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Abstract: The wear behavior of AZ91 alloy was investigated by considering different parameters, such as load
(10-50 N), sliding speed (160—220 mm/s) and sliding distance (250—1000 m). It was found that wear volume loss
increased as load increased for all sliding distances and some sliding speeds. For sliding speed of 220 mm/s and sliding
distance of 1000 m, the wear volume losses under loads of 10, 20, 30, 40 and 50 N were calculated to be 15.0, 19.0,
24.3,33.9 and 37.4 mm’, respectively. Worn surfaces show that abrasion and oxidation were present at a load of 10 N,
which changes into delamination at a load of 50 N. ANOVA results show that the contributions of load, sliding distance
and sliding speed were 12.99%, 83.04% and 3.97%, respectively. The artificial neural networks (ANN), support vector
regressor (SVR) and random forest (RF) methods were applied for the prediction of wear volume loss of AZ91 alloy.
The correlation coefficient (R?) values of SVR, RF and ANN for the test were 0.9245, 0.9800 and 0.9845, respectively.
Thus, the ANN model has promising results for the prediction of wear performance of AZ91 alloy.
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1 Introduction

Magnesium (Mg) is a promising material due
to its low density and high specific strength for
aerospace and automotive industry [1]. However,
the poor mechanical, wear and corrosion properties
make it challenging to use in the industrial
applications [2]. In order to deal with the
disadvantages of Mg, different alloys have been
used for many years [3]. Among a variety of Mg
alloys, AZ91 is one of the most common alloys
with good castability, machinability and corrosion
resistance [4].

Even though Mg alloys are not suitable for
bearing and gear materials, it is possible that their
surfaces may contact with different materials [5].
Wear is one of the most critical and important
issues that reduce service life. Therefore, a

systematic examination of the tribological behavior
of Mg alloys has the critical importance [6].

There have been many studies regarding the
wear behavior of AZ91 alloy [1,6—8]. In one of
those studies, CHEN and ALPAS et al [7]
investigated the wear properties of AZ91 alloy
under dry sliding conditions. They observed that
there were two regimes as mild and severe. In the
mild wear regime, two wear mechanisms were
observed (oxidation and delamination). As for the
severe regime, melt wear due to severe plastic
deformation was observed. SHANTHI et al [1]
investigated the effect of grain size on the wear
behavior of AZ91D alloy under low sliding speed
conditions. In this study, at a sliding speed of
less than 0.1 m/s, abrasive wear was identified
as a dominant mechanism. They also reported
that the wear rate was significantly reduced
due to the presence of protective oxidized debris.
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Delamination was seen as the dominant mechanism
for sliding speed of 0.5 m/s. ZAFARI et al [6]
studied the tribological behavior of AZ91D alloy at
elevated temperatures. Under a load of 40 N, severe
plastic deformation possessed wear at 100 °C and
above. When temperature increased to 250 °C, the
wear rate decreased. The reduction in wear rate at
elevated temperatures was attributed to the oxide
formation. WANG et al [8] analyzed the sliding
wear properties of AZ91D alloy at 25, 100 and
200 °C. It was concluded that AZ91 alloy exhibited
a lower wear rate at 200 °C compared to 25 and
100 °C under loads of 12.5-25 N. At loads of 100,
200 and 250 N, a transition from mild wear regime
to severe wear regime was observed with increasing
load at 25, 100 and 200 °C. From the above
literature studies, it is understood that researchers
generally focused on the dry sliding tribological
performance of AZ91 alloy for different loads,
sliding speeds and test temperatures. All these
studies were only experimental studies. The aim of
these literature studies was to evaluate the wear
mechanisms and wear transitions under different
wear conditions.

