构性能和稳定性

结构优化后的 Ni₂B、Ni₃B、Ni₃B₂、Ni₂₃B₆、 Ni₃Si、Ni₅Hf 和 Ni₅Zr 的晶格参数(Å),晶胞体积 V (Å³)、生成焓 $\Delta H_{\rm f}$ (kJ/mol-atom)和结合能 $E_{\rm coh}$ (eV/atom)如表 1 所示^[28-37]。结果表明,二元共晶沉 淀相的晶格参数计算值与实验结果^[28-34]差值均小 于 2%,并与理论计算值^[35-36]相吻合,这说明了本 文采用晶胞模型和计算方法精度可靠。

图1 晶体结构模型示意图

Fig. 1 Schematic diagrams of crystal structure model: (a) $Ni_{23}B_6$; (b) Ni_3B_2 ; (c) Ni_3B ; (d) Ni_2B ; (e) Ni_3Si ; (f) Ni_5Zr ; (g) Ni_5Hf

表 1 二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的晶体参数(*a*, *b*, *c*)、晶胞体积 *V*、生成焓 Δ*H*_f和结合能 *E*_{coh} **Table 1** Lattice parameters (*a*, *b* and *c*), cell volume *V*, formation enthalpy ΔH_f and cohesive energy *E*_{coh} of Ni-M (B, Si, Zr and Hf) binary eutectic precipitates

Phase	Space group	Method	Lattice parameter/nm	$V/10^{-3} \text{ nm}^{3}$	$\Delta H_{\rm f}$ /(kJ·mol ⁻¹)	$E_{\rm coh}/{\rm eV}$
		$GGA[4 \times 4 \times 4]$	<i>a</i> = <i>b</i> = <i>c</i> =1.057	1152.97	-21.71	7.56
Ni ₂₃ B ₆	Fm3m	Exp. by others	$a=b=c=1.076^{[28]}$	1246.11 ^[28]		
		Cal. by others	$a=b=c=1.044^{[35]}$		-18.31 ^[35]	
N: D	D4/h.	$GGA[5 \times 5 \times 8]$	<i>a</i> = <i>b</i> =0.540, <i>c</i> =0.296	86.51	-25.59	7.21
N_3B_2	P4/m0m	Exp. by others	$a=b=0.570, c=0.300^{[29]}$			/.31
N: D	D	$GGA[5 \times 4 \times 6]$	<i>a</i> =0.519, <i>b</i> =0.667, <i>c</i> =0.442	153.41	-29.29	7.22
N13B	Pnma	Exp. by others	$a=0.522, b=0.661, c=0.439^{[30]}$	$151.75^{[30]}$		1.32
NI D	I4/mcm	$GGA[5 \times 5 \times 6]$	<i>a</i> = <i>b</i> =0.499, <i>c</i> =0.430	106.89	-32.66	7.29
IN12B		Exp. by others	$a=b=0.499, c=0.425^{[31]}$	105.82 ^[31]		
NI CI	n 1	$GGA[8 \times 8 \times 8]$	<i>a=b=c=</i> 0.352	43.58	-43.25	7.18
N1 ₃ 51	Pm3m	Exp. by others	$a=b=c=0.352^{[32]}$	43.57 ^[32]	-43.13 ^[33]	
N: 7.	F 3	$GGA[4 \times 4 \times 4]$	<i>a</i> = <i>b</i> = <i>c</i> =0.672	303.96	-33.75	7.52
N ₁₅ Zr	Fm3m	Exp. by others	$a=b=c=0.671^{[33]}$	301.71 ^[33]	$-34.98{\pm}6.7^{[37]}$	
		$GGA[4 \times 4 \times 4]$	<i>a</i> = <i>b</i> = <i>c</i> =0.673	305.17	-29.95	7.54
Ni ₅ Hf	$Fm\overline{3}m$	Exp. by others	$a=b=c=0.668^{[34]}$	298.08 ^[34]		
_		Cal. by others	$a=b=c=0.669^{[36]}$		$-29.91^{[36]}$	

为了评价二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)在焊接接头中形成难易程度,对共晶沉淀相的生成焓 $\Delta H_{\rm f}$ 和结合能 $E_{\rm coh}$ 进行计算,公式如下^[38]:

$$\Delta H_{\rm f} = \frac{E_{\rm tot}^{\rm NimMn} - mE_{\rm solid}^{\rm Ni} - nE_{\rm solid}^{\rm M}}{m+n} \tag{1}$$

$$E_{\rm coh} = \frac{-E_{\rm tot}^{\rm NimMn} - mE_{\rm atom}^{\rm Ni} + nE_{\rm atom}^{\rm M}}{m+n}$$
(2)

