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Abstract: By considering collision-limited growth mode and short-range diffusion-limited growth mode  
simultaneously, an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for 
binary alloys. Four potential correlations arising from effective kinetics coupling the two growth modes were proposed 
and studied by application to planar interface migration and dendritic solidification, where the linear correlation 
between the effective thermodynamic driving force and the effective kinetic energy barrier seems physically realistic. A 
better agreement between the results of free dendritic growth model and the available experiment data for Ni−0.7at.%B 
alloy was obtained based on correlation between the thermodynamics and kinetics. As compared to previous models 
assuming constant kinetic prefactor, a common phenomenon occurring at relatively low undercoolings, i.e. the interface 
migration slowdown, can be ascribed to both the thermodynamic and the kinetic factors. By considering universality of 
the correlation between the thermodynamics and kinetics, it is concluded that the correlation should be considered to 
model the interface kinetics in alloy solidification. 
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1 Introduction 
 

Interface kinetics, along with thermal and 
solutal transport and morphological stability, 
determines the final behavior of solidification for 
alloy melts [1]. The classical Fick diffusion 
equation or the extended hyperbolic diffusion 
equation was used to describe the thermal and 
solutal transport in liquid ahead of the solid−liquid 
(S/L) interface, due to latent heat releasing and 
solute redistribution at the interface. Taking into 
account the nonisothermal and nonisosolutal    
S/L interface boundary conditions, more accurate 
solutions of the steady state Fick diffusion  
equation for the solidification front of a paraboloid 
of revolution were further obtained [2−7]. The 
marginal stability theory [8−10], the microscopic 

solvability theory [11−14], and the phase field 
theory [15,16] have also been developed to describe 
the morphological stability of S/L interface very 
well. 

Turnbull’s collision-limited growth model [17] 
is commonly used to describe the interface kinetics 
for both metals and alloys, to treat the relation 
between interface migration velocity and thermo- 
dynamic driving force, as follows: 
 
V=V0[1−exp(ΔG/(RTi))]                    (1) 
 
where V is the interface migration velocity, the 
kinetic prefactor V0 is assumed to be a constant with 
a value of sound speed in melts, ΔG is the change of 
Gibbs free energy of alloy, R is the mole gas 
constant and Ti is the interfacial temperature. The 
collision-limited growth regime assumes that the 
crystallization rate is controlled by the impingement  
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frequency of atoms with the crystal surface. This 
regime is not thermally activated, and V0 can be 
regarded as the maximum solidification velocity at 
infinite thermodynamic driving force. Strictly 
speaking, Turnbull’s collision-limited growth model 
is only suitable for single-component melts or pure 
metals, since for alloy melts there should be another 
regime controlling the solidification behavior under 
low undercooling conditions, i.e. the short-range 
diffusion-limited growth regime. That is to say, 
Eq. (1) is only suitable for solidification under 
sufficiently high undercooling conditions, where 
complete solute trapping occurs and solute 
redistribution disappears at the S/L interface. Under 
low undercooling conditions, however, the solute 
partitioning is required for alloy solidification, 
which can only be accomplished by the inter- 
diffusion between solute and solvent atoms at the 
interface. This is a thermally activated process, 
which can lead to a phenomenon of the    
interface slowdown. As proposed by AZIZ and 
BOETTINGER [18], it is more reasonable to 
describe the interface kinetics for alloy 
solidification under low undercooling conditions as 
follows: 
 
V=VDI[1−exp(ΔG/(RTi))]                   (2) 
 
where VDI is the diffusive speed at the interface. 
Correspondingly, the solidification mechanism 
follows the short-range diffusion-limited growth 
model. 

The above two growth modes belong to 
extreme conditions, whereas the solidification itself 
is always simultaneously controlled by thermal and 
solutal transport. This gives rise to an open  
question, i.e. how to unify the above two 
solidification regimes, i.e. Eqs. (1) and (2), into one 
equation to describe the interface kinetics. Previous 
models in Refs. [19−25] treated this problem by 
holding Eq. (1) but replacing ΔG with an effective 
one ΔGeff (or still using ΔG). Accordingly, the 
models with ΔGeff describe the interface slowdown 
by a so-called solute drag effect, which assumes 
that the total ΔG is dissipated partially by the 
solute−solvent redistribution. Whether the solute 
drag effect needs to be considered remains an  
argument [26−32]. One thing is certain, that all of 
these previous models [19−25] attribute the 
interface mobility varying with increasing 
undercoolings to one aspect, i.e. the thermodynamic 

effect. However, not only ΔG, but also the kinetic 
prefactor V0 and VDI (Eqs. (1) and (2)) determine the 
as-solidified microstructure. Then, one question 
must be highlighted, i.e. how to reflect the effect of 
the effective kinetics on solidification? 

