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Abstract: The wear behavior of AZ91 alloy was investigated by considering different parameters, such as load 
(10−50 N), sliding speed (160−220 mm/s) and sliding distance (250−1000 m). It was found that wear volume loss 
increased as load increased for all sliding distances and some sliding speeds. For sliding speed of 220 mm/s and sliding 
distance of 1000 m, the wear volume losses under loads of 10, 20, 30, 40 and 50 N were calculated to be 15.0, 19.0, 
24.3, 33.9 and 37.4 mm3, respectively. Worn surfaces show that abrasion and oxidation were present at a load of 10 N, 
which changes into delamination at a load of 50 N. ANOVA results show that the contributions of load, sliding distance 
and sliding speed were 12.99%, 83.04% and 3.97%, respectively. The artificial neural networks (ANN), support vector 
regressor (SVR) and random forest (RF) methods were applied for the prediction of wear volume loss of AZ91 alloy. 
The correlation coefficient (R2) values of SVR, RF and ANN for the test were 0.9245, 0.9800 and 0.9845, respectively. 
Thus, the ANN model has promising results for the prediction of wear performance of AZ91 alloy. 
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1 Introduction 
 

Magnesium (Mg) is a promising material due 
to its low density and high specific strength for 
aerospace and automotive industry [1]. However, 
the poor mechanical, wear and corrosion properties 
make it challenging to use in the industrial  
applications [2]. In order to deal with the 
disadvantages of Mg, different alloys have been 
used for many years [3]. Among a variety of Mg 
alloys, AZ91 is one of the most common alloys 
with good castability, machinability and corrosion 
resistance [4]. 

Even though Mg alloys are not suitable for 
bearing and gear materials, it is possible that their 
surfaces may contact with different materials [5]. 
Wear is one of the most critical and important 
issues that reduce service life. Therefore, a 

systematic examination of the tribological behavior 
of Mg alloys has the critical importance [6]. 

There have been many studies regarding the 
wear behavior of AZ91 alloy [1,6−8]. In one of 
those studies, CHEN and ALPAS et al [7] 
investigated the wear properties of AZ91 alloy 
under dry sliding conditions. They observed that 
there were two regimes as mild and severe. In the 
mild wear regime, two wear mechanisms were 
observed (oxidation and delamination). As for the 
severe regime, melt wear due to severe plastic 
deformation was observed. SHANTHI et al [1] 
investigated the effect of grain size on the wear 
behavior of AZ91D alloy under low sliding speed 
conditions. In this study, at a sliding speed of   
less than 0.1 m/s, abrasive wear was identified       
as a dominant mechanism. They also reported      
that the wear rate was significantly reduced     
due to the presence of protective oxidized debris. 
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Delamination was seen as the dominant mechanism 
for sliding speed of 0.5 m/s. ZAFARI et al [6] 
studied the tribological behavior of AZ91D alloy at 
elevated temperatures. Under a load of 40 N, severe 
plastic deformation possessed wear at 100 °C and 
above. When temperature increased to 250 °C, the 
wear rate decreased. The reduction in wear rate at 
elevated temperatures was attributed to the oxide 
formation. WANG et al [8] analyzed the sliding 
wear properties of AZ91D alloy at 25, 100 and 
200 °C. It was concluded that AZ91 alloy exhibited 
a lower wear rate at 200 °C compared to 25 and 
100 °C under loads of 12.5−25 N. At loads of 100, 
200 and 250 N, a transition from mild wear regime 
to severe wear regime was observed with increasing 
load at 25, 100 and 200 °C. From the above 
literature studies, it is understood that researchers 
generally focused on the dry sliding tribological 
performance of AZ91 alloy for different loads, 
sliding speeds and test temperatures. All these 
studies were only experimental studies. The aim of 
these literature studies was to evaluate the wear 
mechanisms and wear transitions under different 
wear conditions. 