式中: E_{tot}^{NimMn} 为晶胞总能量; E_{solid}^{Ni} 和 E_{atom}^{Ni} 分别为 Ni 在基态和自由态下原子的总能量; E_{solid}^{M} 和 E_{atom}^{M} 分别为降熔元素(MPD)在基态和自由态下原子的总 能量; m、n分别表示 Ni、M 原子在晶胞结构模型 中原子个数。根据式(1)和(2), Ni-M(B、Si、Zr 和 Hf)的生成焓和结合能列于表 1。晶体的结合能和结 构稳定性密切相关,结合能是自由原子结合为晶体 所释放的能量,即晶体分解成单个原子时对外界所 做的功,根据能量最低原理,结合能越低其晶体结 构越稳定。生成焓则表示金属的合金化能力,生成 焓为负值时形成的化合物是稳定的,负值越负表示 形成的化合物越稳定。通过对比各相的 ΔH_{f} 和 E_{coh} 发现(见图 2),二元共晶沉淀相(Ni₂B、Ni₃B、Ni₃B₂、 $Ni_{23}B_6$ 、 Ni_3Si 、 Ni_5Hf 和 Ni_5Zr)生成焓值均为负值且 结合能值大于 0,表明各相结构是稳定且容易形成。 结构稳定性变化趋势如下: $Ni_3Si > Ni_5Zr > Ni_2B >$ $Ni_5Hf > Ni_3B > Ni_3B_2 > Ni_{23}B_6$,这表明与另外三种降 熔元素 B、Hf和Zr相比,降熔元素Si更容易形成 二元沉淀相 Ni_3Si(-43.25 kJ/mol)。此外,Ni_{23}B_6、 Ni_3Si、Ni_5Hf 和 Ni_5Hf 的生成焓分别为-21.71、

图 2 二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的生成焓 和结合能

-43.13、-33.75 和-29.95 kJ/mol, 其结果和实验 值^[33,35-37]与理论计算^[35-36]均相符,偏差均小于 2%。

2.2 力学性能

连接界面中形成的二元共晶沉淀相,因其本身 脆而硬和各项异性的属性,往往成为接头界面裂纹 的萌生处,严重降低了连接界面的综合性能,因此 有必要对二元共晶沉淀相的力学性能进行研究。

2.2.1 力学稳定性

对于本文三类结构^[39-41],其力学性能稳定性的 限制条件如下所示:

立方结构(3 个独立弾性常数 C_{11} 、 C_{12} 和 C_{44})^[39]: C_{11} >0, C_{44} >0, C_{11} > $|C_{12}|$, C_{11} + $2C_{12}$ >0 (3)

四方结构(6 个独立弹性常数 C₁₁、C₁₂、C₂₃、 C₃₃、C₄₄和 C₆₆)^[40]:

 $C_{ij} > 0$ (*i*=*j*=1, 3, 4, 6), $C_{11} > C_{12}$, $C_{11} + C_{33} - 2C_{13} > 0$, $2C_{11} + C_{33} + 2C_{12} + 4C_{13} > 0$ (4)

正交结构(9 个独立弹性常数 C₁₁、C₁₂、C₁₃、 C₂₂、C₂₃、C₃₃、C₄₄、C₅₅和 C₆₆)^[41]:

 $C_{ij} \ge 0$ (*i*=*j*=1, 2, 3, 4, 5, 6),

$$C_{11}+C_{22}+C_{33}+2(C_{12}+C_{13}+C_{23}) > 0, C_{11}+C_{22}-2C_{12} > 0, C_{11}+C_{33}-2C_{13} > 0, C_{22}+C_{33}-2C_{33} > 0$$
(5)

各二元共晶沉淀相弹性常数 *C_{ij}* 和弹性柔度矩阵 *S_{ij}* 分别如表 2 和 3 所示。力学稳定性限制条件如式(3)~(5)所示,发现二元共晶沉淀相(Ni₂B、Ni₃B、

Ni₃B₂、Ni₂₃B₆、Ni₃Si、Ni₅Hf 和 Ni₅Zr)均满足力学 性能稳定性限制条件,因此 Ni₂B、Ni₃B、Ni₃B₂、 Ni₂₃B₆、Ni₃Si、Ni₅Hf 和 Ni₅Zr 二元共晶沉淀相是力 学稳定的。此外,Ni₂₃B₆、Ni₃B、Ni₂B 和 Ni₃Si 的 弹性常数 *C_{ij}*均和理论值^[35,42]相近。

