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Table 1 Results of kriging and direct sequential simulation (DSSIM)

Item Ore/Mt Metal/t Grade/(gt ™) Comparison/% Variance
Drillhole data - - 1.77 - 2.43
Ordinary kriging 32.05 57.38 1.790 0 1.44
DSSIM #2 32.05 59.14 1.862 4.02 2.27
DSSIM #11 32.05 57.77 1.803 0.73 2.52
DSSIM #18 32.05 55.86 1.743 -2.63 222
E-type 32.05 59.02 1.842 2.88 0.90
*2 BMBERAHSH
Table 2 Technical and economic parameters
o Perods! Mimgeosy 1T BCUIE TN eatprces S eyl bounds
) (Y-t (Yt (¥t (¥e) Mta)  (Mta) (gt
DS 12 165 40 90 30 260 1.85 1.76-1.80  2.1-24
OK 12 165 40 90 30 260 1.85 1.76—1.80 2.1-2.4
*=3 BRI S8
Table 3 Risk parameters
ttem Number of Geologic risk .Orft production L Grade deviaﬁtfon Conditiona} Varj?nce
realizations discount rate/% deviation cost/(t-¥ ) cost/(g ¥ ) cost/(unit-¥ )
DS 20 20 1000 160 800
OK 1 20 1000 160 800
s ol DS 322 RACKE 2B
e AN NPT P SRR R VR S E 4
15l KA ATHEME . F/ MBS RBEAT MR, 20900 B
= P10 P50 P90 %55 . & 10(a) T A8 A7 HISE 1
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Fig.7 Ore tonnage mined over 12 periods
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Fig. 10 Probability analysis for ore grade over 12 periods
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Optimization model of underground mining production scheduling
with grade uncertainty

HUANG Shu-wei" 2, HUNai-lian" 2, LI Guo-qing" %, HOU Jie"-?

(1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education, Beijing100083, China)

Abstract: Traditional mine planning optimization ignores the presence of geological uncertainty causing most of the
mine forecasts to be unrealistic. To overcome these problems, a risk-integrated mine planning framework was presented
to optimize the mining production schedule based on conditional simulation and stochastic mixed integer programming.
With conditional simulation, the risks from grade uncertainty in ore reserves can be measured and managed through a set
of equally probable orebody realizations. And stochastic programming allows the integration of grade uncertainty into the
production scheduling optimization process directly. The stochastic optimization model presented herein is to maximize
the net present value and minimize the risk of deviation from operating and financial targets simultaneously. To
demonstrate the applicability of the formulation, a long-term production scheduling case study on an underground gold
mining complex was implemented. The results show that the capability of the model to control the effects of grade
uncertainty, which provides a new method for mining risk evaluation.
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