It is possible to observe many studies
concerning wear behavior of AZ91 alloy at room
and elevated temperatures under dry sliding
conditions. To the best of our knowledge, there are
limited number of studies concerning wear behavior
using machine learning techniques. In one of those
studies, VIGNESH and PADMANABAN et al [9]
estimated the tribological properties of wrought
AZ91 alloy using artificial neural network (ANN)
and Sugeno-Fuzzy logic methods. It was concluded
that Sugeno-Fuzzy logic method had the highest
accuracy for predicting wear rate compared to
ANN.

Machine learning methods are widely used in
many disciplines to classify and predict different
properties of materials [10]. Among these methods,
ANN, support vector regressor (SVR) and random
forest (RF) are the most commonly used
algorithms [11]. By using these methods, different
properties of materials such as specific wear
rate [12], tool wear [13] and tensile strength [14]
can be estimated with high accuracy. Unlike deep
learning that requires a high amount of training data
sets, ANN, SVR and RF algorithms can estimate
the characteristics of engineering materials with
high accuracy, even if the number of training data

sets is too small [15—17].

In the present study, the dry sliding wear
behavior of AZ91 alloy was investigated by
reciprocating wear tests. The wear behavior was
studied under different loads, sliding speeds and
sliding distances. In order to clarify the wear
mechanisms, worn surfaces and wear debris were
examined by scanning electron microscopy (SEM).
ANN, SVR and RF models were used to estimate
the wear volume loss of AZ91 alloy. ANOVA was
also used to find the contribution of each parameter
on the wear volume loss.

2 Experimental

In this study, AZ91 alloy was used for wear
tests. The chemical composition of this alloy was
given in Table 1. Hardness tests were carried out
on the hardness device (Qness, Q10 A"). Five
successful measurements were performed at a load
of 5 N for 15 s and the mean value was calculated
to determine the hardness value of the sample. The
hardness of the AZ91 alloy was (73.7+£2.1) HV;sn.
The microstructure examination of the AZ91 alloy
was performed by SEM (Carl Zeiss Ultra Plus). The
phase analysis of the AZ91 alloy was performed
using X-ray diffractometer (Rigaku Ultima IV).
Diffraction patterns were obtained over a range of
26 angles from 20° to 80°.

Table 1 Chemical composition of AZ91 alloy (wt.%)
Al Zn Mn Si Fe Mg

9.23 1.01 0.19 0.02 0.02 Bal.

Figures 1(a) and (b) show the SEM image and
XRD pattern of the AZ91 alloy, respectively.
Interdendritic f-Mg;;Al;, eutectic (white area) with
irregular morphology can be seen in a-Mg matrix
(dark grey area). It is also observed that the
[-Mg;Al;; phase with lamellar morphology is
close to the irregular p-Mg;;Al;; phase. The
formation of the lamellar fS-Mg;Al;, phase is
related to the cooling after solidification by cellular
precipitation [6]. Solidification of the AZ91 alloy
was reported to begin the nucleation of o-Mg
dendrites followed by the formation of the
[-Mg;Al;;  when temperature is close to
437 °C [18]. The presence of similar phases in the
AZ91 alloy has been reported in Refs. [6,19]. XRD
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results also confirmed the presence of a-Mg and
p-Mg;Al}; phases in the structure of the AZ91
alloy (Fig. 1(b)).
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Fig. 1 SEM micrograph (a) and XRD pattern (b) of AZ91
alloy

Dry sliding wear tests were performed by the
reciprocating wear tester (UTS, T10/T20). AISI
52100 steel was used as a counterface material.
Wear test samples were ground with SiC papers
(2402000 grit size) and polished with diamond
solution. The surfaces of the samples were cleaned
with alcohol before each test. The wear tests were
performed at sliding speeds of 160, 180, 200 and
220 mm/s and loads of 10, 20, 30, 40 and 50 N.
The sliding distances were 250, 500 and 1000 m.
The friction coefficient and wear depth values
were obtained from reciprocating wear tester
simultaneously. Table 2 shows the wear test
conditions for this study. The wear volume loss was
calculated using wear depth, wear width and stroke
distance. Wear width was measured with a digital
microscope (Nikon ShuttlePix). Volume loss (mm®)
was calculated as the volume area (mm?) multiplied
by the stroke distance.

