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Interface kinetics modeling of binary alloy solidification by
considering correlation between thermodynamics and kinetics
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Abstract: By considering collision-limited growth mode and short-range diffusion-limited growth mode
simultaneously, an extended kinetic model for solid—liquid interface with varied kinetic prefactor was developed for
binary alloys. Four potential correlations arising from effective kinetics coupling the two growth modes were proposed
and studied by application to planar interface migration and dendritic solidification, where the linear correlation
between the effective thermodynamic driving force and the effective kinetic energy barrier seems physically realistic. A
better agreement between the results of free dendritic growth model and the available experiment data for Ni—0.7at.%B
alloy was obtained based on correlation between the thermodynamics and kinetics. As compared to previous models
assuming constant kinetic prefactor, a common phenomenon occurring at relatively low undercoolings, i.e. the interface
migration slowdown, can be ascribed to both the thermodynamic and the kinetic factors. By considering universality of
the correlation between the thermodynamics and kinetics, it is concluded that the correlation should be considered to
model the interface kinetics in alloy solidification.
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solvability theory [11-14], and the phase field
theory [15,16] have also been developed to describe
the morphological stability of S/L interface very
Interface kinetics, along with thermal and well.
solutal transport and morphological stability,
determines the final behavior of solidification for
alloy melts [1]. The classical Fick diffusion
equation or the extended hyperbolic diffusion

1 Introduction

Turnbull’s collision-limited growth model [17]
is commonly used to describe the interface kinetics
for both metals and alloys, to treat the relation
between interface migration velocity and thermo-

equation was used to describe the thermal and
solutal transport in liquid ahead of the solid—liquid
(S/L) interface, due to latent heat releasing and
solute redistribution at the interface. Taking into
account the nonisothermal and nonisosolutal
S/L interface boundary conditions, more accurate
solutions of the steady state Fick diffusion
equation for the solidification front of a paraboloid
of revolution were further obtained [2—7]. The
marginal stability theory [8—10], the microscopic

dynamic driving force, as follows:
V=Vo[l1-exp(AG/(RT))] (1

where V is the interface migration velocity, the
kinetic prefactor ¥} is assumed to be a constant with
a value of sound speed in melts, AG is the change of
Gibbs free energy of alloy, R is the mole gas
constant and 7; is the interfacial temperature. The
collision-limited growth regime assumes that the
crystallization rate is controlled by the impingement
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frequency of atoms with the crystal surface. This
regime is not thermally activated, and ¥, can be
regarded as the maximum solidification velocity at
infinite thermodynamic driving force. Strictly
speaking, Turnbull’s collision-limited growth model
is only suitable for single-component melts or pure
metals, since for alloy melts there should be another
regime controlling the solidification behavior under
low undercooling conditions, i.e. the short-range
diffusion-limited growth regime. That is to say,
Eq. (1) is only suitable for solidification under
sufficiently high undercooling conditions, where
complete solute trapping occurs and solute
redistribution disappears at the S/L interface. Under
low undercooling conditions, however, the solute
partitioning is required for alloy solidification,
which can only be accomplished by the inter-
diffusion between solute and solvent atoms at the
interface. This is a thermally activated process,
which can lead to a phenomenon of the
interface slowdown. As proposed by AZIZ and
BOETTINGER [18], it is more reasonable to
describe the interface kinetics for alloy
solidification under low undercooling conditions as
follows:

V=Voi[1-exp(AG/(RT}))] 2

where Vp; is the diffusive speed at the interface.
Correspondingly, the solidification mechanism
follows the short-range diffusion-limited growth
model.

The above two growth modes belong to
extreme conditions, whereas the solidification itself
is always simultaneously controlled by thermal and
solutal transport. This gives rise to an open
question, ie. how to unify the above two
solidification regimes, i.e. Egs. (1) and (2), into one
equation to describe the interface kinetics. Previous
models in Refs. [19-25] treated this problem by
holding Eq. (1) but replacing AG with an effective
one AGr (or still using AG). Accordingly, the
models with AG. describe the interface slowdown
by a so-called solute drag effect, which assumes
that the total AG is dissipated partially by the
solute—solvent redistribution. Whether the solute
drag effect needs to be considered remains an
argument [26—32]. One thing is certain, that all of
these previous models [19-25] attribute the
interface mobility varying with increasing
undercoolings to one aspect, i.e. the thermodynamic

effect. However, not only AG, but also the kinetic
prefactor V; and Vp; (Egs. (1) and (2)) determine the
as-solidified microstructure. Then, one question
must be highlighted, i.e. how to reflect the effect of
the effective kinetics on solidification?