2.2.2 力学性能

利用 Voigt(V)-Reuss(R)理论^[43-45]计算了各相的 体模量(B)、剪切模量(G)、弹性模量(E)和泊松比 (v)。

立方结构时^[43-45]:

$$B_V = B_R = (C_{11} + 2C_{12})/3 \tag{6}$$

$$G_V = (C_{11} - C_{12} + 3C_{44})/5 \tag{7}$$

$$G_R = 5(C_{11} - C_{12})C_{44} / [4C_{44} + 3(C_{11} - C_{12})]$$
(8)

四方结构时^[43-45]:

$$B_V = [2(C_{11} + C_{12}) + C_{33} + 4C_{13}]/9$$
(9)

$$G_V = (M + 3C_{11} - 3C_{12} + 12C_{44} + 6C_{66})/30$$
(10)

$$B_R = C^2 / M \tag{11}$$

$$G_R = 15/[(18B_V)/C^2 + 6/(C_{11} - C_{12}) + 6/C_{44} + 3/C_{66}]$$

$$C^{2} = (C_{11} + C_{12})C_{33} - 2C_{13}^{2}$$
(13)

$$M = C_{11} + C_{22} + 2C_{33} - 4C_{13}$$
(14)

正交结构时^[43-45]:

$$B_V = (C_{11} + C_{22} + C_{33})/9 + 2(C_{12} + C_{13} + C_{23})/9 \quad (15)$$

表 2 二元共晶沉淀相 Ni-M(B、Si、Hf 和 Zr)的弹性常数

Table 2	Elastic constants	of Ni-M (B	Si, Zr and Hf)) binary eutection	precipitates
			,, <u> </u>	,,	

Phase –	Elastic constant/GPa										
	C_{11}	C_{22}	C ₃₃	C_{44}	C ₅₅	C_{66}	C_{12}	C_{13}	C_{23}		
Ni ₂₃ B ₆	349.82			100.35			179.85				
Ni ₂₃ B ₆ ^[35]	340.10			108.5			164.3				
Ni_3B_2	350.02		280.48	137.19		94.07	204.15	228.14			
Ni ₃ B	334.19	344.75	309.44	92.49	109.61	124.91	174.63	201.82	173.17		
Ni ₃ B ^[35]	348.7	372.4	362	99.8	116.8	140.8	188.8	185.2	164.3		
Ni ₂ B	365.83		380.36	98.09		133.38	202.06	165.16			
Ni ₂ B ^[35]	419.8		429.9	105.5		142.1	209.9	173.6			
Ni ₃ Si	312.84			123.50			161.76				
Ni ₃ Si ^[42]	315.40			124.2			163.1				
Ni ₅ Zr	293.69			100.01			130.52				
Ni ₅ Hf	311.71			104.67			136.72				

表 3	二元共晶沉淀相	Ni-M(B	Si	Hf 和 Zr)的弹性柔度常数
	/ =/ (AA 0 = 0 = 1)	`		,	

Table 3 Elastic compliance constants of Ni-M (B, Si, Hf and Zr) binary eutectic precipitates

	1		(, ,) 5	1 1	L			
Phase –	Elastic compliance constant/ 10^{-3} GPa ⁻¹									
	<i>s</i> ₁₁	<i>s</i> ₂₂	\$ ₃₃	<i>S</i> ₄₄	\$55	s ₆₆	<i>s</i> ₁₂	<i>s</i> ₁₃	<i>s</i> ₂₃	
$Ni_{23}B_6$	4.39			9.97			-1.49			
Ni ₃ B ₂	6.16		10.79	7.29		10.63	-0.70	-4.44		
Ni ₃ B	5.34	4.37	5.90	10.81	9.12	8.01	-1.33	-2.74	-1.58	
Ni ₂ B	4.23		3.59	10.19		7.50	-1.88	-1.02		
Ni ₃ Si	4.94			8.10			-1.68			
Ni ₅ Zr	4.69			10.00			-1.44			
Ni ₅ Hf	4.38			9.55			-1.34			

(16)

$$G_V = [(C_{11} + C_{22} + C_{33}) - (C_{12} + C_{13} + C_{23}) + 3(C_{44} + C_{55} + C_{66})]/15$$

$$1/B_{R} = (S_{11} + S_{22} + S_{33}) + 2(S_{12} + S_{13} + S_{23})$$
(17)

$$\frac{1}{G_R} = [4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})]/15$$
(18)

HILL^[43]提出多晶体的实际值可以用 Voigt 方法 和 Reuss 方法的弹性模量的算术平均值表示,即:

$$B = \frac{B_V + B_R}{2} , \ G = \frac{G_V + G_R}{2}$$
(19)

此外,弹性模量(E)和泊松比(v)计算公式如下^[43]:

$$E = \frac{9BG}{3B+G}, \ \nu = \frac{3B-2G}{2(3B+G)}$$
(20)