The worn surfaces and wear debris were
examined by SEM (Carl Zeiss Ultra Plus) equipped
with an energy-dispersive spectrometer EDS
(Bruker X Flash 6/10) so as to clarify the wear
mechanisms.

Table 2 Wear test parameters of test specimen AZ91
alloy

Item Value

6 mm 52100 steel

10, 20, 30, 40, 50

160, 180, 200, 220
250, 500, 1000

Counterface material
Load/N
Sliding velocity/(mm-s ")

Sliding distance/m

Motion Reciprocating
Temperature/°C 23.5+1
Relative humidity (RH)/% 35

3 Results and discussion

3.1 Friction coefficient and wear volume loss
Figure 2 illustrates the average friction
coefficients (AFCs) of the AZ91 alloy as a function
of the sliding speed, load and sliding distance. The
AFC graph at sliding distance of 250 m is given in
Fig. 2(a). It was seen that the maximum value of
AFC was obtained under load of 10 N for all sliding
speeds. AFC values decreased in the transition of
load from 10 to 20 N. The decrease in AFC is
attributed to the oxide formation due to frictional
heat produced during sliding motion [4]. The
upward trend of AFC was observed under a load of
30 N. The sudden increase is mainly associated
with transmitted shear strain [4]. At a sliding
distance of 250 m, the AFC was calculated between
0.230 and 0.195. Figure 2(b) depicts the AFC graph
at a sliding distance of 500 m. It was seen that AFC
fluctuated between 0.215 and 0.235. A decreasing
tendency of AFC was observed except for sliding
speed of 220 mm/s in the load transition of load
from 10 to 20 N. A sharp increase was observed for
sliding speed of 220 mm/s in the transition of load
from 40 to 50 N. Figure 2(c) illustrates the AFC
graph at a sliding distance of 1000 m. Initially, the
AFC generally decreased at loads from 10 to 20 N
except for that at a sliding speed of 180 mm/s and
then showed an increase trend at loads from 20 to
30 N. At a sliding speed of 160 mm/s, AFC dropped
from 0.25 to 0.23 in the transition of load
from 30 to 40 N. It was generally seen that AFC
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Fig. 2 Average friction coefficients of AZ91 alloy at
different sliding distances: (a) 250 m; (b) 500 m;
(c) 1000 m

values were not stable at different loads, sliding
speeds and sliding distances. Differences in AFC
values are generally associated with different wear
mechanisms [20].

Figure 3 shows the wear volume loss of the
AZ91 alloy depending on sliding speed, applied
load and sliding distance. From the graphs, it was
concluded that wear volume loss of the AZ91 alloy
significantly changed depending on load, sliding
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Fig. 3 Wear volume loss values of AZ91 alloy at
different sliding distances: (a) 250 m; (b) 500 m;
(c) 1000 m

distance and sliding speed. The variation in wear
volume loss is shown in Fig. 3(a) at a sliding
distance of 250 m. It was seen that wear volume
loss increased with increasing load at all sliding
speeds. The lowest wear volume loss was obtained
at a sliding speed of 220 mm/s under all loads
except for a load of 50 N. At a sliding speed of
200 mm/s, a sharp increase in wear volume loss
was observed in the load transition from 10 to 30 N.
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Under higher loads (30, 40 and 50 N), the highest
wear volume loss was calculated at this sliding
speed. The wear volume loss at a sliding distance of
500 m was plotted against load as shown in
Fig. 3(b). The minimum wear volume loss was
obtained at a sliding speed of 220 mm/s. As
expected, wear volume loss increased as load
increased. It can be inferred from Fig. 3(b) that the
rate of increase in wear volume loss generally
decreased at loads above 20 N. Figure 3(c) presents
the wear volume loss at a sliding distance of
1000 m. The lowest wear volume loss was achieved
at a sliding speed of 200 mm/s up to a load of 30 N.
At loads higher than 30 N, the wear volume loss at
a sliding speed of 160 mm/s had the lowest wear
volume loss. These results showed that the
tribological behavior of the AZ91 alloy was
significantly affected by frictional heat from the
relative motion between alloy and counterface. It
was reported that fluctuation of AFC caused
significant wear transitions. The lowest wear
volume loss at a sliding speed of 160 mm/s and a
load of 30 N can be attributed to the oxidation of
the wear surface, resulting in the formation of a
wear protection layer by oxidized metal debris. In
this way, wear damage was reduced [4]. In another
study [1], the decrease in wear rate under lower
sliding speeds was attributed to the formation of
mechanically mixed layer.

