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Fig. 1 Initial atomic structure of model (upper and lower blue

area for Cu atoms, middle red area for Al atoms)
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Fig. 2 Diffusion of Cu and Al atoms at casting temperature of
953-1033 K: (a) 953 K; (b) 973 K; (¢) 993 K; (d) 1013 K; (e)
1033 K
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Table 1 Diffusion coefficient of Al and Cu under different

temperatures

Temperature/ Difﬁlsion Ditjfusion
K coefﬁcgen}lof Al/ coefﬁmgn'g 1of Cu/
(m™s ) (m™s )
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Concentration image of Cu/Al
multilayer film atoms along Z direction at
casting temperatures: (a) 953 K; (b) 973 K;
() 993 K; (d) 1013 K; (e) 1033 K
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Fig. 6 Tensile stress—strain curves of Cu/Al multilayer film at

different casting temperatures
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Fig. 11 Tensile stress—strain curves of Cu/Al multilayer film

at different casting time
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Fig. 14 Analysis of Cu and Al atomic structures without
loading at different casting time (red for HCP structure, green
for FCC structure, white for OTHER structure): (a) 0.2 ns;
(b) 0.4 ns; (c) 0.8 ns
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Fig. 15 Curve graph(a) and dislocation structures((b)—(e)) of Cu/Al multilayers with casting time of 0.2 ns under uniaxial tensile
loading at different strain stages: (b) 7.32%; (c) 7.92%; (d) 31.92%; (e) 32.85%
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Fig. 16 Curve graph(a) and dislocation structures((b)—(e)) of Cu/Al multilayers with casting time of 0.5 ns under uniaxial tensile
loading at different strain stages: (b) 11.61%; (c) 12.12%; (d) 41.82%; (e) 43.62%
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Fig. 17 Curve graph(a) and dislocation structures((b)—(e)) of Cu/Al multilayers with casting time of 0.8 ns under uniaxial tensile
loading at different strain stages: (b) 5.67%; (c) 6.18%; (d) 28.71%; (e) 29.49%



2530 555 12

BRA K, S Cw/AIL BEFE S IHESE R A PR BE 0 T3 ) 22Kt 2897

(PR, {EFHTH T AT Cu SRR {11198 R 2 RROK
BN EZE. ZE5R 3 )2 HCP 450 HMNARAF]
28.71%M0F, W 17(d)Fi7R, 24550 Al #E N HCP
JETHE T[], Al A HCP JR 7R TR %, 1L
JZ Cu HREFT AL RS (1 11) TR A B 24 34 3
JZA1 6 JZ HCP 454, FJ2 Cu BT AL R (111)
MR 3 J2H1 4 J210 HCP S50 HAE {111} WA EHR
Y B AL, T R 36 K Bl N AR 1 2
29.49% I, W 17(e)fias, Cu HEEA A1) H 5
JEFH 4 2 HCP 556480 3 |2, RLJTRSA P

ZEE 11~17, XTHEEER T 0.2 ns A1 0.5 ns
N (1 P A A P S g — I AR it 2 R OWE JiR - 45 44 T
A, WA RE T, Cw/Al 2R BEAR AL 3 5
R AZE . A 22 A Z E HCP
SRR 1 BELASAE F AR 5 5| SR B B S g o 7 A%
SR BORIE IR, SR T B R RAT AL
A2 = HCP 451 FHRSER, BEE HCP R R
WA E R 2, SOIRIZE TR N g . 0.2
ns i, BZEE. 3 2. 4215 2 HCP &/, H
1E Al N TE R 4 /> 12 )2 HCP 450 515 Al T
0.5ns i, HZE4. 32, 4)2. 5 2L 6 )2 HCP 45
FITE Cuy AL BN AR, FFH 0.2 ns M2 JZ HCP
ZERIRKT 0.5 ns IWFE, R, 0.2 ns FIERSE G50 5
F 0.5 ns (). THEEEE AN 0.8 ns B, T Hed A
K, Cus Al BT 83 H T 2015 Cw/Al 2 Z 157
AR AR, R A, SRR SR
FEAIG