It is possible to observe many studies 
concerning wear behavior of AZ91 alloy at room 
and elevated temperatures under dry sliding 
conditions. To the best of our knowledge, there are 
limited number of studies concerning wear behavior 
using machine learning techniques. In one of those 
studies, VIGNESH and PADMANABAN et al [9] 
estimated the tribological properties of wrought 
AZ91 alloy using artificial neural network (ANN) 
and Sugeno-Fuzzy logic methods. It was concluded 
that Sugeno-Fuzzy logic method had the highest 
accuracy for predicting wear rate compared to 
ANN. 

Machine learning methods are widely used in 
many disciplines to classify and predict different 
properties of materials [10]. Among these methods, 
ANN, support vector regressor (SVR) and random 
forest (RF) are the most commonly used  
algorithms [11]. By using these methods, different 
properties of materials such as specific wear    
rate [12], tool wear [13] and tensile strength [14] 
can be estimated with high accuracy. Unlike deep 
learning that requires a high amount of training data 
sets, ANN, SVR and RF algorithms can estimate 
the characteristics of engineering materials with 
high accuracy, even if the number of training data 

sets is too small [15−17]. 
In the present study, the dry sliding wear 

behavior of AZ91 alloy was investigated by 
reciprocating wear tests. The wear behavior was 
studied under different loads, sliding speeds and 
sliding distances. In order to clarify the wear 
mechanisms, worn surfaces and wear debris were 
examined by scanning electron microscopy (SEM). 
ANN, SVR and RF models were used to estimate 
the wear volume loss of AZ91 alloy. ANOVA was 
also used to find the contribution of each parameter 
on the wear volume loss. 
 
2 Experimental 
 

In this study, AZ91 alloy was used for wear 
tests. The chemical composition of this alloy was 
given in Table 1. Hardness tests were carried out  
on the hardness device (Qness, Q10 A+). Five 
successful measurements were performed at a load 
of 5 N for 15 s and the mean value was calculated 
to determine the hardness value of the sample. The 
hardness of the AZ91 alloy was (73.7±2.1) HV5 N.  
The microstructure examination of the AZ91 alloy 
was performed by SEM (Carl Zeiss Ultra Plus). The 
phase analysis of the AZ91 alloy was performed 
using X-ray diffractometer (Rigaku Ultima IV). 
Diffraction patterns were obtained over a range of 
2θ angles from 20° to 80°. 
 
Table 1 Chemical composition of AZ91 alloy (wt.%) 

Al Zn Mn Si Fe Mg 

9.23 1.01 0.19 0.02 0.02 Bal. 

 

Figures 1(a) and (b) show the SEM image and 
XRD pattern of the AZ91 alloy, respectively. 
Interdendritic β-Mg17Al12 eutectic (white area) with 
irregular morphology can be seen in α-Mg matrix 
(dark grey area). It is also observed that the 
β-Mg17Al12 phase with lamellar morphology is  
close to the irregular β-Mg17Al12 phase. The 
formation of the lamellar β-Mg17Al12 phase is 
related to the cooling after solidification by cellular  
precipitation [6]. Solidification of the AZ91 alloy 
was reported to begin the nucleation of α-Mg 
dendrites followed by the formation of the 
β-Mg17Al12 when temperature is close to     
437 °C [18]. The presence of similar phases in the 
AZ91 alloy has been reported in Refs. [6,19]. XRD 
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results also confirmed the presence of α-Mg and 
β-Mg17Al12 phases in the structure of the AZ91 
alloy (Fig. 1(b)). 