Figure 4 represents the contour maps of wear
volume loss of the AZ91 alloy depending on
different sliding distances. This graph is plotted to
understand the effects of sliding speed, load and
sliding distance on wear volume loss. At a sliding
distance of 250 m (Fig. 4(a)), a maximum wear
volume loss value (red color) was obtained at
sliding speeds of 185—205 mm/s and a load of 50 N.
The lowest volume loss (blue color) was observed
at sliding speeds of 160—220 mm/s and a load of
10 N. At sliding distances of 500 and 1000 m, the
highest wear volume loss was observed at a sliding
speed of 180 mm/s and a load of 50 N. However,
the lowest wear volume loss was obtained near
sliding speeds of 160 and 220 mm/s at a load of
10 N.

3.2 Worn surfaces

Figures 5(a) and (b) show SEM images of
worn surfaces of the AZ91 alloy at loads of 10
and 50 N, respectively (sliding speed of 160 mm/s,
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Fig. 4 Contour maps of wear volume loss of AZ91 alloy
with different sliding distances: (a) 250 m; (b) 500 m;
(c) 1000 m

sliding distance of 250 m). It can be seen that fine
scratches and wear debris were present (Fig. 5(a)).
This showed that the wear mechanism is mild
abrasive wear. However, at a load of 50 N, mild
abrasive wear changed to severe abrasive wear due
to the presence of deep grooves. It is well known
that the presence of grooves parallel to the sliding
direction is a sign of abrasive wear [21-23].
Furthermore, the presence of fragments and
ribbon-like bands in wear debris shown in Fig. 6(a)
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Fig. 5 SEM images showing worn surfaces of AZ91 alloy at sliding speed of 160 mm/s, different loads and sliding
distances: (a) 10 N, 250 m; (b) 50 N, 250 m; (c¢) 10 N, 1000 m; (d) 50 N, 1000 m

Fig. 6 SEM images of wear debris at load of 50 N, different sliding speeds and sliding distances: (a) 160 mm/s, 250 m;

(b) 220 mm/s, 1000 m

supports the abrasive wear mechanism. During
abrasive micro-cutting, hard asperities from the
counterface material dug the pin and led to loss of
material such as fragments and ribbon-like
bands [24]. Figures 5(c) and (d) show the SEM
images of worn surfaces on the AZ91 alloy at loads
of 10 and 50N, respectively (sliding speed of
160 mm/s, sliding distance of 1000 m). Abrasive
wear is identified as the dominant mechanism
(Fig. 5(c)). It was observed that at a load of 50 N,
delamination was the effective mechanism. It can
be said that shallow craters on the worn surfaces
were formed by delamination (Fig. 5(d)) [24].