The present work aimed to model the interface 
kinetics by incorporating the two extreme modes 
into one kinetic equation; the varied kinetic 
prefactor thus reflects the transition of mobility and 
energy barrier between the two extreme modes. 
Following the current theoretical framework, the 
correlations between the kinetic prefactor and the 
thermodynamic driving force were proposed and 
studied by application to planar interface migration 
and dendritic solidification for binary alloys. A 
linear correlation between the effective thermo- 
dynamic driving force and the effective energy 
barrier seems physically realistic, by comparison 
with the available experiment data of Ni−B alloys. 
On this basis, universality of the correlation was 
discussed. It is finally concluded that the correlation 
should be taken into account to model the interface 
kinetics in alloy solidification. 
 
2 Model derivation 
 
2.1 Interface kinetics 
2.1.1 Effective energy barrier and effective 

thermodynamic driving force 
For alloy melts under sufficiently high 

undercooling conditions, V is so fast that the solute 
partitioning is suppressed and the complete solute 
trapping occurs. Then, the interface kinetics upon 
solidification is similar to that for pure metals, 
which can be described by Eq. (1). Under this 
condition, the solidification process is mainly 
controlled by the thermal transport and the 
mechanism can be regarded as thermal-controlled, 
so Eq. (1), with an effective energy barrier Qeff=QT, 
can be rewritten as follows: 
 
V=V0exp(−QT/(RTi))[1−exp(ΔG/(RTi))]        (3) 
 
where QT is the activation energy for thermal 
diffusion, which can be approximately considered 
as negligible. 

For alloy melts under sufficiently low 
undercooling conditions, the solidification behavior 
is mainly determined by the interdiffusion between 
solute and solvent atoms. The short-range 
diffusion-limited growth regime can be regarded as 
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solute-controlled, which, as a thermally activated 
process, reduces the interface mobility and also the 
kinetic prefactor. Thus, the kinetic prefactor VDI, i.e. 
the solutal diffusion velocity at the interface, can be 
defined by [30] 
 
VDI=V0exp(−QD/(RTi))                    (4) 
 

It then follows that Eq. (2) with an effective 
energy barrier Qeff=QD, can be rewritten as follows: 
 
V=V0exp(−QD/(RTi))[1−exp(ΔG/(RTi))]       (5) 
 
where QD is the activation energy for solutal 
diffusion, which, in contrast with QT(=0), cannot be 
ignored here. The value of V0 is normally three 
orders of magnitude greater than that of VDI. 

At intermediate undercoolings, there must be a 
transition between the solute-controlled and the 
thermal-controlled modes. This implies that the 
interface kinetics should not be solely determined 
by Eq. (3) or Eq. (5), but be correlated with both. In 
order to describe the interface kinetics using one 
equation suitable for the entire undercooling 
conditions, an effective energy barrier Qeff is thus 
introduced, which is defined by 
 
Qeff(η)=ηQD+(1−η)QT                                 (6) 
 
where the key parameter η(0,1) represents a 
typically kinetic state of solidification, reflecting 
different contributions from thermal- and solutal- 
controlled mechanisms. Then, a unified equation for 
the interface kinetics is given by 
 
V=V0exp(−Qeff/(RTi))[1−exp(ΔG/(RTi))]       (7) 
 

Define an effective kinetic prefactor eff
0V  as 

 
eff

0 0 eff iexp[ / ( )]V V Q RT                    (8) 
 

Then Eq. (7) can be rewritten as follows: 
 

eff
0 i( )[1 exp( / ( ))]V V G RT                 (9) 

 
where eff

0 ( )V   can be written as 
 

eff
0 0 DI 0( / )V V V V                         (10) 

 
or 
 

eff
0 0 D i[exp( / ( ))]V V Q RT                   (11) 

 
At sufficiently high undercoolings, the 

parameter η equals zero and eff
0V  equals V0, so 

Eq. (7) reduces to Eq. (3) or Eq. (1), representing 
the collision-limited growth regime. Then, a 
continuously increased η with decreasing 
undercooling indicates a transition of solidification 
mechanism from the thermal-controlled growth to 

the solute-controlled growth. At sufficiently low 
undercoolings, η tends to be 1 and eff