 

 

Fig. 1 SEM micrograph (a) and XRD pattern (b) of AZ91 

alloy 

 
Dry sliding wear tests were performed by the 

reciprocating wear tester (UTS, T10/T20). AISI 
52100 steel was used as a counterface material. 
Wear test samples were ground with SiC papers 
(240−2000 grit size) and polished with diamond 
solution. The surfaces of the samples were cleaned 
with alcohol before each test. The wear tests were 
performed at sliding speeds of 160, 180, 200 and 
220 mm/s and loads of 10, 20, 30, 40 and 50 N.  
The sliding distances were 250, 500 and 1000 m. 
The friction coefficient and wear depth values   
were obtained from reciprocating wear tester 
simultaneously. Table 2 shows the wear test 
conditions for this study. The wear volume loss was 
calculated using wear depth, wear width and stroke 
distance. Wear width was measured with a digital 
microscope (Nikon ShuttlePix). Volume loss (mm3) 
was calculated as the volume area (mm2) multiplied 
by the stroke distance. 

The worn surfaces and wear debris were 
examined by SEM (Carl Zeiss Ultra Plus) equipped 
with an energy-dispersive spectrometer EDS 
(Bruker X Flash 6/10) so as to clarify the wear 
mechanisms. 
 
Table 2 Wear test parameters of test specimen AZ91 
alloy 

Item Value 

Counterface material 6 mm 52100 steel 

Load/N 10, 20, 30, 40, 50 

Sliding velocity/(mmꞏs−1) 160, 180, 200, 220 

Sliding distance/m 250, 500, 1000 

Motion Reciprocating 

Temperature/°C 23.5±1 

Relative humidity (RH)/% 35 

 
3 Results and discussion 
 
3.1 Friction coefficient and wear volume loss 

Figure 2 illustrates the average friction 
coefficients (AFCs) of the AZ91 alloy as a function 
of the sliding speed, load and sliding distance. The 
AFC graph at sliding distance of 250 m is given in 
Fig. 2(a). It was seen that the maximum value of 
AFC was obtained under load of 10 N for all sliding 
speeds. AFC values decreased in the transition of 
load from 10 to 20 N. The decrease in AFC is 
attributed to the oxide formation due to frictional 
heat produced during sliding motion [4]. The 
upward trend of AFC was observed under a load of 
30 N. The sudden increase is mainly associated 
with transmitted shear strain [4]. At a sliding 
distance of 250 m, the AFC was calculated between 
0.230 and 0.195. Figure 2(b) depicts the AFC graph 
at a sliding distance of 500 m. It was seen that AFC 
fluctuated between 0.215 and 0.235. A decreasing 
tendency of AFC was observed except for sliding 
speed of 220 mm/s in the load transition of load 
from 10 to 20 N. A sharp increase was observed for 
sliding speed of 220 mm/s in the transition of load 
from 40 to 50 N. Figure 2(c) illustrates the AFC 
graph at a sliding distance of 1000 m. Initially, the 
AFC generally decreased at loads from 10 to 20 N 
except for that at a sliding speed of 180 mm/s and 
then showed an increase trend at loads from 20 to 
30 N. At a sliding speed of 160 mm/s, AFC dropped 
from 0.25 to 0.23 in the transition of load 
from 30 to 40 N. It was generally seen that AFC 
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Fig. 2 Average friction coefficients of AZ91 alloy at 
different sliding distances: (a) 250 m; (b) 500 m;      
(c) 1000 m 
 
values were not stable at different loads, sliding 
speeds and sliding distances. Differences in AFC 
values are generally associated with different wear 
mechanisms [20]. 

Figure 3 shows the wear volume loss of the 
AZ91 alloy depending on sliding speed, applied 
load and sliding distance. From the graphs, it was 
concluded that wear volume loss of the AZ91 alloy 
significantly changed depending on load, sliding 

 