3 &g

1) Fifi 5 Ge s I (R A e i S 13 in, Cu JR74
BCE] AL E L AL R 74 #8) Cu £, Cu.
Al JRFHY HES R, Cw/Al 2 2 B ST
Ko

2) MEHE G T, Cu AL JEFIY BUR
Hgsh ok, Fhm X i 2 R A WG, ARy
AR THEIY R, 33 CuwAl ZEB )5
RER AR, Bohr i P Tl 8 IR R 1) T s Sl 1Y i 9
/N, TERSEFIREE 1013 K F, Hyrhism i 2 & ME
4.02 GPa.

3) VREGIRE N 1013 K I, B BRI IA) (18
AR R RERGR, oo BE A BRI AR il o e I ]
HEINIZE RN, 0.2 ns I, PUhoR kB KAE 4.02
GPa, 7£ 1013 K MR 0.2 ns I Cw/Al £ 2 241k

[ 4E

4) XFECAS R BRI 3] T (1) Cu/Al 2 JZ SR 14 AR T
MBI AE A AR, MBI S5 T 0.2 ns ),
JEE P R4 255 £ 2 HCP 45 TR A e AT B &
RIS IR B B R, IR AKX T 0.5 ns S,
T BesEnt i K, Cus AR 7B H 2, MK
GER R LR, 15 Cu/Al 2 J2 IR 45 & 5 5 HOH A

REFERENCES

[1] SR JokE%E: JeREAR SR THEM]. P/, B
IR, BE dbat AU ML AR, 2013: 394419,
MORRIS J E. Nanopackaging nanotechnologies and
electronics  packaging[M]. LUO Xiao-bing, CHEN
Ming-xiang, transl. Beijing: Machinery Industry Press, 2013:
394-419.

2] W %, RTAE, HRIN, SEETE, RO AVCu MK
T BOERROR[T]. W0 SHRT I, 2004, 16(5): 607.
XIE Jun, WU Wei-dong, YE Cheng-gang, HUANG Li-zheng,
YUAN Guang-hui. Vacuum diffusion bonding technology of
aluminum/copper films[J]. High Power Laser and Particle
Beams, 2004, 16(5): 607.

[B1 ¥ F, RIAK A HL WA, RN, HIEE, 506

HE. Al/Cu TR 25 SRR BO& 4% T2 [ B AL U0 Hr
[31. JEFReRIFHR, 2004, 38(7): 120—-124.
XIE Jun, WU Wei-dong, DU Kai, ZHENG Feng-cheng, YE
Cheng-gang, HUANG Li-zheng, YUAN Guang-hui. Process
and microstructure analysis in vacuum diffusion bonding of
aluminum and copper films[J]. Atomic Energy Science and
Technology, 2004, 38(7): 120—124.

[4] NI Z L, YE F X. Effect of lap configuration on the
microstructure and mechanical properties of dissimilar
ultrasonic metal welded copper-aluminum joints[J]. Journal
of Materials Processing Technology, 2017, 245: 180—192.

[S] CHENSY,WUZW,LIUK X, LIXJ,LUON, LU G X.
Atomic diffusion behavior in Cu-Al explosive welding
process[J]. Journal of Applied physics, 2013, 113(4):
044901.

[6] ZHOU Q, LI S, HUANG P, XU K W, WANG F, LU T J.
Strengthening mechanism of super-hard nanoscale Cu/Al
multilayers with negative enthalpy of mixing[J]. APL
Materials, 2016, 4(9): 096102.

[71 JIANG H G, DAIJ Y, TONG H Y, DING B Z, SONG Q H,
HU Z Q. Interfacial reactions on annealing Cu/Al multilayer

thin films[J]. Journal of Applied Physics, 1993, 74(10):



2898 T EA O8RS 20204F 12 7
6165-6169. 2009(19): 40—41.

(8] GKIEZR, & W, TKENE, W OB, & W SRHHIE [16] k&L Z, Bk NI AR SFOEHE - Ak & S
RN IAT AN 7 T3 /1 F @R ). &R FHIZE AL A (S8 2R, 2008, 18(3): 41-47.
2F4R, 2019, 55(7): 919-927. ZHANG Hong-an, CHEN Gang. Fabrication of Cu/Al
ZHANG Qing-dong, LI Shuo, ZHANG Bo-yang, XIE Lu, LI compound materials by solid-liquid bonding method and
Rui. Molecular dynamics modeling and studying of interface bonding mechanism[J]. The Chinese Journal of
micro-deformation behavior in metal[J]. Acta Metallurgica Nonferrous Metals, 2008, 18(3): 41-47.