各相的体模量(B)、剪切模量(G)、弹性模量(E) 和泊松比(v) 计算结果见表 4。体模量(B)是反映材 料抗体积变化能力的量度^[46],由图 3(a)可知,降熔 元素 B 形成的二元共晶沉淀相与降熔元素 Si、Zr 和 Hf 形成的二元沉淀相相比, 前者具有较高的体 模量,表明 Ni-B 二元共晶沉淀相具有较强的抗断 裂的能力。剪切模量(G)是衡量材料抵抗塑性变形能 力的量度,通常与化学键的强度和方向性有密切关 系^[46],由图 3(a)可知,二元共晶沉淀相的剪切模量 趋势是: Ni₂B>Ni₃Si>Ni₅Hf>Ni₅Zr>Ni₂₃B₆> Ni₃B>Ni₃B₂,这表明二元沉淀相 Ni₂B 和 Ni₃Si 具 有较强的方向性价键特性。弹性模量(E)是表征在弹 性限度内材料抗拉或抗压的物理量,可作为衡量材 料产生弹性变形难易程度的指标,通常其值越大, 使材料发生一定变形的应力也越大^[41],由图 3(a)可 知,降熔元素 Hf 形成的二元共晶沉淀相与降熔元 素 B、Si 和 Zr 形成的二元共晶沉淀相相比, 前者

具有较低的弹性模量,表明 Ni₅Hf 共晶沉淀相比降 熔元素 B、Si 和 Zr 形成的二元共晶沉淀相更容易 发生变形。泊松比(*v*)是用来评估材料抗剪切稳定 性的参量,*v* 值越大的材料塑性越好^[41]。由图 3(b) 可知,降熔元素 B 形成的二元共晶沉淀相与降熔元 素 Si、Zr 和 Hf 形成的二元沉淀相相比,前者具有 较高的泊松比,表明 Ni-B 二元共晶沉淀相具有较 好的塑性。根据 Pugh 准则^[46],材料的脆韧可用 *B/G*

图 3 二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的机械 性能

Fig. 3 Mechanical properties of Ni-M(B, Si, Zr and Hf) binary eutectic precipitates

第31卷第1期

•		•								
Phase	<i>B</i> _ℓ /GPa	B _R /GPa	B _h /GPa	G_V /GPa	G_R /GPa	G_h /GPa	ν	Ε	B/G	A^{U}
Ni ₂₃ B ₆	236.50	236.50	236.50	94.20	93.58	93.89	0.383	248.76	2.52	0.033
Ni ₂₃ B ₆ ^[35]			222.9							
Ni_3B_2	255.71	253.43	254.57	95.03	72.67	83.85	0.352	226.67	3.03	1.547
Ni ₃ B	231.96	231.64	231.80	94.650	88.840	91.75	0.325	241.55	2.53	0.328
Ni ₂ B	241.86	241.70	241.78	104.56	101.86	103.21	0.313	271.05	2.34	0.133
Ni ₂ B ^[35]			264.6							
Ni ₃ Si	212.12	212.12	212.12	104.32	98.49	101.40	0.294	262.39	2.09	0.296
Ni ₃ Si ^[42]			213.9			102.1	0.29	264.2		
Ni ₅ Zr	184.91	184.91	184.91	92.64	91.73	92.18	0.286	237.14	2.01	0.050
Ni₅Hf	195.05	195.05	195.05	97.801	97.05	97.426	0.286	150.56	2.01	0.039
Ni ₅ Hf ^[36]			190.1							

值评判,其临界值为 1.75。当 *B/G*>1.75 时,材料 表现为塑性,当 *B/G*<1.75 时,材料表现为脆性; 从图 3(b)中可看到,各相的 *B/G* 值均大于 1.75,这 表明各相均为塑性。另外,本文计算结果与理论结 果^[35-36,42]也吻合较好。

2.2.3 维氏硬度

对于有共价键的过渡金属多晶体材料,通常采用体模量和剪切模量来预测固有硬度;尽管体模量 和剪切模量与硬度之间的关系并不十分准确,但从 宏观参数得到的硬度还是可以了解材料硬度的控 制因素,对了解连接界面硬度提供帮助。因此,以 下分别采用 TIAN等^[47]和 CHEN等^[48]提出的模型对 各相硬度进行计算。

TIAN 等^[47]提出的半经验公式:

$$H_{\rm V} = 1.92K^{1.137}G^{0.708} \tag{21}$$

CHEN 等^[48]提出的半经验公式:

$$H_{\rm V} = 2(K^2 G)^{0.585} - 3 \tag{22}$$

式中: *K*为*G/B*比值。根据式(21)~(22),各相的硬度计算结果见表 4。从表 4 可知,两种半经验公式计算的结果趋势一致,CHEN等^[48]提出理论计算结果低于 TIAN等^[47]提出的理论计算结果。此外,降熔元素 B 形成的二元共晶沉淀相与降熔元素 Si、Hf和 Zr 形成的二元沉淀相相比,具有较低的硬度,且 Ni₃B₂相的硬度最低,这与 Ni₃B₂相有较高的体模量与较低的剪切模量有关。