 
Fig. 3 Wear volume loss values of AZ91 alloy at 
different sliding distances: (a) 250 m; (b) 500 m;      
(c) 1000 m 
 
distance and sliding speed. The variation in wear 
volume loss is shown in Fig. 3(a) at a sliding 
distance of 250 m. It was seen that wear volume 
loss increased with increasing load at all sliding 
speeds. The lowest wear volume loss was obtained 
at a sliding speed of 220 mm/s under all loads 
except for a load of 50 N. At a sliding speed of 
200 mm/s, a sharp increase in wear volume loss 
was observed in the load transition from 10 to 30 N. 
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Under higher loads (30, 40 and 50 N), the highest 
wear volume loss was calculated at this sliding 
speed. The wear volume loss at a sliding distance of 
500 m was plotted against load as shown in 
Fig. 3(b). The minimum wear volume loss was 
obtained at a sliding speed of 220 mm/s. As 
expected, wear volume loss increased as load 
increased. It can be inferred from Fig. 3(b) that the 
rate of increase in wear volume loss generally 
decreased at loads above 20 N. Figure 3(c) presents 
the wear volume loss at a sliding distance of 
1000 m. The lowest wear volume loss was achieved 
at a sliding speed of 200 mm/s up to a load of 30 N. 
At loads higher than 30 N, the wear volume loss at 
a sliding speed of 160 mm/s had the lowest wear 
volume loss. These results showed that the 
tribological behavior of the AZ91 alloy was 
significantly affected by frictional heat from the 
relative motion between alloy and counterface. It 
was reported that fluctuation of AFC caused 
significant wear transitions. The lowest wear 
volume loss at a sliding speed of 160 mm/s and a 
load of 30 N can be attributed to the oxidation of 
the wear surface, resulting in the formation of a 
wear protection layer by oxidized metal debris. In 
this way, wear damage was reduced [4]. In another 
study [1], the decrease in wear rate under lower 
sliding speeds was attributed to the formation of 
mechanically mixed layer. 

Figure 4 represents the contour maps of wear 
volume loss of the AZ91 alloy depending on 
different sliding distances. This graph is plotted to 
understand the effects of sliding speed, load and 
sliding distance on wear volume loss. At a sliding 
distance of 250 m (Fig. 4(a)), a maximum wear 
volume loss value (red color) was obtained at 
sliding speeds of 185−205 mm/s and a load of 50 N. 
The lowest volume loss (blue color) was observed 
at sliding speeds of 160−220 mm/s and a load of 
10 N. At sliding distances of 500 and 1000 m, the 
highest wear volume loss was observed at a sliding 
speed of 180 mm/s and a load of 50 N. However, 
the lowest wear volume loss was obtained near 
sliding speeds of 160 and 220 mm/s at a load of 
10 N. 
 

3.2 Worn surfaces 
Figures 5(a) and (b) show SEM images of 

worn surfaces of the AZ91 alloy at loads of 10  
and 50 N, respectively (sliding speed of 160 mm/s,  

 

 
Fig. 4 Contour maps of wear volume loss of AZ91 alloy 
with different sliding distances: (a) 250 m; (b) 500 m;  
(c) 1000 m 
 
sliding distance of 250 m). It can be seen that fine 
scratches and wear debris were present (Fig. 5(a)). 
This showed that the wear mechanism is mild 
abrasive wear. However, at a load of 50 N, mild 
abrasive wear changed to severe abrasive wear due 
to the presence of deep grooves. It is well known 
that the presence of grooves parallel to the sliding 
direction is a sign of abrasive wear [21−23]. 
Furthermore, the presence of fragments and 
ribbon-like bands in wear debris shown in Fig. 6(a) 
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Fig. 5 SEM images showing worn surfaces of AZ91 alloy at sliding speed of 160 mm/s, different loads and sliding 

distances: (a) 10 N, 250 m; (b) 50 N, 250 m; (c) 10 N, 1000 m; (d) 50 N, 1000 m 

 

 
Fig. 6 SEM images of wear debris at load of 50 N, different sliding speeds and sliding distances: (a) 160 mm/s, 250 m; 

(b) 220 mm/s, 1000 m 

 
supports the abrasive wear mechanism. During 
abrasive micro-cutting, hard asperities from the 
counterface material dug the pin and led to loss of 
material such as fragments and ribbon-like    
bands [24]. Figures 5(c) and (d) show the SEM 
images of worn surfaces on the AZ91 alloy at loads 
of 10 and 50 N, respectively (sliding speed of 
160 mm/s, sliding distance of 1000 m). Abrasive 
wear is identified as the dominant mechanism 
(Fig. 5(c)). It was observed that at a load of 50 N, 
delamination was the effective mechanism. It can 
be said that shallow craters on the worn surfaces 
were formed by delamination (Fig. 5(d)) [24]. 