The present work aimed to model the interface
kinetics by incorporating the two extreme modes
into one kinetic equation; the varied Kkinetic
prefactor thus reflects the transition of mobility and
energy barrier between the two extreme modes.
Following the current theoretical framework, the
correlations between the kinetic prefactor and the
thermodynamic driving force were proposed and
studied by application to planar interface migration
and dendritic solidification for binary alloys. A
linear correlation between the effective thermo-
dynamic driving force and the effective energy
barrier seems physically realistic, by comparison
with the available experiment data of Ni—B alloys.
On this basis, universality of the correlation was
discussed. It is finally concluded that the correlation
should be taken into account to model the interface
kinetics in alloy solidification.

2 Model derivation

2.1 Interface kinetics
2.1.1 Effective energy barrier
thermodynamic driving force
For alloy melts under sufficiently high
undercooling conditions, V' is so fast that the solute
partitioning is suppressed and the complete solute
trapping occurs. Then, the interface kinetics upon
solidification is similar to that for pure metals,
which can be described by Eq.(1). Under this
condition, the solidification process is mainly
controlled by the thermal transport and the
mechanism can be regarded as thermal-controlled,
so Eq. (1), with an effective energy barrier Q.s=0r,
can be rewritten as follows:

V=Voexp(=Or/(RT})[1-exp(AG/(RTY))] €)

where QOr is the activation energy for thermal
diffusion, which can be approximately considered
as negligible.

For alloy melts under sufficiently low
undercooling conditions, the solidification behavior
is mainly determined by the interdiffusion between
solute and solvent atoms. The short-range
diffusion-limited growth regime can be regarded as

and effective
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solute-controlled, which, as a thermally activated
process, reduces the interface mobility and also the
kinetic prefactor. Thus, the kinetic prefactor Vpy, i.e.
the solutal diffusion velocity at the interface, can be
defined by [30]

Vor=Voexp(—QOpn/(RT))) 4)

It then follows that Eq. (2) with an effective
energy barrier Q.=0p, can be rewritten as follows:

V=Voexp(—Qo/(RT})[1-exp(AG/(RT}))] )

where Op is the activation energy for solutal
diffusion, which, in contrast with O(=0), cannot be
ignored here. The value of V; is normally three
orders of magnitude greater than that of Vp,.

At intermediate undercoolings, there must be a
transition between the solute-controlled and the
thermal-controlled modes. This implies that the
interface kinetics should not be solely determined
by Eq. (3) or Eq. (5), but be correlated with both. In
order to describe the interface kinetics using one
equation suitable for the entire undercooling
conditions, an effective energy barrier Qe is thus
introduced, which is defined by

Oeti(n)=nOpt(1-1)Or (6)

where the key parameter #(0,1) represents a
typically kinetic state of solidification, reflecting
different contributions from thermal- and solutal-
controlled mechanisms. Then, a unified equation for
the interface kinetics is given by

V=Voexp(=Qet/(RT))[1—exp(AG/(RTY))] (7)
Define an effective kinetic prefactor V" as

Vs =V expl-Que /(RT))] ®)
Then Eq. (7) can be rewritten as follows:

V=V (m)1-exp(AG/(RT;))] 9)

where VOeff (r7) can be written as

A ACUAY (10)

or

Vo =V,lexp(-0p / (RT;)Y’ (11)

At sufficiently high undercoolings, the
parameter 5 equals zero and V" equals ¥, so
Eq. (7) reduces to Eq. (3) or Eq. (1), representing
the collision-limited growth regime. Then, a
continuously increased # with decreasing
undercooling indicates a transition of solidification
mechanism from the thermal-controlled growth to

the solute-controlled growth. At sufficiently low
undercoolings, # tends to be 1 and V" reduces to
Vo, so Eq.(7) reduces to Eq.(5) or Eq.(2),
representing the short-range diffusion-limited
growth regime. Note that, in order to study the
effect of solute drag AG in Eq. (9) is also replaced
by AG.s, as done in previous models [23—27]:

AGu=AG—BAGp (12)

where AGyp is the solute drag free energy and f is
the solute drag factor.
2.1.2 Correlations between thermodynamics and
kinetics