2.2.4 弹性各向异性

晶体的弹性各向异性因子在物理性能评价和

Fig. 4 Comparison of Vickers hardness calculation results

预测中具有重要作用,可用各向异性指数(A^U)衡 量^[49]:

$$A^{\rm U} = 5\frac{G^{V}}{G^{R}} + \frac{B^{V}}{B^{R}} - 6$$
(23)

式(23)计算所得结果见表 4。一般来说, *A^U* 值 越大晶体的弹性各向异性程度越大。此外,晶体的 弹性各向异性可利用三维曲面来表示,该曲面表明 了晶体弹性特性与晶体学方向有关,不同结构的 Ni-M(B、Si、Zr 和 Hf)二元共晶沉淀相的弹性模量 的方向依赖关系定义如下^[41]。

对于立方结构晶体,沿某一晶向的弹性模量可 表示为

 $1/E = S_{11} - 2(S_{11} - S_{12} - S_{44}/2)(l_1^2 l_2^2 + l_2^2 l_3^2 + l_3^2 l_1^2)$ (24) 对于四方结构晶体,则有:

$$1/E = (l_1^4 + l_2^4)s_{11} + l_3^4s_{33} + l_1^2l_2^2(2s_{12} + s_{66}) + l_3^2(1 - l_3^2)(2s_{13} + s_{44}) + [2l_1l_2(l_1^2 - l_2^2)s_{16}]$$
(25)
对于正交结构晶体,则有:

$$1/E = l_1^4 S_{11} + 2l_1^2 l_2^2 s_{12} + 2l_1^2 l_3^2 s_{13} + l_2^4 s_{22} + 2l_2^2 l_3^2 s_{23} + l_3^4 s_{33} + l_2^2 l_3^2 s_{44} + l_1^2 l_3^2 s_{55} + l_1^2 l_2^2 s_{66}$$
(26)

式中: *S_{ij}*是单晶体弹性柔度系数; *l*₁、*l*₂、*l*₃是晶向 关于 *X*、*Y*、*Z*轴的方向余弦。根据式(24)~(26)和表 3 结果, Ni-M(B、Si、Zr 和 Hf)二元共晶沉淀相弹 性各项异性三维示意图如图 5 所示。三维示意图中 的球形代表弹性各向同性, 曲面背离球面的程度代 表弹性各向异性程度。由图 5 可以发现, Ni₃B₂ 相 各相异性最大,这与 Ni₃B₂ 相有较高的体模量和较低的剪切模量有一定关系。此外,各相的 *A^U*的计算值与三维(3D)曲面非常贴切。

2.3 电子结构

为了进一步了解各相成键特性,分别计算了各相的电子结构,并且进一步揭示了各相的稳定性和 力学性能与电子结构三者之间的关系。几何结构优 化后,各相的总态密度(Total density of states, TDOS) 计算结果见图 6,其中能量值在 0 eV 处的垂直虚线 表示费米能的位置。由图 6(a)可发现,各相在费米 能位置的 TDOS 值不为 0,表明各相有一定的导电

Fig. 5 Elastic anisotropy three-dimensional surface of Ni-M(B, Si, Hf and Zr)binary eutectic precipitates: (a) $Ni_{23}B_6$; (b) Ni_3B_2 ; (c) Ni_3B ; (d) Ni_2B ; (e) Ni_5Si ; (f) Ni_5Zr ; (g) Ni_5Hf

图 6 二元共晶沉淀相 Ni-M(B、Si、Hf 和 Zr)的总态密度(a)和费米能与结合能的关系(b) Fig. 6 Total density of states(a) and relationship between Fermi level and cohesive energy(b) of Ni-M(B, Si, Hf and Zr) binary eutectic precipitates

性能,即为金属材料。此外,费米能级的位置和费 米能级处态密度的数值与材料的稳定性有很大关 系,费米能级处态密度数值越低,材料结构越稳定。 如图 6(a)所示,各相在费米能级处态密度值大小关 系为 Ni₃Si < Ni₂B < Ni₃B₂ < Ni₃B < Ni₅Zr < Ni₅Hf < Ni₂₃B₆,表明 Ni₃Si 结构最稳定,Ni₂₃B₆相对不稳定。 结合前文结合能计算,如图 6(b)所示,费米能级处