Figures 7(a) and (b) show SEM images of the 
worn surfaces of the AZ91 alloy at loads of 10 and 
50 N, respectively (sliding speed of 220 mm/s, 
sliding distance of 250 m). The compact oxide layer 
(black areas) and grooves are prominent (Fig. 7(a)). 
It has been concluded that partly oxidative wear 
with abrasive mechanism dominates the wear. The 
formation of oxides was verified by EDS analysis 
as shown in Fig. 8(a). The EDS analysis (Rectangle 
1 in Fig. 8(a)) showed a significant amount of 
O (13.00 wt.%). However, at a load of 50 N 
(Fig. 7(b)), the formation of cracks that were 
perpendicular to the sliding direction showed the  
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Fig. 7 SEM images showing worn surfaces of AZ91 alloy at sliding speed of 220 mm/s, different loads and sliding 

distances: (a) 10 N, 250 m; (b) 50 N, 250 m; (c) 10 N, 1000 m; (d) 50 N, 1000 m 

 

 
Fig. 8 EDS analysis of worn surfaces at sliding speed of 220 mm/s, load of 10 N and sliding distances of 250 m (a) and 

1000 m (b)  

 

delamination mechanism that led to detachment of 
sheet-like fragments of wear debris [5]. The 
presence of sheet-like fragments at a sliding   
speed of 220 mm/s, sliding distance of 1000 m 
under load of 50 N is shown in Fig. 6(b). Oxidative 
wear was the only wear mechanism due to the large 

present oxide areas which were verified by EDS 
analysis (Fig. 8(b)). The significant amount of O 
was detected for both areas (Rectangles 1 and 2   
in Fig. 8(b)). At loads from 10 to 50 N, wear 
mechanism turned into abrasive wear and 
delamination (Figs. 7(c) and (d)). 



Fatih AYDIN, Rafet DURGUT/Trans. Nonferrous Met. Soc. China 31(2021) 125−137 

 

132

 
4 Regression model and ANOVA analysis 
 
4.1 Regression model 

In this study, regression model was applied 
using Minitab software to calculate the wear 
volume loss depending on different loads, sliding 
speeds and sliding distances. The regression 
equation was given in Eq. (1). The R2 (correlation 
coefficient) values of training and test were 
calculated to be 0.796 and 0.910, respectively. It is 
found that R2 values of all dataset are 0.819. 
 
V=−6.05+0.2806F+0.02276L−0.0032v        (1) 
 
where V, F, L and v represent the wear volume loss, 
applied load, sliding distance and sliding speed, 
respectively. 
 
4.2 ANOVA results 

In this study, ANOVA (analysis of variance) 
was adopted to study the effects of the wear 
parameters (load, sliding speed and sliding distance) 
on wear volume loss of AZ91 alloy. It is seen that 
the R2 value is 0.8663. The contributions of load, 
sliding distance and sliding speed are 12.99%, 
83.04% and 3.97%, respectively. From Table 3, it 
can be said that sliding distance is the most 
effective parameter compared to the other two. 
 
