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Fig. 1 TEM images of CNTs (a) and MgO@CNTs (b), EDX results of MgO@CNTs (c), TEM and AFM images of GNS ((d),
(e), (¢) and GO ((D), (), (")
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Fig. 2 Photographs of as-sintered(a), as-extruded(b) and tensile specimen composites(c)
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Fig. 3 SEM images of mixed composites powders: (a) AZ91-3.0%CNTs; (b) AZ91-3.0%MgO@CNTs; (¢) AZ91-0.5%GNS;

(d) AZ91-0.5%GO
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Fig. 4 Microstructures and grain size distributions of AZ91 composites: (a), (a") 0%; (b), (b") 3.0%CNTs; (c), (c¢') 3.0%MgO
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Fig. 5 XRD patterns of AZ91 composites: (a) AZ91;
(b) AZ91-3.0%CNTs; (c) AZ91-3.0%MgO@CNT; (d) AZ91-
0.5%GNS; (e) AZ91-0.5%GO
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Fig. 6 TEM images of AZ91 composites: (a), (b) AZ91-0.3%MgO@CNTs"""; (c) AZ91-0.5%GO""; (d) AZ91- 0.5%GNS
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Table 1 Orientation relationship of MgO/a-Mg interface and its lattice disregistries

dluwvewlyy 5/

Material Match plane vwhio — [wvtwly, 0/ d[“VnW]Mgo/ . o, Ref
AZ91-Mg0@CNTs (1 Ty /01 Ty o11] 0TT0] o 0.2970 0.3176 6.5  [19]
composite 0.2994 0.3209 6.7 [28]
AZ91-GO composite  (200)y,0 //(1102),, [011] 2x[2423] 0 0.2125 0.2016 3.8 [20]
[011] [2110] 0 0.2994 0.3168
(1 TD)pg0 //(0001),, [101] [1120] 0 0.2994 0.3168 55 [26]
[110] [1210] 0 0.2994 0.3168
AZ91 alloy _
[011] [1211] 0 2X0.299 0.6091
(1 T yg0 //(1010), [110] [1210] 1.3 0.2994 0.3168 25 [26]
[112] [0001] 1.3 0.5186 0.5202
[001] [0001] 0 0.42112 0.52105
(110) g0 /(10 10)y, [110] [1210] 0 0.29778 032092  14.1 [27]
Mg nanoparticles with [112] [1211] 3.6 0.51576 0.61195
surface oxidation [110] [1120] 0 0.29778 0.32092
(001)p140//(0001 )y [110] [1100] 0 2X029778  0.55585  13.7 [27]
[100] [2110] 15 0.42112 0.32092




H31BH 1M

HAKLL, & ARYORRRA RS IR BEE R SAR ) RAHRE J 2 TR

37

SEEaMENZEMEES

Bl 7 B VU R 526 04 R 58 FE (e IR BE Y'S/
Prfism . UTS)MK R i tb i, Mo n® 2
Fime [FRF, 322 dgh il 7 MBI S AR /)
SRR, B 7 AIER 2 WoR, AZ91 AR, AZ91-3.0%
CNTs. AZ91-3.0%MgO@CNTs . AZ91-0.5%GNS
A AZ91-0.5%GO K & # KL 1 i M 58 B2 53 70

2.4

(168+5.0) MPa. (312+4.5) MPa, (296+3.7) MPa,
(284+4.6) MPa F1(250+3.8) MPa, i v {20 4y
AIN(7.0£0.2) % (9.420.1)%- (8.6£0.1)%- (8.7£0.1)%
F(11.3£0.2)%. AZ91-0.5%GO & &R 55 B A
MR, RS HAD=FYREBARIA L, GO
) 5 RSR B F-