Suppose that the complete solute trapping
corresponds to the critical state marked by AG.;,
i.e. the solute partition coefficient k=1, #=0 and
V=Vp, in contrast with the state of negligible AG.y,
i.e. k=k., n—1 and V—0. With increasing AG.x
from zero to AG.;; , the solidification mechanism is
changed from the solute-controlled growth to the
thermal-controlled growth and the parameter 7z
varies continuously from 1 to 0. In order to derive
the correlation between Q. and AG.r , a functional
relation between 7 and AG.s must be specified
according to Eq. (6), and Mode 1 is proposed by
assuming a linear relationship between # and AGeg
in the range of [0, AG.; ], i.e. at V<Vp,

Mvtode1 =1—AG gy / AG:ff (13)

where AG.; corresponds to the critical under-
cooling AT " with V=Vp; for V>Vp, n holds constant
as zero, indicating the collision-limited growth
regime. Based on Mode 1, a linear correlation
between Q.+ and AG.; can be given as
OQei=0p— AG.; /| AG.; (Qp—0Qr). Similarly, Mode 2
assumes an exponential relation of # with AG.y, at
AG<AG.

_exp[AG,; /(RT)]-exp[AG.; /(RT,)]
htoae3 1-exp[AGL /(RT,)]

(14)

where, for AG.> AG:ff, n=0 always holds; under
the condition that V/ VOeff tends to zero, AGes
tends to zero and Mode 2 reduces to Mode 1.

Considering possible relations between 7 and
other thermodynamic parameters,
potential modes are still available. Assuming a
linear relation between # and £, i.e. for k=k., #n=1;
for k=1, n=0 and for k.<k<I, the following relation
holds

another two
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1-k
= 15
MMode 3 -k, (15)

With the assumption of a linear relation
between 7 and the difference C, —C;, at V=0,
C,—Cy=C*~C&and 5=1; at V=Vp, C,-Cs=0
and #=0; and # can be described as follows, under
the condition that C; —Cg takes other values,

C-Cs  C.(-k)
Cl-C$ C(1-k,)

Tiode 4 = (16)
where C;, Cg, C* and C stand for the solute
at the S/L interface; and the
superscript “eq” represents the equilibrium values.

Incorporating Eqs. (13)—(16) into Egs. (6) and
(9), different correlations between thermodynamics
and kinetics can be obtained.

concentrations

2.2 Solidification with planar interface

In steady state solidification with planar
interface for binary alloy melts, C; is a constant
and equals the equilibrium value Cg? as well as
nominal composition of alloys Cy [17]. Under this
condition, Mode 4 defined by Eq. (16) reduces to
the following expression:

k(1K)
77M0de4 k(l—ke)

(17

For non-dilute alloys, AG.s+ can be calculated
numerically and thermodynamically by using
subregular solution model based on CALPHAD
method [23,33]. For dilute alloys, Henry’s law and
Baker and Cahn’s approximation for the chemical
potentials of solute and solvent lead to an analytical
expression as follows [24]:

AG.; =RT{CS ~C +C [I—k+(k+(1-k) f)-
k » V
In(—)+(1-k)* —
n(ke) (1=k)" -]

D

} (18)

where f is the solute drag factor, which is
introduced to unify the two treatments with (f=1)
and without (f=0) solute drag. For linear liquidus
and solidus within the composition range of interest,
Eq. (18) can be rewritten as

AG i =RT,(1=k \Tyy +C m (V)=T,)/m (19)

where Ty is the melting temperature of solvent,
m; is the slope of equilibrium liquidus and my (V)
is regarded as kinetic liquidus slope defined by

€

mL(V):f—z[l—k+(k+(l—k)ﬂ)ln(k£)+(l—k)2 VL]

(20)
Equations (18) and (20) can be further
simplified at V>Vp, due to the complete solute
trapping with A=1.
For small velocities relative to VOeff (m), Eq. (9)
is further approximated by

V=-V5"()AG,q /(RT)) (21)

Substituting Eq. (19) into Eq. (21), the
interface temperature 7; can be described as

x ; V
=Ty +Comy (V)‘Fi

l_ke Voeff (77) (22)

For dilute binary alloys, considering the
relaxation effect of local nonequilibrium solute
diffusion in bulk liquid, the solute partition
coefficient £ is given by SOBOLEV as [34]

k_(l—Vz/VDz)keJrV/VDI

, V<,
1=V IV2+V IV, ?