Table 3 ANOVA results of AZ91 alloy 

Source DF Adj SS Adj MS F P 
Contribution/

% 

Load 4 948.2 237.04 18.29 0.00 12.89 

Sliding 
distance 

2 3031.3 1515.67116.97 0.00 82.45 

Sliding 
speed 

3 217.5 72.49 5.59 0.002 3.94 

Error 50 647.9 12.96 − −  

Total 59 4844.8 1838.16    

S=3.59965    R2=0.8663    R2(adj)=0.8422 

 

Figure 9 shows the main effect plots for wear 
volume loss of the AZ91 alloy. It is clear that wear 
volume loss increases with increasing load and 
sliding distance. However, as sliding speed 
increases from 160 to 180 mm/s, the wear volume 
loss increases. When it is above 180 mm/s, the wear 
volume loss decreases. 

 

 

Fig. 9 Main effect plots of wear volume loss for AZ91 

alloy 

 
5 Machine learning methods 
 
5.1 Support vector regressor 

The basic principles of the support vector 
regressor (SVR) were firstly introduced by 
VAPNIK [25,26] in 1960s. Due to its success in the 
field of classification, it has been widely used in 
recognition of object and classification of optical 
character. Moreover, SVR enables estimation by 
learning from input data and creating a hyperplane 
function [27]. An example of the linear hyperplane 
generated by SVR is shown in Fig. 10. In the figure, 
ε is a precision threshold variable and ξ is a    
slack variable determining the plane margin and 
indicating whether the constrains are appropriate, y 
is the output parameter, w and b are the coefficients 
to define hyperplane position, and (x) is the input 
parameter. 
 

 
Fig. 10 Linear hyperplane generated by SVR 
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The objective function of linear SVR can be 
formulated as follows: 
 

2 *

1

1
Minimize || ||

2

n

i i
i

w C  


                (2) 

 
where C is a regularization constant used to 
penalize the objective function and ||w||2 is 
Euclidian norm. In the experimental test, input 
parameter ((x)) of dataset contains load, sliding 
distance, sliding speed and the output parameter (y) 
contains measured volume loss. 

Subject to Eq. (3): 
 

*

*

,

,

0, 0

i i i
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w x b y

 

 

 
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   

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                    (3) 

 
In nonlinear SVR estimation applications, the 

training data set (xi) must be mapped to new vector 
space applied to linearly separable hyperplanes 
using the kernel functions. Even if there are  
several kernel functions [28], radial basis function 
(RBF) is the most commonly used function [29]. 
RBF kernel function k(xi, xj) is determined as 
follows (Eq. (4)): 
 

2

2

|| ||
( , ) exp

2
i j

i j

x x
k x x



  
       

              (4) 

 
where σ is a hyper-parameter for kernel. 

The hyperplanes obtained from the training set 
are applied to the test data set and new estimation 
values are determined and the accuracy of the 
method is measured. 
 
5.2 Random forest 

Random forest (RF) method, developed by 
BREIMAN [30] in 2000s, contains multiple 
decision trees. The characteristics of each decision 
tree in the forest and the nodes in that decision tree 
are determined using the training data set. On the 
other hand, leaves contain the results of regression. 
The number of trees in the forest is determined by 
experiments. An RF example can be seen in Fig. 11. 
For the experimental data set which includes 
applied load, sliding distance and sliding speed 
(input parameters x) and the wear volume loss 
(output parameter y) D=x, y, new training data 
sets are determined for each tree by bootstrap 
methods. Next, the most prominent features are 
determined for each node. The accuracy of this 

method is determined by calculating the estimated 
values for the test data set after creation of the trees. 
 

 
Fig. 11 Example of RF 

 

5.3 Artificial neural networks 
Artificial neural networks (ANN) mimic the 

working principle of neurons in the human brain 
and perform classification and prediction [31]. The 
smallest unit, called a neuron, produces an output 
such as Eq. (5), depends on the inputs, weights and 
activation function. The example of a neuron 
structure is shown in Fig. 12.  

, ,
1

n

i i j i j
i

o f w x


 
  

 
                        (5) 

 
where oi is the output results, n is the input size, wi,j 
is the weight coefficient, and xi,j is the input data. 