0V  reduces to 
VDI, so Eq. (7) reduces to Eq. (5) or Eq. (2), 
representing the short-range diffusion-limited 
growth regime. Note that, in order to study the 
effect of solute drag ΔG in Eq. (9) is also replaced 
by ΔGeff, as done in previous models [23−27]:  
 
ΔGeff=ΔG−βΔGD                                      (12) 
 
where ΔGD is the solute drag free energy and β is 
the solute drag factor. 
2.1.2 Correlations between thermodynamics and 

kinetics 
Suppose that the complete solute trapping 

corresponds to the critical state marked by *
effG , 

i.e. the solute partition coefficient k=1, η=0 and 
V=VD, in contrast with the state of negligible ΔGeff, 
i.e. k=ke, η→1 and V→0. With increasing ΔGeff  
from zero to *

effG , the solidification mechanism is 
changed from the solute-controlled growth to the 
thermal-controlled growth and the parameter η 
varies continuously from 1 to 0. In order to derive 
the correlation between Qeff and ΔGeff , a functional 
relation between η and ΔGeff must be specified 
according to Eq. (6), and Mode 1 is proposed by 
assuming a linear relationship between η and ΔGeff 
in the range of [0, *

effG ], i.e. at V<VD, 
 

*
Mode 1 eff eff1 /G G                       (13) 

 
where *

effG  corresponds to the critical under- 
cooling ΔT* with V=VD; for V≥VD, η holds constant 
as zero, indicating the collision-limited growth 
regime. Based on Mode 1, a linear correlation 
between Qeff and ΔGeff can be given as 
Qeff=QD− *

eff eff/G G  (QD−QT). Similarly, Mode 2 
assumes an exponential relation of η with ΔGeff, at 
ΔGeff<

*
effG , 

 
*

eff eff i
Mode 2 *

eff i

exp[ / ( )] exp[ / ( )]

1 exp[ / ( )]
iG RT G RT

G RT


  


 
  (14) 

 
where, for ΔGeff≥

*
effG , η≡0 always holds; under 

the condition that eff
0/V V tends to zero, ΔGeff  

tends to zero and Mode 2 reduces to Mode 1. 
Considering possible relations between  and 

other thermodynamic parameters, another two 
potential modes are still available. Assuming a 
linear relation between η and k, i.e. for k=ke, η=1; 
for k=1, η=0 and for ke<k<1, the following relation 
holds 
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Mode 3
e

1

1

k

k
 




                          (15) 

 
With the assumption of a linear relation 

between η and the difference * *
L SC C , at V=0, 

* * eq eq
L S L SC C C C   and η=1; at V=VD, * *

L S 0C C   
and η=0; and η can be described as follows, under 
the condition that * *

L SC C  takes other values, 
 

* * *
L S L

Mode 4 eq eq eq
L S L e

(1 )

(1 )

C C C k

C C C k


 
 

 
             (16) 

 
where 

*
LC , 

*
SC , eq

LC  and eq
SC  stand for the solute 

concentrations at the S/L interface; and the 
superscript “eq” represents the equilibrium values. 

Incorporating Eqs. (13)−(16) into Eqs. (6) and 
(9), different correlations between thermodynamics 
and kinetics can be obtained. 
 
2.2 Solidification with planar interface 

In steady state solidification with planar 
interface for binary alloy melts, *

SC  is a constant 
and equals the equilibrium value eq

SC  as well as 
nominal composition of alloys C0 [17]. Under this 
condition, Mode 4 defined by Eq. (16) reduces to 
the following expression: 
 

e
Mode 4

e

(1 )

(1 )

k k

k k






                        (17) 

 
For non-dilute alloys, ΔGeff  can be calculated 

numerically and thermodynamically by using 
subregular solution model based on CALPHAD 
method [23,33]. For dilute alloys, Henry’s law and 
Baker and Cahn’s approximation for the chemical 
potentials of solute and solvent lead to an analytical 
expression as follows [24]: 
 

eq eq *
eff i S L L{ [1 ( (1 ) )G RT C C C k k k β          

 
2

e D

ln( ) (1 ) ]}
k V

k
k V

                  (18) 

 
where β is the solute drag factor, which is 
introduced to unify the two treatments with (β=1) 
and without (β=0) solute drag. For linear liquidus 
and solidus within the composition range of interest, 
Eq. (18) can be rewritten as 
 