(23a)

=1, V=V (23b)

Combining Egs. (20), (22), (23a) and (23b)
with Modes 1-4, one can describe the final
behavior of solidification with planar interface.

2.3 Free dendritic growth model

For further modeling the free dendritic growth,
another physical quantity i.e. curvature radius r
should be introduced to denote the tip morphology
of dendrite (curvature radius). Based on the
marginal stability theory, the curvature radius r is
described as [9]

s

N zr/(;)c*(k N <to  (24)
m —
! R§t+ Ll 2 - 2 l)cgc
¢, -V=Iv;
/o V=V (24b)

=,
Ré(AH,/c,)

where [ is the Gibbs—Thompson coefficient; o is
the stability constant (o ~1/(4n%); P[=rV/(2a)] is
the thermal Péclet number; P.[=rV/(2D)] is the
solute Péclet number; o and D are respectively the
thermal diffusivity and solute diffusion coefficient
in the liquid; AH is the latent heat of fusion; ¢, is
the heat capacity of liquid alloy; and the parameters
& and & are defined by
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1

§t=1——*2 (25)
J1+1/(c" P?)

g=1 2k ——, V<Vp (26a)
214 1+(1-V2 /V2) /(5" )

&S0, V=Vp (26b)

From the current interface kinetics, Egs. (21),
(24a) and (24b), the interface response function
assuming linear liquidus and solidus can be
modified as

(27)

ﬂ=TM+CZmL(V>+[ wt J d——h

l=k, )V () 7

From this equation, the total bath undercooling
AT is described as

2r
r

L ff/ +AHf1v(g) (28)
l_ke VOe (77) Cp

where Iv is the Ivantsov function. In the right-
hand side of Eq.(28), the four terms represent
the constitutional undercooling, the curvature
undercooling, the kinetic undercooling and the
thermal undercooling (i.e. obtained from the
solution of thermal transport equation in the liquid
region), in order. AT is defined by AT=Ty+m; Co—
T, where T, is the temperature in liquid far from
the interface. Another result by solving the solute
diffusion equation in the liquid region gives the
description of liquid solute concentration at the
interface (Cﬁ) [21]:

- G,
F1=(-hIv(R)

AT =[m{ Cy—my (V)C{ 1+

(29)

Assuming linear liquidus and solidus, the
solute trapping model is also described by
Egs. (23a) and (23b).

Up to now, the extended kinetic model
considering the correlation between thermo-
dynamics and kinetics (i.e. the effective kinetic
prefactor VOeff (7)) has been determined. If the
correlations between thermodynamics and kinetics
were ignored, ie. V" (7)=V, holds with all
values of # in Egs. (22), (27) and (28), the present
model would reduce to previous ones [21], in which
only the collision-limited growth mechanism is
considered. Note that the present model established

above is only suitable for dilute binary alloys with
linear liquidus and solidus lines for simplicity. For
non-dilute alloys with non-linear liquidus or
multi-component alloys, the interfacial kinetic
equation described by the correlation between
thermodynamics and kinetics, Eq.(9), is also
reasonable. In that case, however, the extended
solute trapping model [30] and marginal stability
theory [33] should be adopted.

3 Model description and application

3.1 Planar interface migration

For the planar interface migration upon
solidification of Al—0.5at.%Be alloy (Table 1 [18]),
model comparisons have been performed to
distinguish  the present model from the
corresponding model [24] based on Turnbull’s
collision-limited growth mode. Since the present
model considers both growth modes, a varied
kinetic prefactor V(fff () is then according to
Eq. (10) or Eq. (11) prevailing, in contrast with a
constant kinetic prefactor V, used in previous
models [24]. Actually, the main improvement for
the present model relative to previous ones lies in
VT (n); if the varied Vg™ (;) is replaced by a
constant V; at all values of #, the present model
reduces to previous ones [21]. Therefore, the ratio
V™IV, is an important factor for the present
model to be distinguished from previous ones.