In Eq. (5), input data x is weighted by weight 
w. Then, an activation function is applied to 
pushing linear sum to a non-linear space. 
 

 

Fig. 12 Neuron structure for ANN model 

 

The proposed ANN model with two hidden 
layers is shown in Fig. 13. There are 3 types of 
layers which are called as input, hidden and output. 
In the input layer, the number of neurons is 
determined by the number of feature vectors (for 
this study they are applied load, sliding distance and 
sliding speed). Numbers of hidden layers and 
neurons can be determined arbitrarily. Finally, the 
output layer (for this study it is wear volume    
loss) shows the estimated result according to 
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computations by values from hidden layers. During 
training, the error between actual and predicted 
values is calculated and weights among neurons are 
updated using back propagation (BP) algorithm. 
This process continues until termination criterion is 
met or ANN has converged enough [32,33]. 
 

 
Fig. 13 Proposed ANN model 

 

In order to compute error, root mean square 
error (RMSE) is used. It is calculated as follows 
(Eq. (6)):  

1/2

2

1

1
RMSE ( )

n

i i
i

e p
n 

 
  
 
                 (6) 

 
where ei is the actual value, and pi is the predicted 
value. 
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where lp  is the mean of the actual values and R2 
is the correction coefficient which represents the 
accuracy of the method, here, it is a commonly used 
performance measurement for machine learning 
methods. The desired result in machine learning 
methods is to produce a model with high R2 and low 
RMSE values. 
 
6 Experimental results of machine 

learning models 
 

In this study, three machine learning 
algorithms (SVR, RF and ANN) were applied to 
estimating the wear volume loss of the AZ91 alloy. 
The experimentally collected data set was separated 
into training and test as 85% and 15%, respectively. 
Applied load, sliding distance and sliding speed 

were determined as input feature variables and the 
output was wear volume loss. RBF kernel function 
was employed for SVR method. In ANN model, the 
numbers of neurons located in hidden layers 1 and 2 
were determined as 8 and 2, respectively (Fig. 13). 
Moreover, hyperbolic tangent was used as an 
activation function and the Quasi-Newton was used 
as a backpropagation algorithm. The results of the 
applied machine learning methods for training data 
can be seen in Fig. 14. According to the results, the 
highest accuracy (R2) for the training set was 
obtained by ANN. In addition, it was observed that 
RF is very competitive with ANN. Since the 
relationship between the data obtained from 
laboratory-based experimental results cannot be 
accurately estimated by hyperplanes, the accuracy 
of SVR decreased. When the incorrect results were 
analyzed, it was seen that the error increased 
especially in high wear volume loss values for ANN 
and SVR. This is because they produce more 
deviations for higher wear volume loss values. 
 

 
Fig. 14 Comparison of experimental and predicted 

values for training data  

 

The experimental and predicted results for test 
data are given in Table 4. Figure 15 shows the 
comparison of the results of the models with 
experimental ones for test data set. It was observed 
that the results obtained in the test set were similar 
to those in the training set. SVR achieved the 
lowest accuracy and ANN competed with RF. It 
was also noticed that ANN was more stable for both 
high and low output values. According to these 
results, it could be seen that the models did not 
over-fit training data (memorization of input data) 
and were able to learn the relationship between 
inputs and outputs. 
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Table 4 Comparison of experimental results and predicted results obtained with different models for test data set  

Load/N Sliding distance/m Sliding speed/(mmꞏs−1) 

Wear volume loss/mm3 

Experimental
Predicted 

SVR RF ANN 

30 1000 220 24.32 22.37 22.91 26.67 

20 250 160 4.88 6.94 6.35 5.46 

10 1000 200 14.18 9.15 17.09 11.67 

20 250 220 3.52 4.20 5.23 3.11 

30 1000 160 20.90 14.36 22.64 19.53 

40 1000 180 34.16 26.37 32.13 34.10 

30 500 200 13.44 9.81 13.05 12.69 

10 250 220 2.52 1.48 3.69 0.56 

30 250 160 5.08 6.91 7.12 5.24 

 