态密度值与结合能呈正向关系。

由于各相的态密度主要有 Ni 3d 轨道贡献和部 分 B 2p、Si 3p、Zr 4d 和 Hf 5d 轨道贡献,因此研 究各相的分态密度(Partial density of states, PDOS) 对于了解原子间成键特性具有重要价值。通常,原 子之间杂化程度越大阴影面积越大,即原子之间共 价键越强,材料表现出硬度越高。如图 7 所示的

图 7 二元共晶沉淀相 Ni-M(B、Si、Zr 和 Hf)的分态密度

Fig. 7 Partial density of states of Ni-M(B, Si, Zr and Hf) binary eutectic precipitates:
(a) Ni₂₃B₆; (b) Ni₃B₂; (c) Ni₃B; (d) Ni₂B;
(e) Ni₃Si; (f) Ni₅Zr; (g) Ni₅Hf

PDOS 图,在费米能级左侧 Ni 3d 轨道分别与 B 2p、 Si 3p、Zr 4d 和 Hf 5d 轨道发生 3d2p、3d3p、3d4d、 3d5d 不同程度的杂化(阴影部分),杂化强度关系为 Ni₃B₂ < Ni₃B < Ni₂₃B₆ < Ni₂B < Ni₅Zr < Ni₃Si < Ni₅Hf,表明 Ni₅Hf 相硬度最大,Ni₃B₂相硬度最小, 其和维氏硬度计算结果一致。

3 结论

1) 通过结构优化计算,Ni-M(B、Si、Zr和Hf) 二元共晶沉淀相晶格常数与实验值及理论计算误 差小于 2%。生成焓和结合能结果表明,各二元共 晶沉淀相均是稳定存在的,且 Ni₃Si 合金化能力最 强,即容易形成且结构稳定。

2) 弹性性质计算发现, Ni₃B₂ 表现为很强的各向异性, Ni₂B、Ni₃B 和 Ni₃Si 表现出一定的各向异性, 而 Ni₂₃B6、Ni₅Zr 和 Ni₅Hf 则表现为较强的各向同性。结合体模量、*B/G* 和各向异性比较, 二元 共晶沉淀相力学上是稳定存在的且均为塑性相, 其中 Ni₃B₂ 相塑性最好但各向异性最大, Ni₅Hf 和 Ni₅Zr 相塑性较差且各向异性较小。

3) 电子结构分析表明,费米能级处的 TDOS 值不为 0,即各相表现为金属属性,并且 TDOS 值 与结构越稳定计算结果存在对应关系。二元共晶沉 淀相硬度关系为 Ni₃B₂ < Ni₃B < Ni₂B < Ni₂B < Ni₅Zr < Ni₃Si < Ni₅Hf,其与各相中 Ni 3d 同 B 2p、 Si 3p、Zr 4d、Hf 5d 的原子轨道杂化程度贡献密切 相关。

REFERENCES

- BIAN H K, XU X D, LI Y P, et al. Regulating the coarsening of the γ' phase in superalloys[J]. NPG Asia Materials, 2015, 7(8): 212–212.
- [2] KOVARIK L, UNOCIC R R, LI J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys[J]. Progress in Materials Science,2009, 54(6): 839–873.
- [3] MASOUMI F, SHAHRIARI D, JAHAZI M, et al. Kinetics and mechanisms of gamma' reprecipitation in a Ni-based superalloy[J]. Scientific reports, 2016, 6: 28650.

- [4] SUN C, KIRK M, LI M, et al. Microstructure, chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature[J]. Acta Materialia, 2015, 95: 357–365.
- [5] 田素贵,朱新杰,田 宁,等. Ru 对镍基单晶合金组织结构与蠕变行为的影响[J]. 中国有色金属学报, 2018, 28(2): 275-284.

TIAN Su-gui, ZHU Xin-jie, TIAN Ning, et al. Influence of element Ru on microstructure and creep behavior of single crystal nickel-based superalloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 275–284.