Table 1 Parameter data for Al—0.5at.%Be alloy used in
model computations [18]

Parameter Value
Melting point of pure Al, T\/K 933.58
Liquidus slope, m; /(K-at.% ") —6.44
Partition coefficient, k. 0.0429
Diffusion speed in bulk liquid, Vp/(m-s™") o
Kinetic prefactor, Vy/(m-s ") 1000

So, effect of model parameters on this ratio
VTV, is discussed first, and then effect of
different mechanisms on the interfacial temperature,
and finally, four potential correlations arising from
Modes 1-4, are discussed. All of these results
shown in Figs. 1-3 are calculated by the
correlation arising from Mode 4 for simplicity. It
should be noted that, analogous conclusions can
also be obtained using the correlations arising from
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Fig. 1 Evolution of effective kinetic prefactor V™ as
functions of interface velocity V' for six different
values of solutal diffusion activated energy QOp for
Al-0.5at.%Be alloy (The results are calculated by
Egs. (10), (17), (20), (22) and (23))
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Fig. 2 V7" /¥, as function of Qp for Al-0.5at.%Be
alloy at different interface velocities
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Fig. 3 T; as function of V for Al-0.5at.%Be alloy at
Op=20 kJ and different V; values

Modes 1-3, still. In addition, all of these results
shown in Figs. 1-4 are calculated without solute
drag effect (5=0).

1.0

0.8
Mode 2

0.4
N

0.2r Mode 4 ™, \
O 1 1 1 \'1
1073 1072 107! 10° 10! 10?
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Fig. 4 n as function of interface velocity with Modes
1—4 for Al—0.5at.%Be alloy (Vp=10 m/s; Vp=12 m/s)

3.1.1 Ratio V™ /¥,

As for the effect of Op (the activation energy
for inter-diffusion), the ratio V" /¥, as function
of interface velocity V for different values of Op are
shown in Fig. 1. It is indicated that the ratio
V™IV,  decreases with increase of Qp at
sufficiently low V, e.g. V=0.01 m/s, where the
kinetic parameter 7 approximately equals 1 and thus
the parameter Qp is the main determining factor
according to Eq.(11). However, the above
monotonicity  disappears at relatively high
velocities. In order to show this interesting
phenomenon more clearly, the ratios V" /¥, as
function of Qp at four selected interface velocities
are shown in Fig. 2, where V" /V, decreases
firstly and then increases with increasing QOp, since
the increased QOp not only decreases VOeff directly
through V" =V [exp(-0, /(RT)))]", but also
increases VOeff indirectly by decreasing # through
suppressing the solute partitioning. Therefore, there
are two opposite factors determining VOeff as well
as the ratio V™ /¥, . Further analysis can be found
in Appendix in detail.

Further from Fig. 1, if Op is equal to zero,
V™ will be invariable at all velocities (V" /7, =1);
the short-range diffusion-limited growth regime
will disappear; there will be only the collision-
limited growth regime [24].

3.1.2 Interfacial temperature 7;

The interfacial temperature 7; as function of V'

is shown in Fig. 3, for different values of V, and a
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fixed Op (Op=20kJ). The predicted 7; by the
present model is lower than that by the one
assuming an invariable kinetic prefactor V,, due to
the lower V™ for the present model in contrast
with the maximum V; used in the corresponding
model [24] (the ratio VOeff /V, is less than 1). That
is to say, given the lower kinetic prefactor
(equivalent to the interfacial mobility), 7; must be
lower, to guarantee higher AG. to achieve the same
V. It is also indicated in Fig. 3 that, the difference
between 7; predicted by the two models is
independent of the parameter V, and if the
horizontal coordinate » is replaced by the
normalized V/V,, the three curves with different
values of ¥V, will coincide with each other. This
implies that the influence of 7; in Eq. (10) is
negligible and one can use the parameter Vp
defined by Eq. (4) instead of the parameter QOp, i.e.
use Eq. (10) to replace Eq. (11).
3.1.3 Selection of key parameter 77

Under a specific solidification condition, the
parameter (Op is normally fixed and the key
parameter # is varied with the thermodynamic state.
The parameter # as function of V' is shown in Fig. 4,
to discuss these correlations arising from Modes
1—4 more clearly. One can see that the same basic
law holds that the value of # decreases continuously
from 1 to 0 with increasing V. As V tends to zero,
the kinetic parameter n—1 (V" =V,,), indicating
the short-range diffusion-limited growth; the
collision-limited growth occurs with =0 (V3" =),
at V>Vp. For intermediate values of #, there is a
transition between the two growth regimes. For
different modes, the slower the decrease of # with
increasing ¥ is, the smaller the ratio Vg™ /V, is
and thus the more obvious the distinction between
the present model and the previous one is [24]
(see also Fig.4 and Figs. Al and A2). Clearly,
the effect of Mode 3 is relatively more
remarkable compared with other three modes. The
curves of Modes 1 and 2 almost coincide with
each other, due to the approximation of
eXp(AGe/(RT)))=AG./(RT})+1 given the
value of V'p in bulk liquid. It is thus concluded that
Mode 1 for # is more essential, implying a linear
correlation between Q. and AG.y, approximately.