Figures 7(a) and (b) show SEM images of the
worn surfaces of the AZ91 alloy at loads of 10 and
50 N, respectively (sliding speed of 220 mm/s,
sliding distance of 250 m). The compact oxide layer
(black areas) and grooves are prominent (Fig. 7(a)).
It has been concluded that partly oxidative wear
with abrasive mechanism dominates the wear. The
formation of oxides was verified by EDS analysis
as shown in Fig. 8(a). The EDS analysis (Rectangle
1 in Fig. 8(a)) showed a significant amount of
0O (13.00 wt.%). However, at a load of 50N
(Fig. 7(b)), the formation of cracks that were
perpendicular to the sliding direction showed the
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Fig. 7 SEM images showing worn surfaces of AZ91 alloy at sliding speed of 220 mm/s, different loads and sliding
distances: (a) 10 N, 250 m; (b) 50 N, 250 m; (c¢) 10 N, 1000 m; (d) 50 N, 1000 m
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Fig. 8 EDS analysis of worn surfaces at sliding speed of 220 mm/s, load of 10 N and sliding distances of 250 m (a) and

1000 m (b)

delamination mechanism that led to detachment of
sheet-like fragments of wear debris [5]. The
presence of sheet-like fragments at a sliding
speed of 220 mm/s, sliding distance of 1000 m
under load of 50 N is shown in Fig. 6(b). Oxidative
wear was the only wear mechanism due to the large

present oxide areas which were verified by EDS
analysis (Fig. 8(b)). The significant amount of O
was detected for both areas (Rectangles 1 and 2
in Fig. 8(b)). At loads from 10 to 50 N, wear
mechanism turned into abrasive wear and
delamination (Figs. 7(c) and (d)).
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4 Regression model and ANOVA analysis

4.1 Regression model

In this study, regression model was applied
using Minitab software to calculate the wear
volume loss depending on different loads, sliding
speeds and sliding distances. The regression
equation was given in Eq. (1). The R* (correlation
coefficient) values of training and test were
calculated to be 0.796 and 0.910, respectively. It is

found that R* values of all dataset are 0.819.
V=6.05+0.2806F-+0.02276L—0.0032v (1)

where V, F, L and v represent the wear volume loss,
applied load, sliding distance and sliding speed,
respectively.

4.2 ANOVA results

In this study, ANOVA (analysis of variance)
was adopted to study the effects of the wear
parameters (load, sliding speed and sliding distance)
on wear volume loss of AZ91 alloy. It is seen that
the R* value is 0.8663. The contributions of load,
sliding distance and sliding speed are 12.99%,
83.04% and 3.97%, respectively. From Table 3, it
can be said that sliding distance is the most
effective parameter compared to the other two.

Table 3 ANOVA results of AZ91 alloy

Contribution/

Source DF AdjSS AdjMS F P o
()

Load 4 9482 237.04 1829 0.00  12.89
Sliding 30313 1515.67116.970.00  82.45
distance

Sliding 5 5175 7249 559 0002  3.94
speed

Error 50 6479 1296 - -

Total 59 4844.8 1838.16

§=3.59965  R=0.8663  R’(adj)=0.8422

Figure 9 shows the main effect plots for wear
volume loss of the AZ91 alloy. It is clear that wear
volume loss increases with increasing load and
sliding distance. However, as sliding speed
increases from 160 to 180 mm/s, the wear volume
loss increases. When it is above 180 mm/s, the wear
volume loss decreases.

[\
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-
(9,
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Fig. 9 Main effect plots of wear volume loss for AZ91
alloy

5 Machine learning methods

5.1 Support vector regressor

The basic principles of the support vector
regressor (SVR) were firstly introduced by
VAPNIK [25,26] in 1960s. Due to its success in the
field of classification, it has been widely used in
recognition of object and classification of optical
character. Moreover, SVR enables estimation by
learning from input data and creating a hyperplane
function [27]. An example of the linear hyperplane
generated by SVR is shown in Fig. 10. In the figure,
¢ is a precision threshold variable and & is a
slack variable determining the plane margin and
indicating whether the constrains are appropriate, y
is the output parameter, w and b are the coefficients
to define hyperplane position, and ¢(x) is the input
parameter.