Sinica, 2019, 55(7): 919-927. [17] GAO J, WANG K F, FU X Q, CHEN S J, ZHANG Z J,

[9] WL, Room, MXE, ¥ 8 5 % CuAl ¥ Eus WANG Q N, LIJ J, YU Q. Super plasticity in a cold-welded
T2 KR4GS AR MERE]. 1542, 2001(10): 7-10. Al-Cu joint[J]. Applied Physics Letters, 2019, 114(6):
LI Ya-jiang, WU Hui-qiang, CHEN Mao-ai, YANG Min, 063101.

FENG Tao. Vacuum diffusion welding procedure of copper/ [18] X ¥, FIZA, % W B SR &R
aluminum and microstructure analyses bond interface[J]. S FEN IR, AR, 2007, 56(1): 407412,
Welding & Joining, 2001(10): 7-10. LIU Hao, KE Fu-jiu, PAN Hui, ZHOU Ming. Molecular

[10] TR, mhsC, Hidd%. Al-Cu N&REE A &MY #L dynamics simulation of the diffusion bonding and tensile
FERARIGHT T[T, PPRITRR, 2003(1): 34-37. behavior of a Cu-Al interface[J]. Acta Physica Sinica, 2007,
MENG Jiao-dong, QU Wen-qing, ZHUANG Hong-shou. 56(1): 407—-412.

Experimental study on diffusion bonding of Al-Cu bimetal [19]1 X 5%, FXI5RE, MK, LT, FEK, HESR, £
composite structure[J]. Journal of Materials Engineering, B PRI T PR AR LI A% A K A oy
2003 (1): 34-37. TBN )1 ERERNI]. D3R, 2019, 68(13): 133101.

[11] GRUBER P A, SOLENTHALER C, ARZT E, SPOLENAK LIU Qiang, GUO Qiao-neng, QIAN Xiang-fei, WANG
R. Strong single-crystalline Au films tested by a new Hai-ning, GUO Rui-lin, XIAO Zhi-jie, PEI Hai-jiao.
synchrotron technique[J]. Acta Materialia, 2008, 56(8): Molecular dynamics simulation of void nucleation, growth
1876—1889. and closure of nano-Cu/Al films under cyclic

[12] &4, F ik, & 8, 0. W8 EREEME loading[J]. Acta Physica Sinica, 2019, 68(13): 133101.
AL FU S MR BERE[T]. BN T2, 2011, 40(10): [20] CHEN S, KE F J, ZHOU M, BAI Y L. Atomistic
84-87. investigation of the effects of temperature and surface
ZHAO Hong-jin, WANG Da, QIN Jing, ZHANG Ying-hui. roughness on diffusion bonding between Cu and Al[J]. Acta
Research progress on bonding mechanism and interface Materialia, 2007, 55(9): 3169-3175.
reaction of Cu/Al laminated composite[J]. Hot Working [21] LI C, LI D, TAO X M, CHEN H M, OUYANG Y F
Technology, 2011, 40(10): 84-87. Molecular dynamics simulation of diffusion bonding of

[13] £ fE, x| P, XI5, REE&MEE AR LI Al-Cu interface[J]. Modelling and Simulation in Materials
MR FC[T]. LA (A48, 2015, 36(2): 61-64. Science and Engineering, 2014, 22(6): 065013.

WANG Zheng, LIU Ping, LIU Xin-kuan. Research of casted [22]1 & b, EFEE, 2R, SAARELY BUE S ST BT
Cu-Al composite materials on performance[J]. Nonferrous ST )R] AL B R 53 %, 2011, 32Q2):
Metal Materials and Engineering, 2015, 36(2): 61-64. 55-60.

