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Fig.1 Schematic diagram of separator structure
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Table 1 Structure parameters of two separators

Structure parameter C1 C2
D/mm 650 350
H/mm 1510 1400
D,/mm 320 188

S/mm 0 210
a/mm 380 168
b/mm 180 80
H./mm 1000 875
Dy/mm 100 100

X PR S G 1) o B AT AR, SR B
FW T CL s as iR C2 4y s ds il <
P, HHEHEAA 150 mm, RELEREREXMS WA
T8 A 43 85 2% 8 TE 4y B 1R U7 % A G (Powder
container), AN 18 L, =4 JLMAMEAIIE 2 Fis.

500 mm
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Fig. 2 Three-dimensional model of combined separator
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HART B E S Wall, 7E5 5525 F4RRE M4 R Z 3T 48
PN, HApE—ERE N 0.1, KRR 1.05.

XS AT o R MRS SR, A i E T AL AR
BT AR IS, B 418 X 10%. 508 X 10%, 560 X 10*,
670X 10* 1 711 X 10%, ZE N 1HTE 1.6 m/s 2514 F LLE
HREIEAR 3000 P, THEL C1 23 4% N 0 L B
HEUR B 2R B A (WL 4) . 459K, ST AL
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Fig.3 Combined separator grid: (a) x—y plane; (b) y—z plane
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Fig. 4 Axis velocity curve of C1 separator with different grid
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Table 2 Nomenclature of physical symbols

Nomenclature Physical meaning
Dimension
vi(ms ") Fluid velocity
vp/(mes 1) Particle velocity
glkgs™?) Gravity acceleration
Fy/N Virtual mass force
Fr/N Thermophoretic force
Fp/N Brownian force
Fp/N Pressure gradient force
Fs/N Saffman’s lift force
v/(ms ) Fluid velocity vector
o Kronecker tensor
oj Viscous stress tensor
T; Reynolds stress tensor
D; Viscous diffusion
D,-} Turbulent diffusion
Py Turbulent production
i Dissipation rate tensor
II; Pressure dilatation
M; Mass flux variation

Non-dimension
We
Re
pl(kgm™)
pr/(kgm™)
Co
D/pm
D /um
dy/mm
wkgm s
Ma
t/s
P/Pa
1
Vb
N
O/(N-m*h™)

Weber number
Reynold number
Fluid density
Particle density
Drag coefticient
Particle diameter
Mean particle diameter
Hydraulic diameter
Dynamic viscosity
March number
Time
Static pressure

Turbulence intensity

Particle volume of diameter greater than D

Spread number

Volume flow
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Fig. 5 Rosin-Rammlar natural logarithmic and cumulative
distribution curves of powder
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Fig. 6 Velocity streamline of combined separator
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Fig. 9 Tangential velocity profile of centrum section:
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Fig. 10 Particle distributions at different time steps: (a) 100
steps; (b) 150 steps; (c) 800 steps; (d) 2500 steps
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Comparison of separation results of C1 and C2
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Fig. 12 Trajectories of particles with different sizes: (a) 5 um;

(b) 15 pm; (¢) 25 pum; (d) 35 pm
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Fig. 14 SEM images of powder in Cl(a) and C2(b) powder
containers
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Fig. 15 Particle size cumulative distribution curves of powder

in C1 and C2 separator powder containers(-250 mesh size)
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Numerical simulation and experimental study on
separation performance of combined separator for
gas atomized powder production

LIU Yang, ZHANG Guo-qing, XU Wen-yong, ZHENG Liang, LI Zhou

(Science and Technology on Advanced High Temperature Structural Materials Laboratory,

AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: A kind of combined separator for gas atomization equipment was designed. The combination of computational
fluid dynamics(CFD) simulation and experiment were employed to investigate the separation performance. Based on the
separation performance difference between two different structure separators, the coarse and fine particles can be
hierarchically collected during the powder preparation process, so that the preparation cycle and the cost of alloy powder
for selective laser melting(SLM) can be reduced. The results indicate that the collection efficiency of Cl1 structure
separator for fine alloy particles is lower under the condition of argon flow rate of 400 m*/h and powder flow rate of
lkg/min, while C2 structure separator exhibits a high collection efficiency for fine alloy particles under the same gas
atomization condition. These two structure separators in series connection can effectively classify fine and coarse
particles, thus the separation treatment cycle in the next process can be shorten.

Key words: combined separator; numerical simulation; gas atomization powder preparation; selective laser melting

Foundation item: Project(2017YFB0305800) supported by the National Key Research and Development Program of
China; Project (51434007) supported by the National Natural Science Foundation of China; Project
(Z181100003318001) supported by the Beijing Municipal Science and Technology Project, China;
Project(ZZCX-2019-001) supported by the Independent Innovation Project of Aero Engine
Corporation of China

Received date: 2019-12-02; Accepted date: 2020-08-06

Corresponding author: ZHANG Guo-qing; Tel: +86-10-62496137; E-mail: g.zhang@126.com

(e FH)