No matter which mode prevails, for the present
kinetics, both Op (or Vp) and # determine Qeq by
Eq. (6), which further controls I/(fff , Eq. (8), so that
the ratio V™ /¥, finally determines the difference

finite

between the present model and the model assuming
constant V, [24].

3.2 Experimental application
3.2.1 Model assumption for free dendrite growth
Employing the physical data for solidification
of Ni—0.7at.%B alloy (Table 2), model calculations
(not shown here) indicate that, similar to the result
shown in Fig. 4, the difference between the present
model predictions with Modes 1 and 2 is also very
small, due to the approximation exp(AGew/(RT;))~
AGe/(RT))*+1; the effect of Mode 3 is too
remarkable for the present model to give a
reasonable prediction, and Mode 4, Eq. (16), is not
suitable for dendritic growth due to the
non-monotonicity of the difference C, —~C; with
increasing bath undercooling AT under dendritic
growth conditions. If the version of Mode 4 with
planar solid/liquid interface, Eq. (16), is adopted
approximately, the difference between the
predictions from the present model and Galenko—
Danilov model (GD model [21]) will be very small.
Therefore, Mode 1 (or Mode 2) implying the
correlation between Q. and AG.s, seems physically
realistic, which is thus inputted into the present
model, as compared with GD model assuming
constant Vj, to predict the dendritic growth velocity
V" as function of AT (Fig. 5), upon solidification of
Ni—0.7at.%B alloy [35]. Equations (20), (23)—(29)
are adopted in the model calculation assuming
linear liquidus and solidus, due to the sufficiently
dilute nominal composition of Ni—0.7at.%B alloy.

Table 2 Thermophysical data for Ni—0.7at.%B alloy
used in model computations [21]

Parameter Value
Melting point of pure Ni, T\y/K 1726
Heat of fusion, AH/(J-mol ") 1.72x10*
Heat capacity, cp/(J'mof1 ‘K™ 36.39
Capillarity constant, //(K-m) 3.42x107
Liquidus slope, m¢ /(K-at.% ") -14.3
Partition coefficient, &, 0.0155
Diffusion coefficient, D/(m*s™") 3.0x107°
Thermal diffusivity, a/(m*:s ") 8.5%x10°
Interfacial diffusion speed, VDI/(ms*') 18.9
Diffusion speed in bulk liquid, ¥p/(m's™) 18.9
Kinetic prefactor, Vo/(m-s ") 363.1
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Fig. 5 Calculated and experimental dendritic growth
velocities V' as functions of bath undercooling AT for
Ni—0.7at.%B alloy (Mode 1 is adopted to describe the
kinetic parameter #)

Upon introducing Q. in the present model, the
theoretical framework of sharp interface is
assumed. Neglecting the interface thickness, the
sharp interface model can be regarded as a
simplified version of diffusive interface model
with an average value C" of solute concentration in
the interfacial region, which is defined by C'=
BC. +(1-B)Cy [24,25,30]. In reality, the interfacial
solute concentration varies continuously from solid
to liquid [25,32]. Therefore, it is more reasonable
for the average C” to take a value between Cg and
C; . This implies that the solute drag factor £ equals
a value between 0 and 1, indicating the partial
solute drag effect. In the current theoretical
framework, the effective thermodynamic driving
force can be dealt with, in combination with the
partial solute drag effect. On this basis, if the partial
solute drag effect needs to be considered, then
different values of solute drag factor f should be
chosen [24—27].