- [6] CUI R J, HUANG Z H. Microstructual evolution and stability of second generation single crystal nickel-based superalloyDD5[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2079–2085.
- [7] CAVALIERE P, PANELLA F. Mechanical and microstructural behaviour of CMSX-4 Ni-based superalloy joined by capacitor discharge welding[J]. Journal of Materials Processing Technology, 2007, 183(2/3): 297–300.
- [8] DYE D, CONLON K T, LEE P D, et al. Welding of single crystal superalloy CMSX-4: Experiments and modeling[J]. Superalloys, 2004(1): 485–491.
- [9] OLA O T, OJO O A, WANJARA P, et al. A study of linear friction weld microstructure in single crystal CMSX-486 superalloy[J]. Metallurgical and Materials Transactions A, 2011, 43(3): 921–933.
- [10] VITEK J M, BABU S S, PARK J W, et al. Analysis of stray grain formation in single-crystal nickel-based superalloy welds[J]. Superalloys, 2004 (1): 459–465.
- [11] DUVALL D S, OWCZARSKI W A, DF P. TLP bonding: a new method for joining heat resistant alloys[J]. Welding Journal, 1974, 53(4): 203–214.
- [12] ZHANG H R, GHONEIM A, OJO O A. TEM analysis of diffusion brazement microstructure in a Ni₃Al-based intermetallic alloy[J]. Journal of Materials Science, 2010, 46(2): 428–437.
- [13] SHENG N C, LI B, LIU J D, et al. Influence of the substrate orientation on the isothermal solidification during TLP bonding single crystal superalloys[J]. Journal of Materials Science & Technology, 2014, 30(3): 213–216.
- [14] SHENG N C, LIU J D, JIN T, SUN X F, HU Z Q. Wide gap TLP bonding a single-crystal superalloy: Evolution of the L/S interface morphology and formation of the isolated grain

boundaries[J]. Metallurgical and Materials Transactions A, 2012, 44(4): 1793–1804.

- [15] SUN Y, LIU J, LI B, et al. Microstructure evolution of single crystal superalloy DD5 joints brazed using AWS BNi-2 filler alloy[J]. Materials Research Innovations, 2014, 18(sup4): S4-341–S4-346.
- [16] SHENG N C, LIU J D, JIN T, et al. Precipitation behaviors in the diffusion affected zone of TLP bonded single crystal superalloy joint[J]. Journal of Materials Science & Technology, 2015, 31(2): 129–134.
- [17] 李晓红,毛 唯,钟群鹏,等. DD3 单晶合金 TLP 扩散焊接头组织及持久性能[J]. 焊接学报, 2012, 33(7): 1-4.
 LI Xiao-hong, MAO Wei, ZHONG Qun-peng, et al. Microstructure and stress-rupture property of TLP diffusion bonded DD3 single crystal superalloy joints[J]. Transactions of the China Welding Institution, 2012, 33(7): 1-4.
- [18] JALILIAN F, JAHZAI M, DREW R A L. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal[J]. Materials Science and Engineering A, 2006, 423(1/2): 269–281.
- [19] ZHANG Y R, RUAN Z C. Microstructure and performance of Ni-Hf brazing filler alloy[J]. Acta Metallurgica Sinica B, 1990, 3(5): 335–340.
- [20] ZHENG Y, ZHAO L, TANGRI K. Microstructure of Ni-10Co-8Cr-4W-13Zr alloy and its bonding behaviour for single-crystal nickel-base superalloy[J]. Journal of Materials Science,1993, 28(3): 823–829.
- [21] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Journal of Crystallography-Crystalline Materials, 2005, 220(5/6): 567–570.
- [22] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1993, 48(7): 4978–4978.
- [23] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
- [24] PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233–240.
- [25] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976,

13(12): 5188-5192.

- [26] KARKI B B, STIXRUDE L, CRAIN J. Ab initio elasticity of three high-pressure polymorphs of silica[J]. Geophysical Research Letters, 1997, 24(24): 3269–3272.
- [27] HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals[J]. Physical Review B, 1999, 59(11): 7413–7421.
- [28] IDZIKOWSKI B, SZAJEK A, Formation of the nanocrystalline cubic (Fe Ni)23 B6 phase in the nickel-rich Fe Ni Zr B alloys and its magnetic behavior[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5(1): 239–244.
- [29] HU X B, ZHU Y L, SHENG N C, et al. The Wyckoff positional order and polyhedral intergrowth in the M₃B₂- and M₅B₃-type boride precipitated in the Ni-based superalloys[J]. Scientific Reports, 2014, 4: 7367.
- [30] GUMENIUK R, BORRMANN H, LEITHE J A. Refinement of the crystal structures of trinickel boron Ni₃B and tripalladium boron Pd₃B[J]. Journal of Crystallography (New Crystal Structures), 2006, 221(4): 425–426.
- [31] CHAKOUMAKOS B C, PARANTHAMAN M. Neutron powder diffraction study of the superconducting quaternary intermetallic compound YNi₂B₂C[J]. Physica C (Superconductivity), 1994, 227(1/2): 143–150.
- [32] ACKERBAUER S, KRENDELSBERGER N, WEITZER F, HIEBL K, SCHUSTER J C. The constitution of the ternary system Fe-Ni-Si[J]. Intermetallics, 2009, 17(6): 414–420.
- [33] FOREY P, GLIMOIS J L, FERON J L. Study on the structure of ternary alloy $(Ni_{1-x}Cu_x)_5Zr[J]$. Journal of the Less Common Metals, 1986, 124(1/2): 21–27.
- [34] KIRKPATRICK M E, LARSEN W L. Phase relationships in the nickel-zirconium and nickel-hafnium alloy systems[J]. Transactions of the American Society for Metals, 1961, 54: 580–590.
- [35] KONG Y, XIONG W, GUO H B, et al. Elastic and thermodynamic properties of the Ni-B system studied by first-principles calculations and experimental measurements[J]. Calphad, 2010, 34(2): 245–251.
- [36] RADAKOVIC J, ĆIRIC K, BELOSEVIC Č J, et al. First-principles study of the thermodynamic properties and electronic structure of compounds from Hf-Ni phase[J]. Computational Materials Science, 2010, 49(1): 55–59.