{w, x)+b

y=

$(x)
Fig. 10 Linear hyperplane generated by SVR
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The objective function of linear SVR can be
formulated as follows:

Minimize%||w| P+CY E+& (2)
i=1
where C is a regularization constant used to
penalize the objective function and |jw|]* is
Euclidian norm. In the experimental test, input
parameter (¢#(x)) of dataset contains load, sliding
distance, sliding speed and the output parameter ()
contains measured volume loss.
Subject to Eq. (3):

Vi—(w,x;)=b<e+¢&,
(W,x)+b=y, <e+& 3)
£>0, £>0

In nonlinear SVR estimation applications, the
training data set (x;) must be mapped to new vector
space applied to linearly separable hyperplanes
using the kernel functions. Even if there are
several kernel functions [28], radial basis function
(RBF) is the most commonly used function [29].
RBF kernel function A(x; x;) is determined as
follows (Eq. (4)):

) x|
k() =exp| - =5 @)

where ¢ is a hyper-parameter for kernel.

The hyperplanes obtained from the training set
are applied to the test data set and new estimation
values are determined and the accuracy of the
method is measured.

5.2 Random forest

Random forest (RF) method, developed by
BREIMAN [30] in 2000s, contains multiple
decision trees. The characteristics of each decision
tree in the forest and the nodes in that decision tree
are determined using the training data set. On the
other hand, leaves contain the results of regression.
The number of trees in the forest is determined by
experiments. An RF example can be seen in Fig. 11.
For the experimental data set which includes
applied load, sliding distance and sliding speed
(input parameters x) and the wear volume loss
(output parameter y) D=(x,y), new training data
sets are determined for each tree by bootstrap
methods. Next, the most prominent features are
determined for each node. The accuracy of this

method is determined by calculating the estimated
values for the test data set after creation of the trees.

Fig. 11 Example of RF

5.3 Artificial neural networks

Artificial neural networks (ANN) mimic the
working principle of neurons in the human brain
and perform classification and prediction [31]. The
smallest unit, called a neuron, produces an output
such as Eq. (5), depends on the inputs, weights and
activation function. The example of a neuron
structure is shown in Fig. 12.

Oizf(iwi,jxi,jJ (5)

where o; is the output results, » is the input size, w;;
is the weight coefficient, and x;; is the input data.

In Eq. (5), input data x is weighted by weight
w. Then, an activation function is applied to
pushing linear sum to a non-linear space.

Bias
X1 o—sW)

Activation
function
> f(x) = Output

Inputs { X2 o—=W, /)\/

o—w,

Weights

Fig. 12 Neuron structure for ANN model

The proposed ANN model with two hidden
layers is shown in Fig. 13. There are 3 types of
layers which are called as input, hidden and output.
In the input layer, the number of neurons is
determined by the number of feature vectors (for
this study they are applied load, sliding distance and
sliding speed). Numbers of hidden layers and
neurons can be determined arbitrarily. Finally, the
output layer (for this study it is wear volume
loss) shows the estimated result according to



134 Fatih AYDIN, Rafet DURGUT/Trans. Nonferrous Met. Soc. China 31(2021) 125-137

computations by values from hidden layers. During
training, the error between actual and predicted
values is calculated and weights among neurons are
updated using back propagation (BP) algorithm.
This process continues until termination criterion is
met or ANN has converged enough [32,33].

Input Hidden
layer layer 1

Hidden  Output
layer 2 layer

Load

Sliding Wear
distance < ) volume loss
Sliding

speed

—

Fig. 13 Proposed ANN model

In order to compute error, root mean square
error (RMSE) is used. It is calculated as follows

(Eq. (6)):

1/2
RMSEz(lZ(ei - p[)ZJ (6)
n

i=1
where e; is the actual value, and p; is the predicted
value.
n 1/2
Z(ei _pi)2
R=1-| E— (7)

PACEIIN
i1

where p, is the mean of the actual values and R
is the correction coefficient which represents the
accuracy of the method, here, it is a commonly used
performance measurement for machine learning
methods. The desired result in machine learning
methods is to produce a model with high R* and low
RMSE values.