* e
eff i e M L L i L(1 )( ( ) ) /G RT k T C m V T m          (19) 

 
where TM is the melting temperature of solvent, 

e
Lm  is the slope of equilibrium liquidus and mL(V) 

is regarded as kinetic liquidus slope defined by 

 
e

2L
L

e e D

( ) [1 ( (1 ) ) ln( ) (1 ) ]
1

m k V
m V k k k β k

k k V
      


 

(20) 
Equations (18) and (20) can be further 

simplified at V≥VD, due to the complete solute 
trapping with k=1. 

For small velocities relative to eff
0 ( )V  , Eq. (9) 

is further approximated by 
 

eff
0 eff i( ) / ( )V V G RT                    (21) 

 
Substituting Eq. (19) into Eq. (21), the 

interface temperature Ti can be described as 
 

e
* L

i M L L eff
e 0

( )
1 ( )

m V
T T C m V

k V 
  


           (22) 

 
For dilute binary alloys, considering the 

relaxation effect of local nonequilibrium solute 
diffusion in bulk liquid, the solute partition 
coefficient k is given by SOBOLEV as [34] 
 

2 2
D e DI

2 2
D DI

(1 / ) /

1 / /

V V k V V
k

V V V V

 


 
, V<VD                  (23a) 

 
k=1, V≥VD                                             (23b) 
 

Combining Eqs. (20), (22), (23a) and (23b) 
with Modes 1−4, one can describe the final 
behavior of solidification with planar interface. 
 
2.3 Free dendritic growth model 

For further modeling the free dendritic growth, 
another physical quantity i.e. curvature radius r 
should be introduced to denote the tip morphology 
of dendrite (curvature radius). Based on the 
marginal stability theory, the curvature radius r is 
described as [9] 
 

*

*
f L L

t t c c2 2
D

/

2 ( ) ( 1)

1 /p

r
H m V C k

P P
c V V

 

 

 




, V<VD    (24a) 

 
*

t t f

/

( / )p

r
P H c

 





, V≥VD                           (24b) 

 
where Γ is the Gibbs−Thompson coefficient; σ* is 
the stability constant (σ*≈1/(4π2)); Pt[=rV/(2α)] is 
the thermal Péclet number; Pc[=rV/(2D)] is the 
solute Péclet number; α and D are respectively the 
thermal diffusivity and solute diffusion coefficient 
in the liquid; ΔHf is the latent heat of fusion; cp is 
the heat capacity of liquid alloy; and the parameters 
ξt and ξc are defined by 
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t * 2
t

1
1

1 1/ ( )P



 


                     (25) 

 

c 2 2 * 2
D c

2
1

2 1 1 (1 / ) / ( )

k

k V V P



 

   
, V<VD (26a) 

 
ξc=0, V≥VD                                            (26b) 
 

From the current interface kinetics, Eqs. (21), 
(24a) and (24b), the interface response function 
assuming linear liquidus and solidus can be 
modified as 
 

e
* L

i M L L eff
e 0

2
( )

1 ( )

m V
T T C m V

k rV




 
    

 
     (27) 

 
From this equation, the total bath undercooling 

ΔT is described as  
e *
L 0 L L

2
[ ( ) ]T m C m V C

r


      

e
L f

teff
e 0

Iv( )
1 ( ) p

m HV
P

k cV 
  

 
 

          (28) 

 
where Iv is the Ivantsov function. In the right-  
hand side of Eq. (28), the four terms represent   
the constitutional undercooling, the curvature 
undercooling, the kinetic undercooling and the 
thermal undercooling (i.e. obtained from the 
solution of thermal transport equation in the liquid 
region), in order. ΔT is defined by ΔT=TM+ e

Lm C0− 
T∞, where T∞ is the temperature in liquid far from 
the interface. Another result by solving the solute 
diffusion equation in the liquid region gives the 
description of liquid solute concentration at the 
interface *

L( )C  [21]: 
 

* 0
L

c1 (1 )Iv( )

C
C

k P


 
                      (29) 

 
Assuming linear liquidus and solidus, the 

solute trapping model is also described by      
Eqs. (23a) and (23b). 