[14] R, 5k W, skZf, EFHE. f/maE-RE AR LUO Long, WANG Bao-feng, LI Li-rong. Molecular
[7]. #5i, 2014, 63(7): 655—658. dynamics simulation of diffusion behavior at the interface of
SONG Ke-xing, ZHANG Ya, ZHANG Yan-min, GUO hot rolling-diffusion bonding of Cu/Al[J]. Heat Treatment
Xiu-hua. Study on solid-liquid bonding of Cu/Al Technology and Equipment, 2011, 32(2): 55-60.
composites[J]. Foundry, 2014, 63(7): 655—658. [23] Filgde, ZFR. Al-Cu ¥ HUEKI A IR M) AN TT

[15]

VMg, WA AR KSR D]. R EREAE R,
2009(19): 40—41.
JIAMG Yu-mei.

Study on Cu/Al composite and its

interface[J]. China Science and Technology Information,

25,2008, 37(24): 1-4.

YI Hai-long, LI Shi-chun. Interfacial reactions in Al-Cu
diffusion couples[J]. Hot Working Technology, 2008, 37(24):
1-4.



2530 555 12

BRA K, S Cw/AIL BEFE S IHESE R A PR BE 0 T3 ) 22Kt

2899

[24]

(25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

FRTGRE, WO, ph SR, XAk, B OH, EAT. RE
X R Rl IR 98 25 A RE B T ) 20T Bl 0 AR D). R A
%, 2013, 62(10): 107103.

GUO Qiao-neng, CAO Yi-gang, SUN Qiang, LIU Zhong-xia,
JIA Yu, HUO Yu-ping. Temperature dependence of fatigue
properties of ultrathin copper films: molecular dynamics
simulations[J]. Acta Physica Sinica, 2013, 62(10): 107103.
HER, SR, Mgk, EUE, £857, 2 58, £8
BR, b T, BRAE KL UEEERT ORISR RS 4 T ) S T
I HUME B8 K ) SV RE RS ) 20T 3 S AR ], Fon L
12,2019, 48(14): 102—-107.

HAN Xue-jie, GUO Qiao-neng, YANG Shi-e, WANG
Ming-xing, WANG Jie-fang, LIU Qiang, WANG Lu-yu,
GU Gan, QIAN Xiang-fei. Molecular dynamics simulation
of effect of temperature and holding time on interface
diffusion performance and mechanical properties of
copper/aluminum film[J]. Hot Working Technology, 2019,
48(14): 102-107.

CAI J, YE Y Y. Simple analytical embedded-atom-potential
model including a long-range force for fcc metals and their
alloys[J]. Physical Review B, 1996, 54(12): 8398.
PLIMPTON S. Fast parallel algorithms for short-range
molecular dynamics[J]. Journal of Computational Physics,
1995, 117(1): 1-19.

EVANS D J, HOLIAN B L. The nose-hoover thermostat[J].
The Journal of Chemical Physics, 1985, 83(8): 4069—4074.
STUKOWSKI A. Visualization and analysis of atomistic
simulation data with OVITO — The Open Visualization
Tool[J]. Modelling and Simulation in Materials Science and
Engineering, 2009, 18(1): 015012.

TEX I W, Bk A, XIFEW. PREE Cw/Al HIE
SERIFFI]. FeRhesiE A 64, 2010(6): 581-583.
YU Bao-yi, QIAO gang, CHEN Yan, LIU Chun-yu.
Preparation of Cu/Al liquid-solid compound bimetallic
composites by hot-dipping technology[J]. Special Casting &
Nonferrous Alloys, 2010(6): 581-583.

FoOE. H-EPAEA R ROR L) 2 T3 AR D].
B BRHECOREE, 2015,

WANG Chao. Molecular dynamic simulation on solid-liquid
compound of copper and aluminum two-phase materials[D].
Wuhan: Huazhong University of Science and Technology,
2015.