of machine

6 Experimental results

learning models

In this study, three machine learning
algorithms (SVR, RF and ANN) were applied to
estimating the wear volume loss of the AZ91 alloy.
The experimentally collected data set was separated
into training and test as 85% and 15%, respectively.
Applied load, sliding distance and sliding speed

were determined as input feature variables and the
output was wear volume loss. RBF kernel function
was employed for SVR method. In ANN model, the
numbers of neurons located in hidden layers 1 and 2
were determined as 8 and 2, respectively (Fig. 13).
Moreover, hyperbolic tangent was used as an
activation function and the Quasi-Newton was used
as a backpropagation algorithm. The results of the
applied machine learning methods for training data
can be seen in Fig. 14. According to the results, the
highest accuracy (R?) for the training set was
obtained by ANN. In addition, it was observed that
RF is very competitive with ANN. Since the
relationship between the data obtained from
laboratory-based experimental results cannot be
accurately estimated by hyperplanes, the accuracy
of SVR decreased. When the incorrect results were
analyzed, it was seen that the error increased
especially in high wear volume loss values for ANN
and SVR. This is because they produce more
deviations for higher wear volume loss values.
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Fig. 14 Comparison of experimental and predicted
values for training data

The experimental and predicted results for test
data are given in Table 4. Figure 15 shows the
comparison of the results of the models with
experimental ones for test data set. It was observed
that the results obtained in the test set were similar
to those in the training set. SVR achieved the
lowest accuracy and ANN competed with RF. It
was also noticed that ANN was more stable for both
high and low output values. According to these
results, it could be seen that the models did not
over-fit training data (memorization of input data)
and were able to learn the relationship between
inputs and outputs.
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Table 4 Comparison of experimental results and predicted results obtained with different models for test data set

Wear volume loss/mm®

Load/N Sliding distance/m Sliding speed/(mm-s ") Predicted
Experimental
SVR RF ANN
30 1000 220 2432 22.37 2291 26.67
20 250 160 4.88 6.94 6.35 5.46
10 1000 200 14.18 9.15 17.09 11.67
20 250 220 3.52 4.20 5.23 3.11
30 1000 160 20.90 14.36 22.64 19.53
40 1000 180 34.16 26.37 32.13 34.10
30 500 200 13.44 9.81 13.05 12.69
10 250 220 2.52 1.48 3.69 0.56
30 250 160 5.08 6.91 7.12 5.24
50
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Fig. 15 Comparison of experimental and predicted (b) Training set
values for test data 0.95 (/ T Test set
Furthermore, the effect of regularization 0.90
constant (C) on R* for SVR was investigated %
(Fig. 16(a)). The model was tested with different C 085}
values from 0 to 10 with a step size of 0.1 (for
plotting it is normalized to a range of 0—100) and 0.80F
had the highest accuracy when C was 1.5 (when
i ni i 0.75 . . - :
inputs and training success are considered). As can 0 200 400 600 200! |11 EGon

be seen from Fig. 16(a), when C value was
increased too much, even if the model achieved
high accuracies for training set, it was observed that
low accuracies were obtained in the test set because
of over-fitting.

The effect of the number of estimators for RF
was examined by testing from 0 to 1000
(Fig. 16(b)). The highest accuracies for both
training and test sets were observed when the
number of estimators was 40 and above. Therefore,
considering the performance, it was seen that the

Number of estimators
Fig. 16 Effect of SVR and RF parameters on R

(a) Regularization constant for SVR; (b) Number of
estimators for RF

most reasonable number of estimators was 40.

Table 5 presents the accuracies of the three
methods. Although ANN and RF had almost the
same accuracies for the test phase, SVR was far
behind. Also, ANN had the higher accuracy than RF
for the training stage.
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Table S Comparison of accuracies of three methods
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SVR RF ANN

Accuracy

Training set Test set Training set Test set Training set Test set
R? 0.9277 0.9245 0.972 0.980 0.997 0.9845
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