Up to now, the extended kinetic model 
considering the correlation between thermo- 
dynamics and kinetics (i.e. the effective kinetic 
prefactor eff

0 ( )V  ) has been determined. If the 
correlations between thermodynamics and kinetics 
were ignored, i.e. eff

0 0( )V V   holds with all 
values of η in Eqs. (22), (27) and (28), the present 
model would reduce to previous ones [21], in which 
only the collision-limited growth mechanism is 
considered. Note that the present model established 

above is only suitable for dilute binary alloys with 
linear liquidus and solidus lines for simplicity. For 
non-dilute alloys with non-linear liquidus or 
multi-component alloys, the interfacial kinetic 
equation described by the correlation between 
thermodynamics and kinetics, Eq. (9), is also 
reasonable. In that case, however, the extended 
solute trapping model [30] and marginal stability 
theory [33] should be adopted. 
 
3 Model description and application 
 
3.1 Planar interface migration 

For the planar interface migration upon 
solidification of Al−0.5at.%Be alloy (Table 1 [18]), 
model comparisons have been performed to 
distinguish the present model from the 
corresponding model [24] based on Turnbull’s 
collision-limited growth mode. Since the present 
model considers both growth modes, a varied 
kinetic prefactor eff

0 ( )V   is then according to 
Eq. (10) or Eq. (11) prevailing, in contrast with a 
constant kinetic prefactor V0 used in previous 
models [24]. Actually, the main improvement for 
the present model relative to previous ones lies in 

eff
0 ( )V  ; if the varied eff

0 ( )V   is replaced by a 
constant V0 at all values of η, the present model 
reduces to previous ones [21]. Therefore, the ratio 

eff
0 0/V V  is an important factor for the present 

model to be distinguished from previous ones. 
 
Table 1 Parameter data for Al−0.5at.%Be alloy used in 

model computations [18] 

Parameter Value

Melting point of pure Al, TM/K 933.58

Liquidus slope, e
Lm /(Kꞏat.%−1) −6.44

Partition coefficient, ke 0.0429

Diffusion speed in bulk liquid, VD/(mꞏs−1) ∞ 

Kinetic prefactor, V0/(mꞏs−1) 1000

 
So, effect of model parameters on this ratio 

eff
0 0/V V  is discussed first, and then effect of 

different mechanisms on the interfacial temperature, 
and finally, four potential correlations arising from 
Modes 1−4, are discussed. All of these results 
shown in Figs. 1−3 are calculated by the  
correlation arising from Mode 4 for simplicity. It 
should be noted that, analogous conclusions can 
also be obtained using the correlations arising from 
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Fig. 1 Evolution of effective kinetic prefactor eff
0V  as 

functions of interface velocity V for six different   

values of solutal diffusion activated energy QD for 

Al−0.5at.%Be alloy (The results are calculated by 

Eqs. (10), (17), (20), (22) and (23)) 

 

 
Fig. 2 eff

0 0/V V  as function of QD for Al−0.5at.%Be 

alloy at different interface velocities 

 

 
Fig. 3 Ti as function of V for Al−0.5at.%Be alloy at 

QD=20 kJ and different V0 values 

Modes 1−3, still. In addition, all of these results 
shown in Figs. 1−4 are calculated without solute 
drag effect (β=0). 
 

 
Fig. 4 η as function of interface velocity with Modes 

1−4 for Al−0.5at.%Be alloy (VDI=10 m/s; VD=12 m/s) 

 
3.1.1 Ratio eff

0 0/V V  
As for the effect of QD (the activation energy 

for inter-diffusion), the ratio eff
0 0/V V  as function 

of interface velocity V for different values of QD are 
shown in Fig. 1. It is indicated that the ratio 

eff
0 0/V V  decreases with increase of QD at 

sufficiently low V, e.g. V=0.01 m/s, where the 
kinetic parameter η approximately equals 1 and thus 
the parameter QD is the main determining factor 
according to Eq. (11). However, the above 
monotonicity disappears at relatively high  
velocities. In order to show this interesting 
phenomenon more clearly, the ratios eff

0 0/V V  as 
function of QD at four selected interface velocities 
are shown in Fig. 2, where eff

0 0/V V  decreases 
firstly and then increases with increasing QD, since 
the increased QD not only decreases eff

0V  directly 
through eff

0 0[exp( / ( ))] ,D iV V Q RT   but also 
increases eff

0V  indirectly by decreasing η through 
suppressing the solute partitioning. Therefore, there 
are two opposite factors determining eff

0V  as well 
as the ratio eff

0 0/V V . Further analysis can be found 
in Appendix in detail. 