3.2.2 Model application

As shown in Fig. 5, for both the present model
assuming the linear correlation between Q. and
AG.g and the GD model [21] assuming constant V5,
the larger the value of § is, the more remarkable the
interface slowdown is; both the effect due to V™
and that due to solute drag lead to the interface
slowdown. Since both the present model
considering Mode 1 and f=0.3 and the GD model
assuming f=1 and constant V, show sufficiently
good prediction for the experimental data, then it is
indeed due to the interface slowdown that

guarantees good model predictions. The effect due
to variable V™ is used to treat the interface
slowdown by considering variation of Q.g, whereas
the effect due to solute drag is used to describe the
interface slowdown phenomenon by assuming that
a part of total Gibbs free energy change in
solidification is dissipated by interdiffusion
between solute and solvent atoms at the interface
and is not available to drive interfacial motion.
Additionally, in fact during the electro-magnetic
levitation experiment with Ni—0.7at.%B alloy the
melt convection is inevitable inside the droplet [35].
In further works convective flow should be taken
into account for Ni—B droplets, which increases the
interface velocity especially in the short-range
diffusion-limited growth kinetics [1]. Recently,
other applications of the thermo-kinetic correlation
in twin-roll casting [36] as well as in designing
stable nanocrystalline alloys [37] have been carried
out successfully. On this basis, it is further
supported to finally conclude that the correlation
should be taken into account to model the interface
kinetics in alloy solidification. Meanwhile, for alloy
solidification numerous simulation results have
been reported by phase field method, which has its
advantage compared with analytic theory, due to its
ability to model complex geometrical morphology
of solid/liquid interface. Therefore, a comparative
study is also meaningful by combining the analytic
theory and the phase field method to describe the
interfacial kinetics [16].

4 Conclusions

(1) An extended interface kinetic model was
developed for binary alloys, by simultaneously
considering both the collision-limited growth and
the short-range diffusion-limited growth modes.

(2) Applying to planar interface migration, the
interface temperature 7; predicted by the present
model is lower than that by the previous one, due to
the ratio 7" /¥, less than 1, and with the increase
of the solutal diffusion activated energy QOp the ratio
VTV, does mnot decrease monotonously but
decreases firstly and then increases.

(3) The present model can reduce to the
previous one, when the parameter Qp equals zero,
i.e. Vpi=V,. Four potential relationships of # with
AGer or other thermodynamic quantities were
assumed to analyze the correlation. It is concluded
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that the linear correlation between the effective
kinetic energy barrier Q. and the effective thermo-
dynamic driving force AG.s is more essential.

(4) Experimental comparison indicates that the
present free dendritic growth model can give a
better agreement with the experimental data for
Ni—0.7at.%B alloy. The correlation between
thermodynamics and kinetics should be taken into
account to model interface kinetics in binary alloy
solidification.
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Appendix

Non-monotonicity of V™ with Qp at
relatively high velocities is described as follows.

Relations between VOeff and 7, and between 7
and V for six given Op values are shown in Figs. Al
and A2, respectively. Figure Al indicates that, if the
same value of # is given, the larger Op gives the
lower Voeff. Considering the effect of #, however,
parameter Op can also influence # and further
change the value of V" indirectly. Figure A2
shows that, with increasing Op, # decreases at any
given value of interface velocity V. Under a specific
solidification condition, the decrease of # means a
transition from short-range diffusion-limited growth
to collision-limited growth, i.e. the increase of
Voeff )

Therefore, there are two opposite factors,
which result in the non-monotonicity shown in
Fig. 2. This can also be explained as follows. With
increasing (p from zero, the monotonously
decreasing stage of V" is mainly controlled by
the parameter Qp in Eq. (11), as a determining
factor of Qe defined by Eq. (6), and the mono-
tonously increasing stage of VOeff is mainly
determined by the parameter Op used in Eq. (4).

With increasing Op, Vp is decreased according to
Eq. (4). This prevents the solute partitioning from
Eq. (23a), facilitates the solute trapping at the
interface and further results in a higher value of
partition coefficient k&, implying the collision-
limited growth mode. Meanwhile, the parameter #
decreases, thus increasing Voeff. So, the parameter
n can also be regarded as another determining factor
of Qe defined by Eq. (6). Most importantly, QO
determines the final behavior of the effective
kinetic prefactor V" by Eq. (8).
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Fig. Al Effective kinetic prefactor V(fff as function of
kinetic parameter # for six different values of solutal
diffusion activated energy QOp for Al-0.5at.%Be alloy
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Fig. A2 Kinetic parameters # as function of interface

velocity for different Qp for Al—0.5at.%Be alloy (The

kinetic parameter 7 is described by Mode 4)
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