B &, FE, RER. AVCu § HUSAH T 1 ST
FI A ORI (A AR B R, 2007, 31(2):
110-113.

YANG Rui, LI Shi-chun, SONG Yu-qiang. Experimental

(33]

[34]

[35]

[36]

[37]

[38]

[39]

study on interface of Al/Cu diffusion couple[J]. Journal of
China University of Petroleum(Edition of Natural Science),
2007, 31(2): 110-113.

kg, B GR, B, FWE, B B, KREBL
Cw/Al BEMEHE KOS FE i) ST HLUR A )], & #
AbEE, 2017, 42(7): 131-136.

ZHANG Jian-yu, MA Qiang, LIAN Ying, LI He-zong, MA
Cong, ZHANG lJia-shuo. Interfacial microstructure evolution
of Cu/Al composites during annealing[J]. Heat Treatment of
Metals, 2017, 42(7): 131-136.

MOB R W, SRR, BREHE. DRIR I (6 B AR TR
PR AL B YA 2 P RE R A )], SR ER 224, 2016,
37(12): 9-12.

YE Zheng, YANG Hao, HUANG Ji-hua, CHEN Shu-hai.
Influence of dwelling time on interfacial compounds and
mechanical properties of aluminum/copper brazing joints[J].
Transactions of the China Welding Institution, 2016, 37(12):
9-12.

ERE, Fr WL R KB R SRR RUE AL
PERERISEIRT]. SRR TE, 2013, 38(12): 68—71.

WANG Li-hua, QIAO Gang. Effects of annealing on
microstructure and mechanical properties of Cu/Al
composite materials diffusion layer[J]. Heat Treatment of
Metals, 2013, 38(12): 68—71.

XSO, XeZd. A O B RO T 5L A R
WL R A B4, 1999(6): 37-39.

LIU Wen-chuan, LIU Xiao-lie. Discussion on calculating
formula for efficient pouring time of non-ferrous metal
castings[J]. Special Casting & Nonferrous Alloys, 1999(6):
37-39.

FU T, PENG X, WENG S, ZHAO Y B, GAOF S, DENG L J,
WANG Z C. Molecular dynamics simulation of effects of
twin interfaces on Cu/Ni multilayers[J]. Materials Science
and Engineering A, 2016, 658: 1-7.

ZHANG Z, WANG B, HUANG S, WEN B, YANG S,
ZHANG B, LIN C T, JIANG N, JIN Z M, GUO D M. A
novel approach to fabricating a nanotwinned surface on a
ternary nickel alloy[J]. Materials & Design, 2016, 106:
313-320.

TP SRIEDS. AR R IR AR vh s (R B R T A
S50 730 1A A W B A AR, 2013(19):
388-394.

XU Shang, GUO Ya-fang. Generation and evolution of
vacancy-type defects in nano-Cu films during plastic
deformation by means molecular dynamics[J]. Acta Physica

Sinica, 2013(19): 388—394.



2900 HHEA SR AR 20204F12 A

Molecular dynamics simulation of interface bonding and
tensile properties of Cu/Al casting

QIAN Xiang-fei, GUO Qiao-neng, YANG Shi-e, WANG Ming-xing, LIU Qiang, WANG Jie-fang

(School of Physics, Zhengzhou University, Zhengzhou 450001, China)

Abstract: The effects of different casting temperature and casting time on the interfacial diffusion of Cu/Al multilayer
films were studied based on the molecular dynamics method. The tensile deformation of Cu/Al multilayer films under
different casting time and casting temperature was compared from the aspects of mechanical properties and dislocation
slip, and the effects of microatomic structure and the mechanical properties of metal films were revealed. The results
show that the thickness of transition layer and the number of Cu and Al atoms diffusing each other near the interface both
increase with the increase of casting temperature and casting time. The yield strength and tensile strength of Cu/Al
multilayer films also increase at first and then decrease with the increase of casting temperature and casting time. When
the casting temperature is 1013 K and the casting time is 0.2 ns, the mechanical properties of Cu/Al multilayers are the
best.

Key words: molecular dynamics; casting; Cu/Al multilayer film; interface diffusion
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