- [37] HENAFF M P, COLINET C, PASTUREL A, et al. Study of the enthalpies of formation and crystallization in the system Zr-Ni[J]. Journal of Applied Physics, 1984, 56(2): 307–310.
- [38] KELLOU A, FERAOUN H I, GROSDIDIER T, et al. Energetics and electronic properties of vacancies, anti-sites, and atomic defects (B, C, and N) in B2-FeAl alloys[J]. Acta Materialia, 2004, 52(11):3263–3271.
- [39] PATIL S K R, KHARE S V, TUTTLE B R, et al. Mechanical stability of possible structures of PtN investigated using first-principles calculations[J]. Physical Review B, 2006, 73(10).
- [40] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics, 1955, 23(7): 474–474.
- [41] NYE J F, LINDSAY R B. Physical properties of crystals: Their representation by tensors and matrices[J]. Physics Today, 1957, 10(12): 26–26.
- [42] CAO Y, ZHU J C, LIU Y, et al. First-principles studies of the structural, elastic, electronic and thermal properties of Ni3Si[J]. Computational Materials Science, 2013, 69: 40–45.
- [43] HILL R. The elastic behaviour of a crystalline aggregate[J].Proceedings of the Physical Society Section A, 1952, 65(5):

349-354.

- [44] HUANG Z C, FENG J, PAN W. Theoretical investigations of the physical properties of zircon-type YVO₄[J]. Journal of Solid State Chemistry, 2012, 185: 42–48.
- [45] PANDA K, CHANDRAN K. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory[J]. Acta Materialia, 2006, 54(6): 1641–1657.
- [46] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843.
- [47] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106.
- [48] CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275–1281.
- [49] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504.

Properties of Ni-M (B, Si, Zr and Hf) binary eutectic precipitates in TLP diffusion joint of nickel-base alloy

ZHANG Yong-zhi¹, ZHANG Hong-kui², CHEN Jie-shi^{2, 3, 4}, YIN Zhi-kang², ZHANG Zhe-qiang², YANG Ming-yuan²

(1. AECC Shanghai Commercial Aircraft Engine manufacturing Co., Ltd., Shanghai 201306, China;

2. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201602, China;

3. Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology,

Shanghai 201620, China;

4. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: A systematic investigation concerned with phase stability, elastic properties, hardness and relevant electronic structure of Ni-M binary eutectic precipitates (Ni₂B, Ni₃B, Ni₃B₂, Ni₂₃B₆, Ni₃Si, Ni₅Zr and Ni₅Hf) was carried out using first principles calculations. The calculated results show that the change trend of the structural stability follows Ni₃Si>Ni₅Zr>Ni₂B>Ni₅Hf>Ni₃B>Ni₃B₂>Ni₂₃B₆, indicating that the stability of Ni₃Si phase using Si as melting-point depressant is stronger than that using B, Zr and Hf as melting-point depressants. The calculated elastic constants indicate that Ni₃B₂ is significantly anisotropic, and Ni₂B, Ni₃B and Ni₃Si exhibit some anisotropy, while Ni₂₃B₆, Ni₅Zr and Ni₅Hfshow a relatively isotropic character. The ratios of bulk modulus (*B*) to shear modulus (*G*) are more than 1.75 for all the Ni-M binary eutectic precipitates in this research, indicating their ductile nature. The trend of Vickers hardness of these Ni-M binary eutectic precipitates is as Ni₃B₂<Ni₃B

Key words: binary eutectic precipitates; phase stability; elastic constant; hardness; electronic structure; first principles

Foundation item: Project(51805316) supported by the National Natural Science Foundation of China; Project (2019M651491) supported by China Postdoctoral Science Foundation; Project(18YF1424900) supported by Shanghai Sailing Program, China; Project(18511108600) supported by Shanghai Science and Technology Committee Innovation Grant, China

Received date: 2019-09-08; Accepted date: 2019-11-25

Corresponding author: CHEN Jie-shi; Tel: +86-21-67791474; E-mail: cjshbb@sjtu.edu.cn

(编辑 龙怀中)