i BT, SRR ARG S+ R+ T4

14
400 _(a) ©ayYs 12 _(b)
BB UTS
2 1o} \
< 300 - Z S S
2 2 8 N N
E 200 E}” 6l
= 83}
é 100 i
2|
‘ &5 S o 0 &5 S O
@(ﬁ R 5@$ R 5‘2,6 R .Qcﬁ o o ’ 5@$ ’ NS
NG SCHINCN RCAEII N A
G
7 HEMEAERE
Fig. 7 Mechanical properties of composites: (a) YS-UTS; (b) Elongation
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Table 2 Comparison in mechanical properties of Mg-based composites
Composites Mass fraction of reinforcement /%  YS/MPa UTS/MPa Elongation/% Ref.
AZ91 0 168+5.0 215+6.0 7.0£0.2 This work
AZ91-CNTs 3.0 250+3.8 301+4.5 9.4+0.1 This work
AZ91-MgO@CNTs 3.0 284+4.6 331£5.0 8.6+0.1 This work
AZ91-GNS 0.5 296+3.7 335+4.8 8.7+0.1 This work
AZ91-GO 0.5 312+4.5 355+4.5 11.3+0.2 This work
Mg-6Zn-CNTs 1.0° 20946.6 321£7.1 10+3.8 [29]
AZ91D-CNTs 1.0 295+5 388+11 5+£2 [30]
Mg-Al-Zn-SiC, 10° 3108 39544 3.8+0.5 [30]
AZ91-SiC, 10" ~250 ~325 ~3.9 [31]
AZ91-Si@CNTs 5 253+10 296+10 1.3£2 [32]
AZ91-Al;3B4Os3w 30" 279+11 368+6 0.96+0.05 [33]
Mg-Ni@CNTs 0.3 206+2 237+1 6.4+3 [34]
Mg-MgO 0.3" 16948 223+8 3+1 [16]
Mg-Al-Sn-GNPs 0.18 208+5.3 269+3 10.9+3.4 [35]
Mg-1A1-GNPs 0.6 204+9 265+8 4.0+0.6 [36]
Mg-1AI-CNTs 0.6 21045 287+4 10+0.3 [36]
Mg-1Al-(CNTs+GNPs) 0.6(CNTs/GNPs= 1:5) 185+4 23443 16+0.5 [36]

*: Volume fraction
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Fig. 8 Comparison of yield strength (a) and elongation (b) of composites

(a)
CNTs were pull
out of matrix

v Micro CI‘aLkS/' h

¢ .‘ rgs,-!‘\
cf\ *
. s

9 HAFEH T SEM 512

(b) Ruptured CNTs

Fig. 9 SEM images of fracture surfaces of composites!"’ " (a) AZ91-3.0%CNTs; (b) AZ91-3.0%MgO@CNTs; (c) AZ91-

0.5%GNS; (d) AZ91-0.5%GO
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Microstructures and mechanical properties of Mg-based composites
reinforced with different nano-carbon materials

YUAN Qiu-hong, ZHOU Guo-hua, LIAO Lin, YAN Xu-hui, PENG Lu-lan,
MA Guang-xiang, YANG Chun-cai, WANG Qi-ru

(Physical Science and Technology College, Yichun University, Yichun 336000, China)

Abstract: Mg-based composites, using AZ91 alloy as matrix and reinforced with four kinds of nano-carbon
materials (CNTs, MgO-coated CNT, GNS and GO), were fabricated by liquid dispersion technique, powder
metallurgy process and T4 heat treatment, respectively. The mechanical properties of the composites were tested.
The microstructure, interface structure and fractographs of the composites were characterized and via optical
microscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy
(SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results show that the composite with GO
exhibits the best mechanical properties among the four as-synthesized composites. The yield strength and
elongation of the composite with GO are (312+4.5) MPa and 11.3%+0.2%, which are enhanced by 85.7% and
61.4%, respectively, comparing with AZ91 alloy. It means that GO is the best reinforcement among the four
nano-carbon materials to strengthen the mechanical properties of AZ91 alloy, which is beneficial to fabricate the
Mg-based composites with high performance.
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