Further from Fig. 1, if QD is equal to zero,  
eff

0V  will be invariable at all velocities ( eff
0 0/ 1V V  ); 

the short-range diffusion-limited growth regime 
will disappear; there will be only the collision- 
limited growth regime [24]. 
3.1.2 Interfacial temperature Ti 

The interfacial temperature Ti as function of V 
is shown in Fig. 3, for different values of V0 and a 
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fixed QD (QD=20 kJ). The predicted Ti by the 
present model is lower than that by the one 
assuming an invariable kinetic prefactor V0, due to 
the lower eff

0V  for the present model in contrast 
with the maximum V0 used in the corresponding 
model [24] (the ratio eff

0 0/V V  is less than 1). That 
is to say, given the lower kinetic prefactor 
(equivalent to the interfacial mobility), Ti must be 
lower, to guarantee higher ΔGeff to achieve the same 
V. It is also indicated in Fig. 3 that, the difference 
between Ti predicted by the two models is 
independent of the parameter V0, and if the 
horizontal coordinate V is replaced by the 
normalized V/V0, the three curves with different 
values of V0 will coincide with each other. This 
implies that the influence of Ti in Eq. (10) is 
negligible and one can use the parameter VDI 
defined by Eq. (4) instead of the parameter QD, i.e. 
use Eq. (10) to replace Eq. (11). 
3.1.3 Selection of key parameter  

Under a specific solidification condition, the 
parameter QD is normally fixed and the key 
parameter η is varied with the thermodynamic state. 
The parameter η as function of V is shown in Fig. 4, 
to discuss these correlations arising from Modes 
1−4 more clearly. One can see that the same basic 
law holds that the value of η decreases continuously 
from 1 to 0 with increasing V. As V tends to zero, 
the kinetic parameter η→1 ( eff

0 DIV V ), indicating 
the short-range diffusion-limited growth; the 
collision-limited growth occurs with η=0 ( eff

0 0V V ), 
at V≥VD. For intermediate values of η, there is a 
transition between the two growth regimes. For 
different modes, the slower the decrease of η with 
increasing V is, the smaller the ratio eff

0 0/V V  is 
and thus the more obvious the distinction between 
the present model and the previous one is [24]  
(see also Fig. 4 and Figs. A1 and A2). Clearly,   
the effect of Mode 3 is relatively more   
remarkable compared with other three modes. The 
curves of Modes 1 and 2 almost coincide with  
each other, due to the approximation of 
exp(ΔGeff/(RTi))≈ΔGeff/(RTi)+1 given the finite 
value of VD in bulk liquid. It is thus concluded that 
Mode 1 for η is more essential, implying a linear 
correlation between Qeff and ΔGeff, approximately. 

No matter which mode prevails, for the present 
kinetics, both QD (or VDI) and η determine Qeff by 
Eq. (6), which further controls eff

0V , Eq. (8), so that 
the ratio eff

0 0/V V  finally determines the difference 

between the present model and the model assuming 
constant V0 [24]. 
 
3.2 Experimental application 
3.2.1 Model assumption for free dendrite growth 

Employing the physical data for solidification 
of Ni−0.7at.%B alloy (Table 2), model calculations 
(not shown here) indicate that, similar to the result 
shown in Fig. 4, the difference between the present 
model predictions with Modes 1 and 2 is also very 
small, due to the approximation exp(ΔGeff/(RTi))≈ 
ΔGeff/(RTi)+1; the effect of Mode 3 is too 
remarkable for the present model to give a 
reasonable prediction, and Mode 4, Eq. (16), is not 
suitable for dendritic growth due to the 
non-monotonicity of the difference * *

L SC C  with 
increasing bath undercooling ΔT under dendritic 
growth conditions. If the version of Mode 4 with 
planar solid/liquid interface, Eq. (16), is adopted 
approximately, the difference between the 
predictions from the present model and Galenko− 
Danilov model (GD model [21]) will be very small. 
Therefore, Mode 1 (or Mode 2) implying the 
correlation between Qeff and ΔGeff, seems physically 
realistic, which is thus inputted into the present 
model, as compared with GD model assuming 
constant V0, to predict the dendritic growth velocity 
V as function of ΔT (Fig. 5), upon solidification of 
Ni−0.7at.%B alloy [35]. Equations (20), (23)−(29) 
are adopted in the model calculation assuming 
linear liquidus and solidus, due to the sufficiently 
dilute nominal composition of Ni−0.7at.%B alloy. 
 