 
Fig. 15 Comparison of experimental and predicted 

values for test data  

 
Furthermore, the effect of regularization 

constant (C) on R2 for SVR was investigated 
(Fig. 16(a)). The model was tested with different C 
values from 0 to 10 with a step size of 0.1 (for 
plotting it is normalized to a range of 0−100) and 
had the highest accuracy when C was 1.5 (when 
inputs and training success are considered). As can 
be seen from Fig. 16(a), when C value was 
increased too much, even if the model achieved 
high accuracies for training set, it was observed that 
low accuracies were obtained in the test set because 
of over-fitting. 

The effect of the number of estimators for RF 
was examined by testing from 0 to 1000 
(Fig. 16(b)). The highest accuracies for both 
training and test sets were observed when the 
number of estimators was 40 and above. Therefore, 
considering the performance, it was seen that the  

 
Fig. 16 Effect of SVR and RF parameters on R2:      

(a) Regularization constant for SVR; (b) Number of 

estimators for RF 

 
most reasonable number of estimators was 40. 

Table 5 presents the accuracies of the three 
methods. Although ANN and RF had almost the 
same accuracies for the test phase, SVR was far 
behind. Also, ANN had the higher accuracy than RF 
for the training stage. 
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Table 5 Comparison of accuracies of three methods 

Accuracy 
SVR RF ANN 

Training set Test set Training set Test set Training set Test set 

R2 0.9277 0.9245 0.972 0.980 0.997 0.9845 

 

 
7 Conclusions 
 

(1) The wear volume loss increased with 
increasing load for all sliding distances and some 
sliding speeds. 

(2) The AFC values significantly changed 
depending on different sliding speeds, sliding 
distances and applied loads. 

(3) At a load of 10 N, abrasive wear is the 
dominant mechanism under conditions of sliding 
distances of 250 and 1000 m and a sliding speed of 
160 mm/s. However, oxidative wear emerges at a 
load of 10 N, a sliding speed of 220 mm/s and a 
sliding distance of 1000 m. Delamination is 
generally observed at a load of 50 N. 

(4) ANOVA results show that the sliding 
distance is the most effective parameter for wear in 
AZ91 alloy. 

(5) ANN can be used to estimate the wear 
volume loss of the AZ91 alloy with the highest 
accuracy (0.9845). In this way, high reliability 
estimation can be made for wear volume loss before 
performing experiments. 
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机器学习法预测 AZ91 合金在干滑动摩擦条件下的磨损性能 
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摘  要：研究在不同载荷(10~50 N)、滑动速度(160~220 mm/s)及滑动距离(250~1000 m)条件下 AZ91 合金的磨损

行为。结果表明，在一定的滑动距离和滑动速度下，磨损体积损失随负载的增加而增加。当滑动速度为 220 mm/s

和滑动距离为 1000 m 时，载荷 10、20、30、40 及 50 N 下合金的体积损失分别为 15.0、19.0、24.3、33.9 及 37.4 mm3。

磨损表面显示，载荷为 10 N 时磨损表面存在磨损和氧化现象，载荷为 50 N 时发生分层现象。ANOVA 结果显示，

载荷、滑动距离和滑动速度的贡献率分别为 12.99%、83.04%及 3.97%。采用人工神经网络(ANN)、支持向量回归

(SVR)和随机森林(RF)对 AZ91 合金的体积损失进行预测。SVR、RF 及 ANN 的相关系数(R2)分别为 0.9245、0.980

及 0.9845。因此，ANN 模型能较好地预测 AZ91 合金的耐磨性能。 

关键词：AZ91 合金；磨损性能；人工神经网络；支持向量回归；随机森林方法 
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