Table 2 Thermophysical data for Ni−0.7at.%B alloy 

used in model computations [21]  

Parameter Value 

Melting point of pure Ni, TM/K 1726 

Heat of fusion, ΔHf/(Jꞏmol−1) 1.72×104

Heat capacity, cp/(Jꞏmol−1ꞏK−1) 36.39 

Capillarity constant, Γ/(Kꞏm) 3.42×10−7

Liquidus slope, e
Lm /(Kꞏat.%−1) −14.3 

Partition coefficient, ke 0.0155

Diffusion coefficient, D/(m2ꞏs−1) 3.0×10−9

Thermal diffusivity, α/(m2ꞏs−1) 8.5×10−6

Interfacial diffusion speed, VDI/(mꞏs−1) 18.9 

Diffusion speed in bulk liquid, VD/(mꞏs−1) 18.9 

Kinetic prefactor, V0/(mꞏs−1) 363.1 



Shu LI, et al/Trans. Nonferrous Met. Soc. China 31(2021) 306−316 

 

313

 

 

Fig. 5 Calculated and experimental dendritic growth 

velocities V as functions of bath undercooling ΔT for 

Ni−0.7at.%B alloy (Mode 1 is adopted to describe the 

kinetic parameter η) 

 
Upon introducing Qeff in the present model, the 

theoretical framework of sharp interface is  
assumed. Neglecting the interface thickness, the 
sharp interface model can be regarded as a 
simplified version of diffusive interface model  
with an average value C* of solute concentration in 
the interfacial region, which is defined by *C   

* *
L S(1 )C C    [24,25,30]. In reality, the interfacial 

solute concentration varies continuously from solid 
to liquid [25,32]. Therefore, it is more reasonable 
for the average C* to take a value between *

SC  and 
*
LC . This implies that the solute drag factor β equals 

a value between 0 and 1, indicating the partial 
solute drag effect. In the current theoretical 
framework, the effective thermodynamic driving 
force can be dealt with, in combination with the 
partial solute drag effect. On this basis, if the partial 
solute drag effect needs to be considered, then 
different values of solute drag factor β should be 
chosen [24−27]. 
3.2.2 Model application 

As shown in Fig. 5, for both the present model 
assuming the linear correlation between Qeff and 
ΔGeff and the GD model [21] assuming constant V0, 
the larger the value of β is, the more remarkable the 
interface slowdown is; both the effect due to eff

0V  
and that due to solute drag lead to the interface 
slowdown. Since both the present model 
considering Mode 1 and β=0.3 and the GD model 
assuming β=1 and constant V0 show sufficiently 
good prediction for the experimental data, then it is 
indeed due to the interface slowdown that 

guarantees good model predictions. The effect due 
to variable eff

0V  is used to treat the interface 
slowdown by considering variation of Qeff, whereas 
the effect due to solute drag is used to describe the 
interface slowdown phenomenon by assuming that 
a part of total Gibbs free energy change in 
solidification is dissipated by interdiffusion 
between solute and solvent atoms at the interface 
and is not available to drive interfacial motion. 
Additionally, in fact during the electro-magnetic 
levitation experiment with Ni−0.7at.%B alloy the 
melt convection is inevitable inside the droplet [35]. 
In further works convective flow should be taken 
into account for Ni−B droplets, which increases the 
interface velocity especially in the short-range 
diffusion-limited growth kinetics [1]. Recently, 
other applications of the thermo-kinetic correlation 
in twin-roll casting [36] as well as in designing 
stable nanocrystalline alloys [37] have been carried 
out successfully. On this basis, it is further 
supported to finally conclude that the correlation 
should be taken into account to model the interface 
kinetics in alloy solidification. Meanwhile, for alloy 
solidification numerous simulation results have 
been reported by phase field method, which has its 
advantage compared with analytic theory, due to its 
ability to model complex geometrical morphology 
of solid/liquid interface. Therefore, a comparative 
study is also meaningful by combining the analytic 
theory and the phase field method to describe the 
interfacial kinetics [16]. 
 
4 Conclusions 
 

(1) An extended interface kinetic model was 
developed for binary alloys, by simultaneously 
considering both the collision-limited growth and 
the short-range diffusion-limited growth modes.  

(2) Applying to planar interface migration, the 
interface temperature Ti predicted by the present 
model is lower than that by the previous one, due to 
the ratio eff

0 0/V V  less than 1, and with the increase 
of the solutal diffusion activated energy QD the ratio 

eff
0 0/V V  does not decrease monotonously but 

decreases firstly and then increases. 
(3) The present model can reduce to the 

previous one, when the parameter QD equals zero, 
i.e. VDI≡V0. Four potential relationships of η with 
ΔGeff or other thermodynamic quantities were 
assumed to analyze the correlation. It is concluded 
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that the linear correlation between the effective 
kinetic energy barrier Qeff and the effective thermo- 
dynamic driving force ΔGeff is more essential. 

(4) Experimental comparison indicates that the 
present free dendritic growth model can give a 
better agreement with the experimental data for 
Ni−0.7at.%B alloy. The correlation between 
thermodynamics and kinetics should be taken into 
account to model interface kinetics in binary alloy 
solidification. 
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Appendix 

Non-monotonicity of eff
0V  with QD at 

relatively high velocities is described as follows. 
Relations between eff

0V  and η, and between η 
and V for six given QD values are shown in Figs. A1 
and A2, respectively. Figure A1 indicates that, if the 
same value of η is given, the larger QD gives the 
lower eff

0V . Considering the effect of η, however, 
parameter QD can also influence η and further 
change the value of eff

0V  indirectly. Figure A2 
shows that, with increasing QD, η decreases at any 
given value of interface velocity V. Under a specific 
solidification condition, the decrease of η means a 
transition from short-range diffusion-limited growth 
to collision-limited growth, i.e. the increase of 

eff
0V . 

Therefore, there are two opposite factors, 
which result in the non-monotonicity shown in 
Fig. 2. This can also be explained as follows. With 
increasing QD from zero, the monotonously 
decreasing stage of eff

0V  is mainly controlled by 
the parameter QD in Eq. (11), as a determining 
factor of Qeff defined by Eq. (6), and the mono- 
tonously increasing stage of eff

0V  is mainly 
determined by the parameter QD used in Eq. (4). 

With increasing QD, VDI is decreased according to 
Eq. (4). This prevents the solute partitioning from 
Eq. (23a), facilitates the solute trapping at the 
interface and further results in a higher value of 
partition coefficient k, implying the collision- 
limited growth mode. Meanwhile, the parameter η 
decreases, thus increasing eff

0 .V  So, the parameter 
η can also be regarded as another determining factor 
of Qeff defined by Eq. (6). Most importantly, Qeff  
determines the final behavior of the effective 
kinetic prefactor eff

0V  by Eq. (8). 
 

 
Fig. A1 Effective kinetic prefactor eff

0V as function of 

kinetic parameter η for six different values of solutal 

diffusion activated energy QD for Al−0.5at.%Be alloy 
 

 
Fig. A2 Kinetic parameters η as function of interface 

velocity for different QD for Al−0.5at.%Be alloy (The 

kinetic parameter η is described by Mode 4) 
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考虑热力学和动力学相关性的 
二元合金凝固界面动力学建模 

 

李 述 1,2，张玉兵 1，王 慷 1，刘 峰 1 

 

1. 西北工业大学 凝固技术国家重点实验室，西安 710072； 

2. 哈尔滨理工大学 理学院，哈尔滨 150080 

 

摘  要：在同时考虑碰撞限制生长模式和短程扩散限制生长模式的情况下，提出一个更加完善且具有可变动力学

前因子的二元合金固−液界面动力学模型。与上述两种生长模式相耦合，提出 4 种潜在的热力学和动力学相关性，

并将其应用于平界面迁移和枝晶凝固。其中，有效热力学驱动力与有效动力学能垒间的线性相关性更符合物理实

际。基于此线性热力学和动力学相关性，对于 Ni−0.7at.%B 合金，扩展的自由枝晶生长模型所得结果与实验数据

吻合更好。与不变的动力学前因子模型比较可知，通常发生在合金低过冷凝固过程中的界面迁移变缓现象是热力

学和动力学两种因素共同作用的结果。由热力学和动力学相关性的普适性可知，在合金凝固的界面动力学建模中

应该考虑热力学和动力学的相关性。 

关键词：建模；界面；枝晶凝固；二元合金；热力学；动力学；相关性 
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